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Abstract:

In this research paper, the complex problem of Multi-objective Multi-item Stochastic Solid Transportation Problem (MOMSSTP) with random
parameters as stochastic nature. Traditional transportation models often fail to capture the intricacies of modern logistical operations, where multiple
conflicting objectives, diverse item types and uncertain conditions are prevalent. Our study formulates an advanced MOMSSTP framework that
incorporates these factors, aiming to optimize cost of transportation and time of transportation. Stochastic elements are introduced to account for
uncertainties in origin’s supply, conveyance’s capacity and destination’s demand which making the model robust and adaptable to variable operational
conditions. On the basis of chance constraint programming suggest an approach to tackle the multi-objective multi-item stochastic solid transportation
problem with random parameters characterized through gamma distribution and also used fuzzy programming approach for optimization. The
effectiveness of our approach is demonstrating through a numerical example.

KEYWORDS: Multi-Objective Multi-Item Stochastic Solid Transportation Problem (MOMSSTP), Global Criteria Method, Chance Constraint
Programming, Fuzzy Programming, Gamma Distribution.

1. INTRODUCTION

The efficient transportation of goods is a critical aspect of supply chain management, influencing both cost efficiency and service quality. Traditional
TP’s have been extensively studied, typically focusing on minimizing costs while transporting homogeneous products from multiple sources to various
destinations. Firstly, Hitchcock [1] in 19141 introduced the classical transportation problem, a particular type of LPP (linear programming problem. In
this classical transportation problem, homogeneous goods are moved from various sources to several destination with the aim of minimizing
transportation costs. However, in real world scenarios, the complexity increases with the need to consider multiple objectives, multiple items and
uncertainties in supply, demand and transportation capacities. Also, referred to as the 3-dimesional transportation problem, is ideal for these scenarios
because it accounts for three key constraints. Haley [2] expanded the modified distribution approach by providing a solution procedure for solid TP. [3]
. [4] Applies fuzzy linear programming to tackle the multi-objective solid TP, offering optimal solutions and comparing its effectiveness to other
methods using a Fortran-based implementation. [5] presented a multi-objective approach to goal programming that simplifies the process by
eliminating extra constraints and weight factors, while also effectively handing non convex trade off regions. [6] modified techniques to adjust cost’s
coefficients in objective functions with multi- choice goals for binary variables. [7] used expected value operator to obtain crisp values and obtained
compromised solution by applying fuzzy programming technique & global criteria method. [8]

suggested an approach to obtain compromised solution by using global criteria, fuzzy interactive satisfied method & convex combination method. [9]
suggested a methodology for converting unbalanced MOMIST issue to balanced problem. [10] investigate solid TP with fixed prices in uncertain
nature. [11] proposed a methodology to solve multi-objective solid TP under uncertainty on the basis of chance constrained programming, also
proposed initial feasible condition and extended fuzzy programming. [12] under fuzzy environment, five new methods to defuzzied the fuzzy models.
[13] the single goal solid TP has been extensively studied by a number of researchers. [14] applied expected value operator to transformed intuitionistic
fuzzy multi-stage multi-objective fixed price solid TP under green supply chain to deterministic form. [15] proposed an approach to optimize MOMST
problem under uncertainty. [16] suggested a new approach for obtaining POS results of fixed charge STP under intuitionistic nature. [17] discussed
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three models, optimistic value model, dependent optimistic constrained model and expected-value model. [18] proposed a new method to optimize
unbalanced fully rough multiobjective fixed charge transportation problem. [19] suggested an approach for finding the deterministic ideal allocation of
trucks fleet in Egypt private sector company. [20] proposed a methodology to obtain optimal results of sustainable multi-objective 4-dimensional MIST
problem under triangular intuitionistic fuzzy environment. [21], [22] proposed a LP (linear programming) method to optimized the storage’s capacity.
[23] suggested an algorithm to tackle the solid stochastic TP in fuzzy environment. [24] obtained POS by proposed a new technique for optimize fuzzy
bi- objective fixed charge multi-index TP. In this research, we introduced the mathematical model for a MOMSSTP where the origin’s supply,
conveyance’s capacity and destination’s demand follow gamma’s distribution. Additionally, developed an effective technique for optimizing the
proposed problem. The research framework is structured as follows: section 2 presented models for MOMSSTP with gamma’s distribution & created a
comparable crisp model for the issue. Section 3 discussed the fuzzy’s programming approach for MOMSSTP model. A numerical issue is solved and
discussed results in section 4. Finally, provides a summary of the study’s conclusions and identify the future scope in section 5.

2. Mathematical Model For MOMSSTP
This section includes formulation of MOMSSTP and formulation of multi-objective multi-item stochastic solid transportation problem.

2.1. Formulation For Multi-Objective Multiple Items STP
A STP extends the traditional 2-D transportation problem by incorporating multiple modes of transport for moving multiple items from various
production sites to multiple destinations. STP includes three set constraints: supply limits from sources, demand requirements at destinations and varying
capacities of transportation modes. The primary goal in STP is to create an effective transport plan that minimizes costs while meeting all constraints. In
real life scenarios, it often involves optimizing multiple objectives simultaneously rather than focusing on single objective. Also, these parameters such as
origin’s supply, destination’s demand & conveyance’s capacity are often imprecise and uncertain due to factors such as fluctuation in raw material
availability, change in customer preferences, availability and reliability of different transport modes and limited information. Set theory of random
variables is used to handle such uncertainties. Therefore, a model which is in mathematical form is developed for a multi-objective multiple items STP
that incorporates random origin’s supply, conveyance’s capacity & destination’s demand.

Consider there are multiple items q transported from origin av to destination ba through different

i j

conveyance eg.In this scenario, the decision maker aims to finding the optimal transportation strategy

by including number of objective functions which is denoted as Z. Also, assuming that all parameters

are random variable except cost of transportation. To formulate the mathematical model for problem,

the following parameters and variables are defined as below:

i: number of sources (i = 1,2, ...,m).
j: number of destinations (j = 1,2, ..., n).
k: number of conveyance modes (k = 1,2, ..., K).

q: number of items (g = 1,2, ..., I).
X number of gth items transported to destination j from sources i by using conveyance k.

cgse cost of sthobjective function for transportation of one unit of gt" items transported to destination

j from sources i by using kt® conveyance.

ag: amount of gth items available at source i.

b}:: demand for gtt items at destination j.

ey: capacity of kt"conveyance mode.

Zs: sth number of objective functions (s = 1,2, ..., 5).

Problem for MOMSTP can be formulated by using above definitions as follows:

Minimize Z; = %! Ym Yn YK cas xa | )
g=1"1=1"j=1"k=1 ijk ijk

Subject to constraints

Y Yk xi <@g i=12,..,mq=12,..,1, @)
Sy Shea xfe = by, j=12,.,m9 = 12,1, 3)
Z;:l Z:rzl]_ E;I:]_ xgk = ek: k = 1J2l “'JKJ (4)
e 2 0V i jkand g, (5)

Here, uncertain parameters follow Gamma’s distribution which is widely used in continuous distributions for modelling the uncertainties in
destination’s demands, origin’s supply and conveyance’s capacities over time in STP. Specifically, it captures scenarios where the destination’s
demands for certain products is initially high and gradually decreases, reflecting real-world patterns such as monthly consumption trends. This is
particularly useful when the demand for commodities like rice. The gamma distribution’s flexibility in handling different shapes and scales allows for a
more accurate representation of these dynamic changes. By incorporating gamma distributed variables, the STP can account for fluctuation and provide
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a robust framework for optimizing transportation strategies, ensuring that origin’s supplies and conveyance’s capacities are adjusted appropriately to
meet varying demand efficiently. In problem (1-5), variables which assumed as random form are with independent gamma’s distributions have distinct
shape parameters and scale parameter remains same with known mean and variance. TP is unbalanced because of uncertainty. There are 2 feasible
situations for an unbalanced STP. First is total supply of each item q from all sources should be maximum or equal to the total destination’s demand for
that items across all destinations and second is total conveyance’s capacities should be maximum than or equal to the total destination’s demand for
each item. These situations are mathematically indicating as follows:

Ym qa >3 ba Vg=1,2,..,1 ©)
i=1 i j=1j
Zk=1 e = Zq=1 Z?:l b)f-"- (7

When the parameters are crisp then inequality relations are well defined. But all the parameters in our
situation is random. Consequently, these standards ordered relation do not applied. In next section we
address these challenges by proposing novel feasibility situations for the problem.

2.2. Formulation of Equivalent Crisp Model

We develop a deterministic model which is equivalent to the stochastic problem. For this we present
the initial feasibility situations for the problem. Initial feasibility situations represented in eq. (6) and
(7) for unbalanced STP with multiple items. Following postulates outlines, if one of these parameters
are stochastic in nature then follows gamma’s distribution.

Postulate 1: If the origin’s supply parameter a9 of a STP follow gamma distribution (a9, ) for i=1, 2,
L L

1, then the feasibility situations of the problem are defined as

q= E_"= n n
(_:—1;_;,&) 25;:1 DY a1 Eq i o h
€ h=0 (—ﬁ’—‘) D =1-v, ®)
and ¥ e, > Lo=1 Lty by, ©)

here ¥ representing the level of significance and remaining symbols are defined above.

For an unbalanced STP, the total supply and capacity of conveyance should be maximum than or equal
to the total demand for each item. Hence, for deterministic STP feasibility conditions are

Em aq)En bha Vq EK ekzzi Zn ba.
i=1 § j=1j g=1 j=1 j

In this case only supply parameter agare not deterministic. With known mean, variances and same scale

that is ai~gamma (aq B), follow mdependent gamma’s distribution. To determine the deterministic

forrn of first feasible situation by apply chance constraint programming. Therefore, the first situation

Pr(zm ad = E“ bq) =1-—v, (10)
i=1 i 1

Here, ¥’ represented the significance level, for example ' = 0.01, it implies 99% surety that the total

supply of each item q from all sources will be maximum than total destination’s demands for those
items across all destinations. The sum of independent gamma’s distribution along common scale

parameter follows gamma’s distribution it is already known. Therefore, supply S = X',_; Xi%1af
follow gamma’s distribution along shape parameter a = }' _; Yity ag and scale parameter f.
Consequently, Ihe feasibility condition in equation (10) becomes

® . Sa-1, & ds) =1 -y, (11)
d zjr? =" b 7@ e

- q

q= =_1bj_ Yl ¥n h .
T @ T T 21y 12)
=0 g h!
Her%e this is the deterministic form of first feasibility condition in equation (9)
Eﬂ

fr_J_L,{
. 1 Z ,

[ m q
1 Emp a1
e Oﬁiﬁlz 1 (+Lq ) -v.
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Postulate 2: If the demand parameter be of a STP follow gamma distribution (ad', B") for =12, ...,
i

n, th n the fea51b111ty situations of the pmblem are defined as

= m al h
( '! X (a) l(gﬂE‘_L ) )21_?}.1, (13)

[ fr j=1 =
(Eh =0 g Rt
_Zizl_zfil_efc it @1 3 3K e by
and e B’ ) Za=t Y=t j Tg=1" k=1 k )l‘> 1- n , (14)
=% K ey

here 1’ and i’ representing the significance’s level.
1 2

Postulate 3: If the parameter, conveyance's capacities e, of a STP follow gamma’s distribution
(at;, )E"} for k—l 2, ..., K, then the fca'iibility situations of the issue are defined as
T

J.—Li) 5 @1 S N bg R

0 ) )>1 &, (15)

h—z B
and P a1 =3 4 (16)
i=1 i =19

here & representing the level of significance.

In equations 1 to 5, parameters in right hand side of the constraints are in the form of random variables
which represented the model of multi-objective stochastic problem. This model is converted into
deterministic form through eliminating the randomness from the parameters for optimization. For
handling these stochastic parameters, apply CCP (chance constraint programming). This technique
permitting the constraints to be violated up to specified probability level. By applying CCP to all

uncertain constrajnts, we obtain the following model:
Minimize Z, = ! >m »n YK casxq (17)
q=1 i=1 j=1 k=1 jjk ijk

Subject to constraints

Pr (Eﬂ EK xfi < aff) >1- rq, i=12,...mq=12..,1 (18)
ijk

Pr(zm ZK xq > b‘?) >1- nq j=12,. =12,..,1 (19)
i= ijk

Pr(3! <ep = 1 L k=12,...K, 20

(Zq=1 . Z}‘: . g k) Sk (20)

quz{]‘cfi,j,kandq (21)

Here, (1 — y9), (1 — n9), and (1 — &) represents the probability levels given by the DM as suitable
£ J

safety margins. Any vector x belongs to R* maximum than or equal to zero is considered a feasible
solution if it satisfies all constraints (18) to (20). It is deemed a pareto optimal solution if there A a
feasible x" such that Z;(x") < Z (x) and at least one objective 3 for which the inequality is strictly
applicable.

Uncertainty in the models arises from various factors and doesn’t always include all parameters as
random variables. Therefore, the problem is categorized into distinct models based on specific
scenarios:

(i) Only supply parameter with multiple items a?(i =12,..,m),(qg =1,2,..,1) follows gamma
distribution.

(i) Only demand parameter with multiple items b;i(; =12,..,n), (g =12, ..,10) follows gamma
distribution.

Em; Only capacn of conveyance ek(k = 1,2, ..., K) follows gamma distribution.
Supply af{ 1=12,.,m),(q=12..0 ‘demand “bi(j =12 ..,n),(¢=12..10) and
J
conveyance capacity e, (k = 1,2, ..., K) follows gamma distribution.

The equivalent crisp model varies based on the nature of the parameters, which can be either deterministic or random. If
we assuming the parameters follows gamma’s distribution with shape parameters greater than one, the crisp form
becomes nonlinear. The four identified models identified are structured so that the first 3 models are subsets of fourth
model. This means that by treating some parameters as crisp, the first 3 models can obtain from the fourth. When all
parameters of a chance- constraint are crisp, the probability of satisfying the constraint is one. Therefore, the crisp model
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for the fourth model is discussed. To tackle this problem using traditional methods, deterministic equivalents to the
chance-constraints are required, but this approach is complex and often only feasible in special cases. The following

postulates present the crisp equivalent for chance constraints with gamma- distributed random variables.

Postulate 4: Assuming that the supply parameters a?[i =1,2,..,m),(q = 1,2,..,1) are independent

gamma’s random variables, then Pr(nm Z: xt <ai)=1-—y9
=1 " k=1 ijk i i
- j=1£)i{=1x'f"k ! /
——% Ry
e (Eh o (—") )> (a-v). (22)

Here gamma distribution’s the shape & scale parameters denoted as a9 & [ corresponding to

ai(i = 1,2,...,m), (g = 1,2, ..., I).

Proof: Gamma distribution’s Pdf (probability density function) with shape & scale parameter as a9 &

B respectively corresponding to af is

_aq
f(an —_q(aq)(a“' n, 7 ,0<a <o, a,fER,I=12,.
raH)p’
Let g; = Z;:L Zk:l xg-k, then in equation (18) becomes
Pr(g: < aﬁ') =1- ytr, (23)
q
1
@) 0eC5” daty = 1- 1, (24)
T e’
—ZJ'=127§=1"5’_K
—F 7 v vt i q
e (Zn 0 (—) )2 1-v) (25)

So, equivalently deterministic of the chance-constraint in equation (22). Hence, postulate is proved.
Postulate 5: Assuming that the demand parameters E);?(; =1,2,..,n),(q =1,2,..,1) are independent
gamma’s random variables, then Pr(¥m YK x1 =bi)=1—1pm iff
[ i=1" k=1 ijk | j
Sy e
¢ ik (a®y—1
B j
e

i i h
(_E;iz;i"gk) %) > n;r, (26)

h=0

Here gamma distribution’s the shape & scale parameters denoted as {a}!)’ & B' corresponding to
ba(j=12,..,1m),(q =12,..,1D.

Proof: Gamma distribution’s Pdf corresponding to qu is

_bq
1 —H
fD) = @) @h g T oo bs < 0,j=12,..n
rajy 05’) y

Letw;=2m, Ek 1 xa;k' then in equation (19) becomes

Pr (w < b‘f) = ?;W

Through 1nte{grat10n we get, the equwalent deterministic form
-y sk *

i o
% (Z( ) (_L_&_l_%) = . 27)
h!

e h=0

So, equivalently crisp of the chance-constraint in equation (27). Hence, postulate is proved.

Postulate 6: Assuming that the capacity of conveyance ey(k = 1,2, ..., K) are independent gamma’s

random variables, then P?‘(Zq L 12){ 1 x ik = er)=1-4¢, iff
_tq=1ﬂg1£‘f;1xq:
ik (

E'( B (Z(RR) '—1 ¢ q_lg:lﬁ_;_uk) _) =>1-— f (28)

Here gamma distribution’s the shape & scale parameters denoted as ()" & B’ corresponding to
ek =12, .., K).
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Proof: Through the above proved postulates, we can also prove this postulate with the same logic.
Utilizing postulates 4 to 6, an equivalent crisp model is developed for the issue in which all parameters
adhere to gamma distributions with specified mean & variance. So, the model which is deterministic is

iven below:
inimize Z,, =Z‘ Em E“ YK carxa (29)
= i=1 j=1 k=1 ijk ijk
Subject to consr_ramts

~Feaza Ik Koy
(—ﬁq—“'—) 1581  fr
e SR (m—ﬁq"—) D=a-y)i=1tomg=1tol 30)
_£:=1Z'§=1"‘q
( > 2y @hy-1ym gk g R
e (3 h=0 (Ziz Ziz x‘f“) Dy=ny, j=1lton; g=1tol, (31)
8 Rt J
‘tq=1ﬂ312|"=1*qr
—U'( T b
& G (E(ak) -1 q:1§_1§;_14;k) D=1-¢, k=1tok, (32)
B h!
x9,, =0V i j kand q (33)

A non-linear equivalent deterministic’ model of multi-objective programming problem is obtained.
Assumed that this model has feasible optimal compromise result. For determining compromise results
of this MOMSSTP, we apply the fuzzy’s programming method. Fuzzy programming for optimizing

MOMSSTP is shown in next section. Hence the model become special case when the parameter’s
follow Erlang distribution.

3.Fuzzy PROGRAMMING TECHNIQUE FOR MOMSSTP MODEL

The MOMSSTP involves optimizing multiple conflicting objectives under uncertainty, considering
various items and transportation routes. Fuzzy programming is a useful method for tackling such
complex problems by incorporating the vagueness and imprecision inherent in real world scenarios. For
optimization of MOMISSTP we apply fuzzy’s programming method. The steps of the fuzzy’s
programming method for optimization of issue are outlined here:

Step 1- Address each objective individually to optimize the model, with the resulting optimal results
being the ideal results for that specific objective. The collection of optimal values for all various
objectives will form the pareto ideal solution point in the multi-objective crisp model.

Step 2- The objectives’ pay-off matrix is constructed as follows:

Zy Zy Zg .. Z.
Xl le Z‘]_Z Zl3 ™ ZlS
Xo Zyy Zpp Zpz .. Zy
X3 431 43z 43z .. 43
Xs[Zy Zs2 Zs3 .. Zg)

X represent the optimal results point for the single goal crisp issue with the s™ objective function. In
the pay off matrix, Z;; = Z;(X;) denotes the element located at the i row and j" column, where i ranges
from 1 to S and j ranges from 1 to S.

Step 3- On the basis of pay off matrix, determine the L; (lower bound) and U (upper bound) for all
objective functions.

Step 4- Create the linear membership function pz_(X) that corresponds to each goal as

o if Zg < L
U.—Z.(X .

wy, =17 """ <z <L, (34)
0, if Zs > Us,

Step 5- An equivalent crisp model is constructed as below:
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Max A (35)
Subject to constraint

A<z (X),s=1.2..,5 (36)
Also, original set of constraints (37)

We derive compromise result for the equivalent multi-objective model, with the help of following

outlined steps. Hence, original issue has compromise results.

4. NUMERICAL EXAMPLE

To demonstrate the proposed research, we take an example of a sugar & jaggery transportation problem
where origin’s supplies, destination’s demand and capacities of conveyance are modeled as gamma’s
random variables. A factory produces jaggery (1% item) and sugar (2" item). Factory has two production
plants, which are denoted as F, F; supplying jaggery and sugar to three warehouses W, W5, W3 through
two different conveyances Ei, E2. The cost of transportation and time of transportation for 1% item are

provided in table 1 and 2 respectively, similarly price of transportation and time of transportation for
2" item are given table 3 and 4 respectively.

Here,

(i) c

0

71 Tepresents the cost of transportation (10,000 per day) for both items to supplies 1000 tons

f jaggery and sugar from i sources to j™ destinations through k'" type of transportation’s

modes. For instance, transporting 1000 tons of jaggery and sugar from 1% factory to first

warehouse by using 1* transportation’s mode will cost 70,000 per day
(ii) Total amount of jaggery a! and sugar a2 is available at the i" factory

(in 1000 tons).

(iif) Total amount of jaggery bfi and sugar b# is demanded at the j" warehouse (in 1000 tons).
J

7

(iv) The capacity of conveyance ¢, of k'™ transportation’s mode (in 1000 tons).

Table 1. Cost of transportation for 1% item in rupees (10,000 per day).

1
c ijk E 1 E 1 E 1
E; Ez E;
W, w, Wy
Fq 7 4 11 5 6 4
Fy 5 15 8 21 10 2
Table 2. time of transportation for 1* item.
1
Eijk Eq Eq E,
E, E E,
W, W, Ws
Fq ! 3 8 9 6 4
F, 9 1 7 6 2 3
Table 3. Cost of transportation for 2™ item in rupees (10,000 per day).
cfj " E, Eq Eq
Ez EZ EZ
w,y L W
Fy 8 16 3 14 7 8
Fs 6 5 6 17 10 4
Table 4. Time of transportation for 2™ item.
t%jk E, Eq Eq
Ez EZ EZ
Wiy W» Ws
F, 1 5 9 1 3 6
Fa 7 3 6 5 1 8
(v) t§; denoted the day’s numbers required to supplies 1000 tons of jaggery and sugar from i"
sources to j" destinations through k™ type of transportation’s modes. For example, it will take 7
days to supplies 1000 tons of jaggery and sugar form 1* factory to 1* warehouse through 1*
transportation’s mode.
Here, defined the decision variables as:
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The quantity of jaggery (xlnk) and sugar (xznk) that is supplies by k™ transportation’s mode from i"
if i
source to j™ destination (in1000 tons).

For example, on the basis of various parameters of the problem, developed 4 four models. Here is the
description of the models.

Case I: Only Supply Parameter Follows Gamma Distribution

Firstly, we assumed that the demand and capacities of conveyance are fixed but the supply parameter

follows gamma’s dlS[I‘lbllllDIl The * probablhty density function” of the supply parameter a4 follows
G(as, 1(5 also al = 2,a! =3, G:? = 3,a? =4. Assume that probability levels addressing to the
supply parameter as }‘11 '35% y; = 96%, ]r’i = 90%, ‘y22 = 93%. Demands (in 1000 tons) are given
as bl =8, bl =3, bl =6, b2 =4, b2 5, b2 = 4 and capacities of conveyance as e; = 15,e; = 16.

By using the pru\uded data and the model (29) to (33), we obtained the crisp model for the issue.
Additionally, we observe that
_y2 §3 8

g=1 j=1 j 2 3 q 2 3 g h
- ) a1 - .
B (Z‘Efol Ljmr e 1 (_ﬁ.u’:lz —1b ) L)

Al
= 0.999999 = 0.99.
As aresult, the initial condition of feasibility is fulfilled.

e

Optimal results of Ihese Dlzgectlve functions are

Zi=119x = DR “2'5038836,x1 =642 =512 =
3.061164, 22> = {).938836, 22 _y M 232 121 21
7, = 1043142, o= 1301833, x1 , = 4383929,x1 =2314187,x! =1487849,x1 =
1512151, x1 =62 =1210267%2 =52 =% x2 =2789
231 111 122 131 212

Hence, for this problem the pay-off matrix is

Zy 2
X o 119 205.8777]
X2'286.6505 1043142

We obtain L (lower bound) and U, (upper bound) for objective functions. Z; (s = 1,2) are configured
as Ly = 119 € Z; < 286.6505 = Uy & L, = 1043142 < Z; < 205.8777 = U,. We generate

membership function related to each objective by utilizing these objective function’s bound. Thus, the
model of fuzzy programming is

max A

subject to cnnstramts are
E£ crxt + (U —L)A< Uy,

z? P Y el (U — 1A < Uy,
i=1 j=1 k=1 ik ijk
— B ¥E=1%9
(—m—"’—") st yhet o "

e (Ehﬂ(_ﬁq_) —)>(1—y)1—12 qg=12,

Sy Tier X 2 by, j =123, =12,
Tom1 T Tjo1 e S e k=12,

=0Vijkandq.
We get compromise solution by applying lingo software x1 = 5.685784,x1 = 1.684—239,x1212 =

0.6299772,x! =3,x1 =03157614,x =5.684239x2 =4,x2 =4x2 =57, =
221 231 232 13'1 212 221

157.1401, 2, = 127.4196.

Case II: Only Demand Parameter Follows Gamma Distribution

We assumed that the supplies and capacities of conveyance are fixed but the demands parameter follows
gamma'’s distribution. Supplies for both items are a; = 14, a; =11, a?l =10, a22= 13 & capacities of



International Journal of Research Publication and Reviews, Vol 6, Special Issue 5, pp 101-113, May 2025 109

conve ance 5 e The dema aramete f llow a distribution as
b1~ 2,0.7), Hi~G 3,0. 7‘) b{;—G(B 0.7), b2~6?4 0. 7p) b2i~G(2 bZ»EG [] 7). Assuming that
probablllty levezls addressing to the destination’s deman parameter as nt = 97%, ?‘,'1 =94%,n =

95%, n2 = 95%, nz = 96%, 7?2 = 93%. We created the crisp model for the issue by utlhzmg of model

(29)- (33) and the data prowded in the tables. Optimal results of these objective functions are:
Z; =100.6135,x1 =1.834166,x1 =4231352,x! =1.914998,x1 = 4.407056, le21 =
3508932, v  —3933383,x2 = '1494176,x  =241033250.

7, =8678488 x1 = 3.7491263,, = 0.03443836,x1 = 4196894, Xl =4407056,x =
1882550, 2 —=4%08932,x2 =403325 2 = 358801,
122 131 212

Hence, for this problem the pay-off matrix is
Zy 2y
[100 6135 161. 9034]
250.6209 86.78488

WE obtain Ls (lower bound) and Us (upper bound) for objective functions. Z; (s = 1,2) are configured
as L1 = 100.6135 < Z; < 250.6209 = U; & Ly = 86.78488 < Z; < 161.9034 = U;. We generate
membership function related to each objective by utilizing these objective function’s bound. Thus, the
model of fuzzy programming is

max A

subject to cunstramts are
Zz cirxd + (Uy—L)A< U,

g =1 ijk ijk

si 5t SR b 4 (U - LA < Uy
ijk ijk

E} 1 Ek—lxu'k = a?’ L= 1’2'q =12

~TA15f=1!
—5 1 vh=1 Mk

i‘) =1 =1 1 q .

e ('SfJ (Zh G (&,x_) _) > n, Jj= 1,2,3; g =1,2,

()

Z§=1 )X 2;'3=1 X S e k=12,
X 2 0V ij,kandg.

We get compromise solution by applying lingo software x! = 3.749164,x1 =4.231352,x1 =
4.407056,x2 = 0.08039964,x2 =3.03325,x2 = 5‘.&22756.,%21 = 3428532, 7, =

127.7289,Z; = 100.3633.
Case III: Only Conveyance Capacity Follows Gamma Distribution

We assumed that the supply & demand are fixed but the conveyance capacity follows gamma’s
distribution. Supplies for both items are a} = 10, a} = 15,a3 = 11, a% = 12 & demand for both items
are bl =11, bl =8, bl =5, b2 =4, b2 6, b2 =9 The conveyance’ capacity follow gamma
dlSI‘.[’lbthlClI] as el~G(3.15), ez~G{4.15)A Assume that probability levels addressing to the
conveyance’s capacity as £, = 89%, ¢, = 90%. We created the crisp model for the issue by utilizing
of model (29)-(33) and the data provided in the tables. Optimal results of these objective functions are:
Z1 = 180.8285, xil = 2,xt ,= 8, x1 = 9,x1232 = 5,th2121 =6, x2131= 1, ch211 =

0.8284668,x2 =3.171533%2 =3

Z;=1618285x1 =10, ‘F1,x =2828461,x) =5171539,x) =5 x2 =

11 212 122
6,x2 =05x = Sr,xz = 41
131 212 231

Hence, for this problem the pay-off matrix is
X, 1408285 3105239
Xz [ 415.23 161.8285]

We obtain L (lower bound) and U, (upper bound) for objective functions. Z; (s = 1,2) are configured
as L; =1808285<Z, £41523=U, & L, =161.8285 < Z, <310.3139 = U,. We generate
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membership function related to each objective by utilizing these objective function’s bound. Thus, the
model of fuzzy programming is
max A
subject to cunstramts are
ZZ. car x4 +(U1—L1)A<U1
g=l ;’=1 '=1 k=1 ijk ijk
i X ST S it 4 (Uz—L)ASUs,
=1"=1"=

E} IZk—lxtjk<aq 1_12 q=12

Elzklxg =bg, j=123q9=12,

(__La u(i_l}}-; 7 (ap)'—1 22_1_'21 ?‘1qu hl =1 k=12
- @) =1 ey P B X _ _

e & (e k - ?_;) h!)_ fk. A

= 0Vij kandgq.
gel compromise solution by applying lingo software xl = lﬂ,xl =1x! =8ux =

5x2 =09164443,x2 =1.411589,x2 = 4.671966, 24 23 6719%%1 2 _232
121 122 131 212 221

4.328034,Z, = 243.5593,Z, = 201.5663.
Case IV: Supply, Demand and Conveyance’s Capacity Follow Gamma Distribution

In this case, we assumed that the origin’s supply, destination’s demand and conveyance’s capacity

follow gamma’s distribution. On the basis of data used in previous cases, we created the crisp model

for the issue by utilizing of model (29)-(33) and the data provided in the tables. Optimal results of these

objective functions are:

Z; =101.0601,x! = 1.066549,x! =4.619235,x1 =3.017196,x1 = 4.407056,x2 =

3508932,  —%%2756, 2 — $03325. ! 232 2

Z,= 881999, 1 =4.0837%5,x1 =4.619235,x' = 4.407056,> =3.508932,2° =
112 222 231 122 131

3.03325, x3,, = 5.42756.

Hence, for this problem the pay-off matrix is
Z3 Z3

X1 [101.0601 157.2778]

X; 2549051 88.19891

We obtain L; (lower bound) and U (upper bound) for objective functions. Z; (s = 1,2) are configured
as Ly = 101.0601 < Z; < 254.9051 = U; & L, = 88.19891 < Z, < 157.2778 = U,. We generate

membership function related to each objective by utilizing these objective function’s bound. Thus, the
model of fuzzy programming is

max A

subject to cunstramts are
22 C'?Px‘? +(U1—L1)A<U1
g=l I=1 i h ijk ijk
T W e w - A<,
q:13 fﬁl x{',':1 k=1 Uk Uk

(—Eq—'iﬁ) a¥—1 E; 12% 1 ik q. .
e ; (zh.](—ﬁq”—) —)>(1— y) i=12;q9=12
S S xq
ijk- h
¢ B ) (Gq) -1 E?='1 Erjr=1 xlk 1 q
e 7 al T EES gl j=1230-12,
@)
~Xgm13Ea i “’m S s s N
——— w_g TE T M _ _
e B (Zgik) 1(—fr—1—x_ﬁlu_1_l_fﬁ:) E) =1 fk' k=12,

X =0V ij kandg.
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We get compromise solution by applying lingo software x1 = 4.083745,x1 = 4.619235,x1232 =
4407056,x2  =04227329,2 =303325,22 = 5.42756, 2 = 3.086199,7, =

134.909,Z; = 103.3976.

Result and Discussion

Developed deterministic models for the Multi-Objective Multi-item Stochastic Solid Transportation Problem
(MOMSSTP) also, addressing the complexities associated with random parameters in a stochastic environment. Non-
linear constraints are the corresponding deterministic form’s chance constraints. The model was tested using a numerical
example, demonstrating its ability to optimize transportation cost and time effectively while accounting for uncertainties
in supply, demand and conveyance’s capacity. The incorporation of stochastic elements through gamma distribution and
extend fuzzy programming technique provided a comprehensive solution that is both adaptable and efficient. All models
are solved through Lingo 20.0 software.

Compromise solutions for first case shows that, it takes about 129 days to deliver 17 thousand tones sugar and 13
thousand tons of jaggery from two factories to three warehouses, addressing to the optimal values of the first model’s
objectives are Z1 = 157.1401 and Z2 = 127.4196. The lowest possible cost of transportation being Rs. 1,571,401. The
achievement rate is 0.7725024 for objectives in fuzzy’s programming approach.

In second case of compromise solution shows that, it takes about 101 days to deliver 12.387572 thousand tones sugar
and 11.9697416 thousand tons of jaggery from 2 factories to 3 warehouses, addressing to the optimal values of the
second model’s objectives are Z1 = 127.7289 and Z2 = 100.3633. The lowest possible cost of transportation being Rs.
1,277,289. The achievement rate is 0.8192394 for objectives in fuzzy’s programming approach.

From the compromise solutions for third case shows that, it takes about 202 days to deliver 24 thousand tones sugar and 19
thousand tons of jaggery from 2 factories to 3 warehouses, addressing to the optimal values of the third model’s objectives
are Z1 = 243.5593 and Z» = 201.5663. The lowest possible cost of transportation being Rs. 2,435,593. The achievement
rate is 0.7323789 for objectives in fuzzy’s programming approach.

Finally, compromise solutions for last case shows that, it takes about 104 days to deliver 13.110036 thousand tones sugar
and 11.9697419 thousand tons of jaggery from 2 factories to 3 warehouses, addressing to the optimal values of the fourth
model’s objectives are Z1 = 134.9090 and Z: = 103.3976. The lowest possible cost of transportation being Rs.
1,349,090. The achievement rate is 0.7799807 for objectives in fuzzy’s programming approach.

Conclusions

This research presents a solution method for MOMSSTP where origin’s supplies, destination’s demands and conveyance’s
capacities follow gamma’s distribution. A chance-constraint programming method is used to convert the issue into crisp
model, which becomes nonlinear under this distribution. Due to presence of random variables, standard feasibility
conditions can’t be applied, so the chance-constraint method is used to ensure feasibility. Fuzzy programming is then
employed to obtain a compromise results, balancing conflicting objectives. In this research all parameters are uncertain
except coefficient of objectives. So, the issue can be further explored by considering coefficient of goals in stochastic or
fuzzy environment.
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