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ABSTRACT 

The rise of artificial intelligence (AI) and Internet of Things (IoT) technologies is transforming agriculture by enabling smarter, more efficient farming practices. 

This paper presents the development of an autonomous robotic system designed for precision weed detection and selective herbicide application in agricultural 

fields. The proposed system uses a robotic vehicle equipped with a deep learning-based vision system to detect weeds and a selective spraying mechanism that 

targets only unwanted plants, thereby reducing herbicide usage and minimizing environmental impact. The robotic vehicle navigates autonomously within the 

field using waypoint navigation, capturing real-time video through a mounted camera, which is processed to identify and locate weeds. Leveraging AI-based 

inference results, the selective spraying system activates only on detected weeds, enhancing resource efficiency and reducing manual labour. This approach 

provides a scalable and sustainable alternative to traditional weed management practices, supporting farmers in reducing costs and improving field productivity. 

Field testing demonstrates the effectiveness of the system in autonomously navigating varied agricultural environments and accurately performing selective weed 

spraying. 

KEYWORDS: Autonomous robotic vehicle, precision agriculture, weed detection, deep learning, IoT, selective spraying, waypoint navigation, 

herbicide reduction, smart farming etc. 

1. INTRODUCTION 

Agriculture is a cornerstone of the Indian economy, with around 70-75% of the population relying on it for their livelihood. However, traditional 

farming practices face numerous challenges, including reliance on manual labour, high resource consumption, and environmental impact. Weed 

management, a significant aspect of agricultural maintenance, typically involves labour-intensive and indiscriminate application of herbicides, leading 

to inefficient resource usage, increased costs, and negative environmental effects. In recent years, advancements in artificial intelligence (AI) and the 

Internet of Things (IoT) have opened new possibilities for addressing these challenges, enabling more sustainable and precision-driven approaches to 

farming. This paper proposes an innovative solution: an autonomous robotic vehicle designed for the selective detection and spraying of weeds in 

agricultural fields. The system combines deep learning and computer vision to detect weeds accurately and target them with a precision spraying 

mechanism. The robotic vehicle operates autonomously, navigating the field using waypoint navigation and IoT-based triggers, which enable remote 

initiation and monitoring of the vehicle’s operation. An overhead camera mounted on the vehicle captures real-time video feeds, which are processed 

by a deep learning model to identify and localize weeds. Upon detecting weeds, the selective spraying system administers herbicide precisely to 

targeted areas, minimizing herbicide usage and environmental impact. 

 

This technology aims to modernize weed management in agriculture, transforming it from a labour-intensive process into an efficient, autonomous 

operation. By reducing dependency on manual labour and decreasing the volume of herbicides used, the system not only lowers costs for farmers but 

also supports sustainable agricultural practices. The development and field testing of this system underscore the potential of integrating AI and IoT into 

agriculture, paving the way for smarter, more efficient, and environmentally friendly farming solutions. 
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2. CURRENT WORK 

The integration of artificial intelligence (AI) and autonomous systems in agriculture has accelerated in recent years to address challenges such as 

manual labour shortages, resource inefficiency, and environmental impact. In this context, several studies have explored the use of AI and computer 

vision techniques to develop automated solutions for weed detection and management. 

 

Xiya Zhang et al. introduced a crop row detection system specifically designed for maize fields, which relies on a vision-based approach to accurately 

segment images and extract feature points. Their methodology uses a position clustering algorithm combined with a shortest path method, enabling it to 

detect crop rows even under challenging conditions like high weed interference and gaps between rows. This approach not only achieves high accuracy 

but also emphasizes the importance of developing systems capable of operating under realistic, field-based conditions. Zhang et al.'s research provides a 

foundation for further advancements in robotic weed detection by showcasing how visual perception algorithms can be applied to structured 

agricultural environments. 

 

Wyatt McAllister et al. explored a multi-agent system for synchronized weed control, which introduces a framework for coordinating multiple 

autonomous robots to tackle weed management across large agricultural areas. This study focuses on the coordination strategies that allow each robot to 

operate efficiently with limited environmental data, effectively expanding the scope of autonomous systems in agriculture. McAllister et al.'s research 

highlights the scalability of multi-agent approaches and the potential for distributed robotic systems to perform complex tasks collaboratively. The 

findings underscore the value of synchronized robotics for tasks requiring coverage over vast fields, particularly in weeding operations that traditionally 

require intensive manual labour. 

Shanwen Zhang et al. proposed  

an adaptive fuzzy dynamic K-means algorithm combined with sparse representation classification for precise weed species recognition. Their method 

stands out due to its ability to segment weed images accurately while minimizing computational costs and recognition time. This approach addresses 

the need for adaptable models that can differentiate between various weed species, which is crucial for implementing selective spraying systems. Zhang 

et al.'s work demonstrates the application of specialized machine learning techniques to enhance precision in weed detection, thus promoting efficiency 

in selective herbicide applications and advancing the adaptability of machine learning in dynamic field conditions.  

 

Dimitrios S. Paraforos et al. focused on developing a robust communication system using ISOBUS technology, a standard communication protocol 

that enables different agricultural implements and machines to connect seamlessly. By integrating real-time analytics and sensor data, their system 

facilitates enhanced connectivity between agricultural robots and smart devices, allowing for more intelligent field management. This study contributes 

to the understanding of how communication technologies can support robotics in agriculture by ensuring a streamlined data flow between autonomous 

machines and cloud-based platforms. Paraforos et al.'s findings provide essential insights into how connectivity and interoperability can improve the 

effectiveness of robotic applications in agriculture, especially for monitoring and controlling various field tasks like weeding. 

 

Longzhe Quan et al. implemented a deep learning-based weeding system that uses intra-row targeted spraying to minimize crop damage. The system 

creates precise weeding zones by detecting and isolating weeds based on deep learning models, which are further refined for enhanced accuracy. Field 

trials validated the effectiveness of this approach, demonstrating significant improvements in intra-row weed control. Quan et al.'s work underscores the 

potential of integrating targeted control strategies within autonomous systems, reducing unintended impacts on crops while ensuring efficient herbicide 

usage. This approach aligns well with sustainable agricultural practices by promoting resource conservation and minimizing ecological disruption. 

 

Nitin Rai et al. conducted a systematic review focusing on recent advancements in deep learning for weed detection, assessing the integration of these 

techniques with ground-based and aerial technology. Their review highlights the technical capabilities of deep learning to support precision weeding, 

providing a comprehensive analysis of various algorithms and technologies utilized in recent studies. Rai et al. identify key trends, challenges, and 

future directions in weed detection, emphasizing the potential of deep learning to drive precision agriculture. Their findings serve as a valuable guide 

for researchers and developers seeking to adopt AI-driven weed management solutions and underline the transformative role of deep learning in 

improving decision-making processes in agriculture. 

 

Together, these studies underscore the transformative potential of AI and autonomous systems in revolutionizing weed management within agriculture, 

laying a foundation for the development of scalable, efficient, and environmentally sustainable agricultural practices. 

3. WORKING PRINCIPLE 

The proposed autonomous robotic weed detection and spraying system operates by integrating computer vision, deep learning, and IoT technologies to 

detect weeds and selectively apply herbicide, reducing overall herbicide use and environmental impact. At the heart of this system is a robotic vehicle 

equipped with a camera and a selective spraying mechanism. The robot navigates autonomously within agricultural fields, guided by waypoint 

navigation and controlled remotely via IoT protocols. 

 

The working principle begins with the camera mounted on top of the vehicle, which continuously captures real-time video feed of the field. The images 

from this feed are processed by a pre-trained deep learning model deployed on the AI hardware unit within the vehicle. This model identifies and 

classifies weeds from the surrounding crop based on previously collected and annotated datasets. The deep learning model, designed using a MobileNet 

V2 architecture for lightweight processing, performs inference on each frame, marking the weeds with bounding boxes for precise targeting. 
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When a weed is detected, the vehicle’s selective spraying mechanism is activated. Using the positional data of the weed provided by the deep learning 

model, the spraying mechanism applies herbicide directly to the weed while avoiding surrounding crops. The selective spraying is controlled by stepper 

motors, which align the nozzle with the detected weed location, enabling precise application of herbicides. This targeted spraying minimizes chemical 

use, reduces crop exposure, and enhances environmental sustainability. 

 

The vehicle navigates autonomously across the field using GPS and waypoint navigation algorithms, ensuring thorough coverage. The entire system 

can be triggered and monitored remotely through IoT protocols, providing farmers with real-time data on weed locations and the volume of herbicide 

used. This autonomous, data-driven approach optimizes field operations, decreases labor, and supports sustainable weed management practices in 

agriculture. 

4. SYSTEM ARCHITECTURE 

The system architecture of the autonomous robotic weed detection and spraying system consists of multiple interconnected components that enable 

precise weed detection, targeted spraying, autonomous navigation, and remote monitoring through IoT. The main components include the Robotic 

Vehicle, AI Processing Unit, Camera Module, Selective Spraying Mechanism, Navigation and Drive System, and IoT Communication Module. Each 

component plays a critical role in achieving seamless operation for autonomous weed management. 

1. Robotic Vehicle Frame: This serves as the physical platform on which all other modules are mounted. It includes a stable chassis powered 

by DC motors and equipped with solar panels for renewable power supply. The frame houses the drive system, which allows the vehicle to move 

autonomously across agricultural fields. 

2. AI Processing Unit: At the core of the system’s intelligence, the AI processing unit runs a pre-trained deep learning model for weed 

detection. This unit is typically an embedded AI board or a neural processing unit (NPU) that performs real-time inference on video data from the 

camera. The AI unit processes the images, identifies weeds, and sends positional data to the selective spraying mechanism for targeted application. 

3. Camera Module: Positioned on top of the vehicle, the camera captures live video feeds of the field as the robot moves. The camera module 

is connected to the AI unit, which processes each frame to detect and localize weeds. A high-resolution camera module, such as the OV2640, is used to 

ensure precise detection even in variable lighting and field conditions. 

4. Selective Spraying Mechanism: The selective spraying system consists of a nozzle attached to a sprayer pump, controlled by stepper motors 

for precise movement. The AI unit relays weed location data to the spraying mechanism, which then aligns the nozzle with the identified weed and 

applies herbicide only to that specific area. This targeted approach minimizes chemical usage and protects surrounding crops. 

5. Navigation and Drive System: The navigation system integrates GPS and waypoint navigation algorithms to enable autonomous movement 

across predefined paths within the field. The GPS module provides real-time location data to ensure the vehicle covers all areas effectively. 

Additionally, sensors like ultrasonic or proximity sensors may be incorporated to detect obstacles and avoid collisions, improving the vehicle’s 

autonomous navigation capability. 

6. IoT Communication Module: This module enables remote control and monitoring of the vehicle. It comprises an ESP32 development board 

for Wi-Fi communication, allowing farmers to receive real-time data on weed locations, herbicide usage, and battery status. The IoT module also 

allows remote triggering of the vehicle, monitoring of operational parameters, and real-time tracking of the robot’s position within the field. 

7. Power Supply: The system is powered by a rechargeable battery, supplemented by a solar panel for sustainable operation. The battery 

supplies power to all components, including the AI unit, motors, camera, and IoT module. An intelligent power management system ensures efficient 

energy use, maximizing the operational time in the field. 

This architecture diagram of the proposed system is shown below. 

 
Figure 1.  Architecture Diagram of the System 
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The use case diagram of the system is shown below: 

 
 

Figure 2.  Use Case Diagram of the System 

 

This use case diagram illustrates the interactions between the main components of the autonomous robotic weed detection and spraying system. The 

Farmer initiates or stops the robot remotely, receives real-time video feed, and monitors herbicide usage through an IoT-enabled interface. The IoT 

Cloud facilitates data transmission by sending system updates to the farmer and receiving control commands, enabling seamless communication. The 

AI Processing Unit processes video data to detect weeds and transmits weed location data to the selective spraying mechanism, which then targets only 

the weeds for herbicide application. Meanwhile, the Navigation System ensures autonomous movement across the field, detecting and avoiding 

obstacles to maintain safe navigation paths. Together, these components enable an efficient, automated weed management system that minimizes 

herbicide use and supports sustainable agricultural practices. 

 

The data flow diagram is also shown below: 

 
Figure 3.  Data Flow Diagram 

 

A Data Flow Diagram (DFD) is a graphical representation that maps out how data moves through a system, highlighting the processes, data stores, and 

interactions with external entities or actors. It breaks down the flow of information within the system, from data inputs through various processes to the 

final outputs. DFDs use symbols such as rectangles for external entities (actors), circles for processes, open-ended rectangles for data stores, and arrows 

to represent data flows between these elements. By visualizing the data journey, DFDs help clarify system functionality, define boundaries, and identify 

each component’s role in data handling, which aids in analyzing, designing, and refining system requirements and architecture.. 

The following Requirements are used in the project: 

 

4.1 Hardware Requirements 

• AI Edge Hardware (e.g., NPU) 

• ESP32 Development Board 

• Camera Module (e.g., OV2640 2MP) 

• Stepper Motors 
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• DC Motors (for drive train) 

• DC Motor Driver (e.g., L298N) 

• Servo Motors 

• Spray Pump 

• A4988 Stepper Motor Driver 

• GPS Module 

• Battery (e.g., 12V 7.5 AH) 

• Solar Panel (optional for power supply) 

• Buzzer 

 

4.2 Software Requirements 

• Python (for AI model processing) 

• TensorFlow (for deep learning) 

• Python IDE (e.g., Spyder or IDLE) 

• Anaconda Navigator 

• WAMP Server (for local web development) 

• Brackets IDE (for front-end development) 

• Android Studio (for mobile app, if applicable) 

5. Results and discussion 

In this paper, we trained and evaluated two deep learning models—Single Shot Detector (SSD) and YOLO (You Only Look Once)—for the task of 

real-time weed detection in agricultural fields. Both models were chosen for their efficiency in object detection, which is essential for deployment on 

edge devices within an autonomous robotic system. Using a dataset annotated with images of various weed species and crops, each model was trained 

to distinguish weeds from crops accurately, aiming to facilitate selective herbicide application. 

 

The SSD model exhibited robust performance, achieving high precision and recall rates, which helped minimize false positives and ensure that most 

weeds were accurately detected. SSD maintained a strong accuracy across varying lighting conditions and field scenarios, effectively identifying weeds 

within dense crop cover. However, occasional challenges arose when weeds were partially obscured or closely resembled crop plants, leading to minor 

misclassifications. 

 

The YOLO model, while demonstrating superior speed and frame rate for real-time applications, attained slightly lower accuracy compared to SSD in 

this specific dataset. YOLO’s sensitivity adjustments allowed it to detect smaller and partially obscured weeds, but its precision was occasionally 

compromised, resulting in a marginal increase in false positives. This lower accuracy could be attributed to YOLO’s general architecture, which, while 

optimized for speed, may sometimes trade-off on detection accuracy, especially in complex, high-density agricultural environments. 

 

Despite YOLO’s slightly lower accuracy, both models proved viable for integration into an autonomous robotic system for selective weed management, 

as their computational efficiency supports real-time deployment. The SSD model, given its higher accuracy, may be more suitable for situations where 

detection precision is critical, whereas YOLO's speed makes it advantageous for highly dynamic field conditions. Future work may involve further 

training with a larger, more diverse dataset to improve YOLO's accuracy in this context or exploring model ensembles to combine the strengths of both 

architectures, maximizing precision and processing speed. 

 
 

Figure 4.  Confusion Matix 
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Figure 5.  Precision Recall Curve 

 

 
Figure 6.  ROC Curve 
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Figure 7.  Histogram of detection confidence scores 

 

 
Figure 8.  Per Class Performance parameters 

 

 



International Journal of Research Publication and Reviews, Vol 6, Special Issue 5, pp 377-385, May 2025                                     384 

 

 
 

Figure 9.  Normalized Confusion Matrix 

 

 
Figure 10.  Output of the trained Model 
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From the result  we present the training and evaluation of Single Shot Detector (SSD) and YOLO models for weed detection, aimed at optimizing 

precision spraying in an autonomous robotic system. The SSD model demonstrated high precision (0.97 for crop and 1.00 for weed) and recall (1.00 for 

crop and 0.96 for weed), achieving a balanced F1-score of 0.99 and 0.98, respectively. The overall accuracy reached 98%, indicating robust model 

performance across diverse agricultural environments. The confusion matrix supports this, showing only minimal misclassifications between the crop 

and weed classes, particularly for the weed class where a few weeds were incorrectly classified as crops. 

 

The Average Precision (AP) of 0.85 reveals room for improvement, especially in complex scenarios where weeds and crops have similar structural or 

visual features. The SSD model’s precision-recall tradeoff is advantageous in this setup, as high recall ensures effective weed coverage, and high 

precision minimizes herbicide wastage by avoiding misclassification. In comparison, the YOLO model, though faster in processing speed, showed a 

slight dip in accuracy. While YOLO demonstrated commendable speed and real-time capability, its accuracy was marginally lower, leading to more 

false positives and slightly reduced precision. 

 

The performance metrics, including the precision-recall curve and the ROC curve, illustrate the model’s threshold tuning, with SSD maintaining stable 

performance across different thresholds. The confidence score histogram further shows high confidence in detections, with SSD yielding fewer low-

confidence detections, ensuring reliable operation in real-time applications. The per-class performance metrics validate that SSD is particularly well-

suited for environments with high weed density, where precision in classification is essential to optimize spraying operations. 

 

We conclude that , while SSD’s superior accuracy makes it highly suitable for precision weed detection, YOLO’s speed is beneficial for dynamic field 

scenarios where quick decision-making is crucial. Combining these models or further training YOLO with a diverse dataset could potentially bridge the 

gap in performance, yielding an optimal balance of speed and accuracy for future iterations of the autonomous weed detection system. 

6. CONCLUSION 

This paper presents a deep learning-based approach to autonomous weed detection using Single Shot Detector (SSD) and YOLO models, designed to 

enhance precision agriculture through selective herbicide spraying. The results demonstrate that the SSD model achieved high accuracy and recall, 

ensuring efficient and reliable weed detection, while the YOLO model provided superior real-time processing speed. Together, these models underscore 

the potential of integrating AI into agricultural robotics, enabling efficient, automated weed management that reduces herbicide use, conserves 

resources, and minimizes environmental impact. By accurately distinguishing weeds from crops, this system offers an effective solution for sustainable 

agriculture, lowering labor costs and supporting smarter field management. 

 

Future work can focus on improving the robustness and accuracy of the weed detection system by expanding the dataset to include a wider variety of 

weed and crop species and conditions, such as variations in lighting and plant density. Exploring model ensembling, where SSD and YOLO are 

combined, may leverage the strengths of both models to achieve high accuracy and speed. Additionally, incorporating transfer learning from 

specialized agricultural datasets and experimenting with advanced architectures like EfficientDet could further enhance detection capabilities. Future 

developments could also include integrating soil and environmental sensors for more contextualized decision-making, as well as enhancing the IoT-

enabled remote control features to allow farmers to monitor and manage operations from anywhere. These advancements could collectively create a 

highly adaptive, resource-efficient, and scalable solution for precision weed management in modern agriculture. 
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