

Global Trends in Tokenized Real Estate Platforms and their Impact on Property Investment Models

Muhammad Shahid

Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia

ABSTRACT

This review article examines the global landscape of tokenized real estate platforms and their transformative impact on property investment models. Drawing upon recent industry reports, academic literature, and market data from 2023-2025, we synthesize findings on technical architectures, regulatory frameworks, investor adoption patterns, and market outcomes across major jurisdictions, including the United States, European Union, United Arab Emirates, and Asia-Pacific region. Our analysis reveals that the tokenized real estate market has experienced remarkable growth, expanding from \$3.5 billion in 2024 with projections reaching \$4 trillion by 2035 at a compound annual growth rate of 27%. We identify significant shifts in investor behaviour driven by reduced entry barriers with minimum investments as low as \$50, enhanced liquidity through secondary market platforms, and democratized access to previously illiquid asset classes. The review highlights critical technical considerations, including blockchain platform selection (Ethereum, Polygon, Algor, and), smart contract standards (ERC-721, ERC-1400, ERC-3643), and interoperability challenges. Regulatory developments, particularly the European Union's Markets in Crypto-Assets (MiCA) regulation and Dubai's Virtual Assets Regulatory Authority (VARA) framework, are reshaping compliance requirements and investor protections. Despite promising growth trajectories, the sector faces persistent challenges, including fragmented secondary markets, regulatory uncertainty in key jurisdictions, and the need for standardized legal frameworks that bridge traditional property law with blockchain-based ownership. This review provides stakeholders with a comprehensive understanding of the current state and future trajectory of tokenized real estate investments.

Keywords: Real estate tokenization, blockchain technology, fractional ownership, security tokens, smart contracts, regulatory frameworks.

1. Introduction

The global real estate market, valued at approximately \$650 trillion in 2025, represents the world's largest asset class. Despite its immense scale, traditional real estate investment has long been characterized by significant barriers, including high capital requirements, illiquidity, lengthy transaction processes, and limited accessibility for retail investors. These constraints have historically confined property investment to institutional players and high-net-worth individuals, excluding vast segments of the global population from wealth-building opportunities in this foundational asset class (Sternik & Safronova, 2021).

Real estate tokenization has emerged as a transformative innovation addressing these longstanding limitations. By leveraging blockchain technology to convert property ownership rights into digital tokens, tokenization enables fractional ownership, enhanced liquidity, reduced transaction costs, and democratized access to property investments. This technological paradigm shift represents what industry observers have characterized as the most significant evolution in real estate investment since the introduction of Real Estate Investment Trusts (REITs) in the 1960s (Starr et al., 2021; Baum, 2021).

The momentum behind real estate tokenization has accelerated substantially in recent years. According to the Deloitte Centre for Financial Services, the global market for tokenized real estate is projected to expand from less than \$0.3 trillion in 2024 to \$4 trillion by 2035, representing a compound annual growth rate of 27%. This growth trajectory reflects broader institutional adoption, maturing regulatory frameworks, and increasing investor comfort with blockchain-based investment vehicles. As of mid-2024, approximately 12% of real estate firms globally had implemented tokenization solutions, while another 46% were actively piloting such programs (Liu & Chen, 2025).

This review article provides a comprehensive examination of global trends in tokenized real estate platforms and their impact on property investment models. We synthesize findings from industry reports, academic research, and market data to analyse the technical architectures underpinning leading platforms, compare regulatory approaches across major jurisdictions, assess investor behaviour patterns and adoption trends, evaluate liquidity effects and market outcomes, and identify persistent challenges and future directions for the sector (Sternik & Safronova, 2021; Starr et al., 2021; Baum, 2021).

2. Background and Conceptual Framework

2.1 Defining Real Estate Tokenization

Real estate tokenization refers to the process of converting ownership rights in real property into digital tokens recorded on a blockchain or distributed ledger. Each token represents a fractional ownership stake, revenue stream rights, or other defined interests in the underlying asset. Unlike traditional fractional ownership arrangements that require complex legal structures and significant administrative overhead, tokenized real estate leverages smart contracts to automate ownership transfers, dividend distributions, and compliance requirements (Baum, 2021; Garcia-Teruel & Simón-Moreno, 2021; Bhat & Gupta, 2022; Saari et al., 2022).

The tokenization process typically involves several key steps. First, legal structuring establishes the ownership framework, often through Special Purpose Vehicles (SPVs) or Limited Liability Companies (LLCs) that hold title to the property. Second, the asset undergoes valuation, due diligence, and documentation to establish its characteristics and value. Third, tokens are created according to established blockchain standards and programmed with smart contract logic governing transfers, distributions, and compliance. Finally, tokens are offered to investors through primary issuance and may subsequently trade on secondary markets (Garcia-Teruel & Simón-Moreno, 2021; Bhat & Gupta, 2022; Saari et al., 2022).

Real Estate Tokenization Process

Figure 1. End-to-end real estate tokenization process from legal structuring to secondary trading.

2.2 Theoretical Foundations

The value proposition of real estate tokenization rests on several theoretical foundations. Transaction cost economics suggests that blockchain technology reduces friction in property transactions by eliminating intermediaries, automating compliance, and enabling transparent record-keeping. Network theory indicates that tokenized platforms can achieve liquidity effects through expanded investor networks and reduced minimum investment thresholds. Financial democratization theory posits that lower barriers enable broader participation in wealth-building asset classes previously restricted to elite investors.

The distinction between tokenized real estate and traditional REITs merits clarification. While both enable fractional real estate exposure, they differ fundamentally in structure and investor experience. REITs represent pooled investments across diversified property portfolios where investors have no control over specific asset selection. Tokenized real estate, conversely, enables direct fractional ownership of specific properties, providing investors with greater transparency, asset selection capability, and often higher potential returns through reduced intermediary costs (Sternik & Safronova, 2021; Bolandhemat, 2025).

3. Technical Architecture of Tokenization Platforms

3.1 Blockchain Platform Selection

The choice of blockchain infrastructure fundamentally shapes platform capabilities, costs, and scalability. Ethereum remains the dominant platform for real estate tokenization, offering a mature ecosystem, robust smart contract functionality, and extensive developer support. Its ERC-721 standard enables non-fungible tokens representing unique property rights, while ERC-20 supports fungible fractional ownership tokens. However, Ethereum's base-layer scalability limitations, processing only 13-15 transactions per second, and high gas fees during network congestion present challenges for platforms targeting retail investors with smaller transaction sizes (Gupta et al., 2020).

Layer-2 solutions and alternative blockchains have emerged to address these limitations. Polygon, operating as an Ethereum Layer-2 scaling solution, handles up to 65,000 transactions per second with significantly reduced fees while maintaining Ethereum compatibility. Assetera, Europe's first regulated secondary market platform for tokenized real-world assets, launched on Polygon in 2024 specifically to enable cost-effective trading of real estate tokens. Algor offers high-speed, sustainable tokenization through its Pure Proof-of-Stake mechanism, with platforms like Lofty leveraging its infrastructure for daily rental income distributions. Avalanche provides a subnet architecture enabling custom blockchain environments for jurisdiction-specific compliance requirements (Mistrangelo et al., 2022; Baum, 2021).

3.2 Token Standards and Smart Contracts

Security token standards have evolved to accommodate the unique requirements of regulated real estate investments. The ERC-1400 standard, designed specifically for security tokens, incorporates compliance controls including transfer restrictions, investor whitelisting, and document management. The ERC-3643 standard (formerly T-REX) extends these capabilities with cross-chain interoperability features enabling tokens to move across networks while preserving compliance data. These standards ensure that real estate tokens can enforce regulatory requirements programmatically, automating investor verification, transfer restrictions, and jurisdictional controls (Alnabulsi, 2024).

Smart contracts serve as the operational backbone of tokenized real estate platforms, automating critical functions including token issuance and initial distribution, ownership transfers subject to compliance verification, rental income and dividend distributions, voting and governance mechanisms for property decisions, and secondary market trading with embedded transfer restrictions. The programmability of smart contracts enables unprecedented automation of real estate operations. For instance, rental income can be distributed automatically to token holders in real-time, eliminating traditional delays and intermediary costs associated with dividend processing (Bhat & Gupta, 2022).

3.3 Platform Architecture Components

Contemporary tokenization platforms employ modular architectures comprising several integrated layers. The blockchain and tokenization layer handles token creation, management, and transfer through smart contracts. The oracle integration layer bridges on-chain logic with off-chain data, including property valuations, rental rates, and compliance updates. The compliance and identity layer manages KYC/AML verification, investor accreditation, and jurisdictional controls. The platform backend and frontend layer powers investor portals, dashboards, and administrative functions. The marketplace and liquidity layer facilitate primary issuance and secondary trading (Mistrangelo et al., 2022; Arnautović et al., 2025).

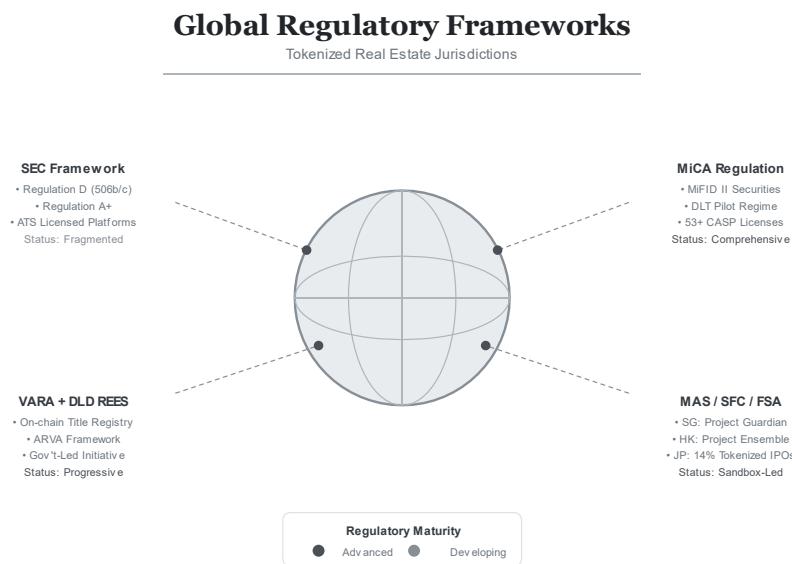


Figure 2. Reference architecture of a tokenized real estate platform, showing core layers and integration components.

Cross-chain interoperability represents an emerging architectural priority. Single-chain ecosystems are giving way to multi-chain liquidity as platforms adopt interoperable token standards, enabling assets to move across networks. For example, tokens issued on Ethereum can potentially be traded or collateralized on Polygon, Avalanche, or regulated sidechains, expanding reach and liquidity while preserving regulatory integrity. Swift's collaboration with Chainlink and major financial institutions to enable cross-network transfer of tokenized assets represents a significant industry initiative toward achieving this interoperability (Arnautović et al., 2025).

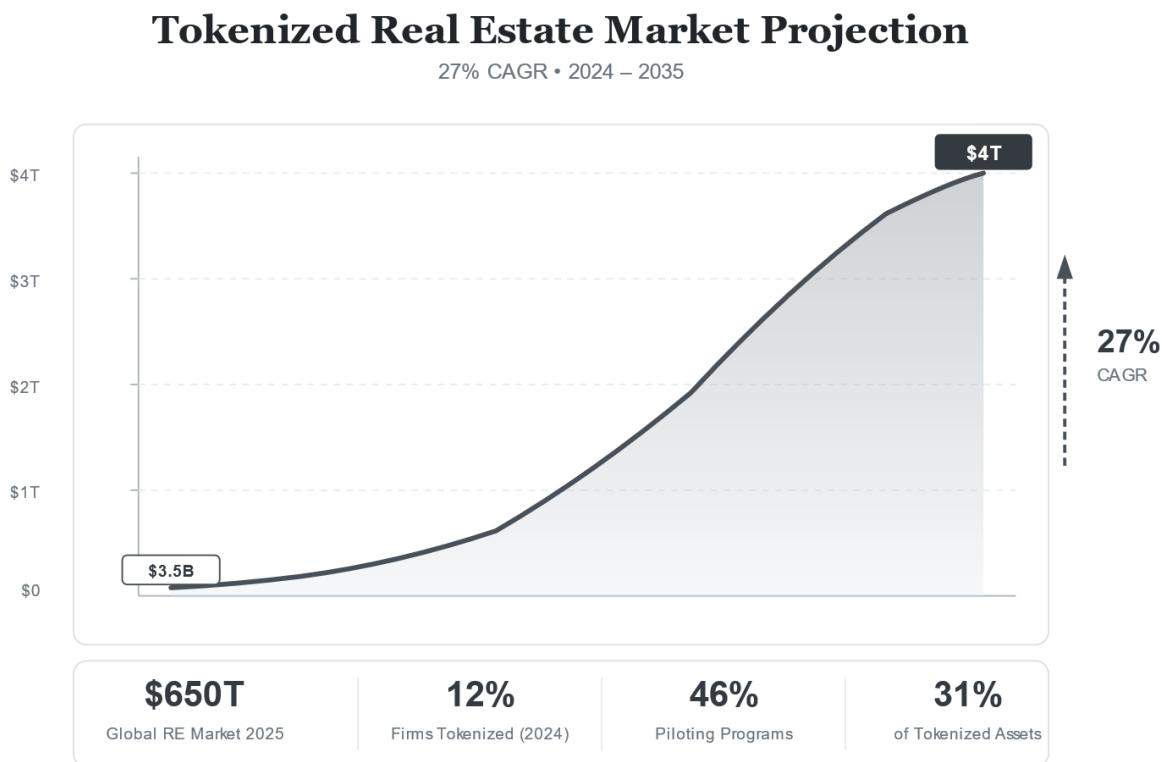
4. Comparative Analysis of Leading Platforms

The global landscape of tokenized real estate platforms has diversified substantially, with specialized providers targeting different investor segments, property types, and geographic markets. This section provides a comparative analysis of leading platforms across key dimensions, including technical infrastructure, investment parameters, and market positioning (Mottaghi et al., 2024; Wang, 2021).

Table 1 – Comparative Analysis of Leading Tokenized Real Estate Platforms

Platform	Blockchain	Min. Invest.	Property Focus	Income Distribution
RealT	Ethereum/Gnosis	\$50	US Residential	Daily/Weekly
Lofty	Algorand	\$50	US Single-Family	Daily
Honey Bricks	Ethereum	\$1,000	Commercial/Multi.	Quarterly
Binaryx	Abstracted	\$500	International	Monthly
Securitize	Multi-chain	Varies	Institutional	Per Asset

4.1 Platform Profiles


RealT pioneered tokenized real estate on Ethereum, launching its first tokenized property in June 2019. The platform has subsequently tokenized over 200 properties valued at approximately \$45 million, building a community of over 16,000 investors worldwide. RealT migrated operations to Gnosis Chain to reduce transaction costs while maintaining Ethereum compatibility. The platform's legal structure establishes dedicated LLCs for each property, with Real-Tokens representing digital ownership shares. Notably, RealT developed an 'Abstract Account/Wallet-less' solution, removing technical barriers for newcomers unfamiliar with cryptocurrency wallet management.

Lofty (founded 2021) operates on the Algor and blockchain, having tokenized over 220 properties worth approximately \$27 million with 8,000+ investors. The platform emphasizes daily stablecoin income distributions and DAO-LLC governance structures, enabling token holders to participate in property decisions. Algor's low-fee infrastructure enables micro-payouts that would be uneconomical on higher-cost networks, supporting Lofty's daily distribution model.

Honey Bricks targets commercial real estate opportunities, particularly multifamily apartment buildings, issuing security tokens on Ethereum under Regulation D and Regulation S compliance frameworks. The platform currently serves accredited investors with \$1,000 minimum investments, with plans to expand retail access through Regulation A+ offerings. A distinctive feature enables token holders to borrow against their holdings at up to 60% loan-to-value ratios, enhancing capital efficiency (Dubrovina, 2023; Sabuncuoğlu, 2024; Lu, 2022).

4.2 Market Performance Indicators

The market performance of tokenized real estate has demonstrated notable resilience and value appreciation. The St. Regis Aspen token, issued by Elevated Returns in 2018 and listed on the tZero secondary platform, provides an instructive case study. The token raised \$18 million initially and subsequently appreciated by 30% within 18 months of issuance. Despite market uncertainty during COVID-19, the token price grew by an impressive 3.3x throughout 2022-2024, demonstrating that tokenized real estate can outperform during periods of broader market volatility.

Figure 3. Market growth trajectory for tokenized real estate, illustrating adoption and expansion trends over time.**Figure 3. Market growth trajectory for tokenized real estate, illustrating adoption and expansion trends over time.**

Rental yields across platforms generally range from 6% to 16% annually, comparing favorably to traditional real estate investment vehicles. RealT properties have offered yields of 7-20% with weekly income distributions. Commercial tokenization projects report similar performance; a 250-unit multifamily apartment complex in Dallas raised \$6.5 million via tokenized offerings, enabling fractional investment in a \$47 million development while providing secondary trading liquidity to investors (Swinkels, 2025).

4.3 Platform Fee Structures and Economics

Understanding platform economics is essential for investor decision-making. Fee structures vary significantly across platforms, affecting net returns. RealT charges approximately 10% listing fees, with ongoing management fees embedded in property operations. Lofty implements similar structures with property-specific fee disclosures. Honey Bricks, focusing on commercial real estate, typically includes sponsor fees and management costs aligned with traditional real estate syndication models.

Gas fees for blockchain transactions represent an additional cost consideration, particularly on Ethereum, where network congestion can dramatically increase transaction costs. Platforms operating on Algorand, Polygon, or Gnosis Chain offer substantially lower transaction costs, enabling economical micro-transactions that would be prohibitive on the Ethereum main net. This economic consideration influences platform selection for both operators and investors, particularly for smaller investment amounts where transaction costs constitute a meaningful percentage of principal (Baum, 2021; Mottaghi et al., 2024).

4.4 B2B Infrastructure Providers

Beyond consumer-facing platforms, an ecosystem of B2B infrastructure providers enables real estate tokenization at an institutional scale. Securitize has emerged as a leading infrastructure provider, offering modular, institutional-grade tools for compliance and custody across multiple blockchain networks, including Ethereum, Algorand, and Avalanche. The platform holds SEC-registered broker-dealer and ATS licenses, enabling compliant issuance and secondary trading (Ciminelli et al., 2024).

Token Solutions provides tokenization infrastructure focusing on Ethereum and Polygon deployments, with recent collaborations launching tokenized money market funds that demonstrate streamlined administrative processes with reported cost reductions of up to 90% compared to traditional fund administration. Block Square offers white-label tokenization infrastructure for property owners to issue real estate tokens on Ethereum and IPFS, enabling custom-branded tokenization solutions. These B2B providers enable traditional real estate firms to adopt tokenization without building technology infrastructure from scratch (Baltais et al., 2024; Boggio Viola, 2024).

5. Global Regulatory Frameworks

The regulatory landscape for tokenized real estate has evolved significantly, moving from uncertainty toward greater clarity across major jurisdictions. This section examines regulatory developments in key markets and their implications for platform operations and investor protections.

Figure 4. Comparative regulatory landscape for tokenized real estate across major jurisdictions.

5.1 United States

The United States Securities and Exchange Commission (SEC) has consistently maintained that tokenized real estate offerings constitute securities subject to the Securities Act of 1933 and Securities Exchange Act of 1934. Under the Howey Test framework, when investors contribute capital to a common enterprise with the expectation of profits derived primarily from others' efforts, the instrument qualifies as a security regardless of its technological form.

Platforms operating in the US market typically rely on exemption frameworks, including Regulation D (Rule 506(b) and 506(c)) for accredited investor offerings, Regulation S for offshore investors, Regulation A+ for qualified public offerings up to \$75 million, and Regulation CF for crowdfunding offerings up to \$5 million. Platforms like Securitize have obtained Alternative Trading System (ATS) licenses and transfer agent registrations to enable compliant secondary trading of security tokens. Recent congressional interest in tokenization frameworks suggests potential for modernized regulations, with Robinhood proposing a federal framework treating real-world asset tokens as legal stand-ins for underlying assets (Garcia-Teruel & Simón-Moreno, 2021; Saari et al., 2022).

5.2 European Union

The European Union's Markets in Crypto-Assets (MiCA) regulation, fully implemented by December 2024, establishes comprehensive frameworks for crypto-asset issuance and service provision across EU member states. Crucially, MiCA explicitly excludes assets qualifying as financial instruments under MiFID II, meaning tokenized real estate structured as securities falls under existing securities law rather than MiCA provisions. This bifurcated approach provides legal clarity: security tokens follow MiFID II rules for prospectus requirements, investor classification, custody, and trading venue requirements, while non-security tokens (such as utility tokens or certain revenue-share arrangements) fall under MiCA (Boggio Viola, 2024).

Luxembourg has emerged as a leading EU jurisdiction for tokenization, enacting Blockchain Law IV in December 2024 to explicitly authorize the tokenization of physical assets, including real estate, using distributed ledger technology. Germany's Electronic Securities Act (eWpG) similarly enables electronic securities issuance. The EU's DLT Pilot Regime, extended to 2026, allows sandbox testing for distributed ledger technology in securities settlement, providing regulatory space for innovation. As of November 2025, over 53 companies had received Crypto-Asset Service Provider (CASP) licenses under MiCA (Saari et al., 2022; Boggio Viola, 2024).

5.3 United Arab Emirates

The United Arab Emirates, particularly Dubai, has positioned itself among the most progressive jurisdictions for real estate tokenization. The Dubai Land Department (DLD) launched the REES (Real Estate Evolution System) initiative as a government-backed pilot program for property tokenization, becoming the first real estate registration entity in the Middle East to adopt blockchain-based tokenization. This initiative enables fractional ownership with property titles recorded on-chain through DLD's infrastructure.

Dubai's Virtual Assets Regulatory Authority (VARA) updated its Rulebook in May 2025 to cover tokenized real-world assets under a new Asset-Referenced Virtual Assets (ARVA) category. The combined DLD pilot and VARA framework creates a clear licensing pathway: issuers must partner with VARA-licensed token platforms and comply with KYC/AML requirements while property titles remain registered on-chain via DLD. This integrated approach linking land registry with blockchain infrastructure and regulatory oversight represents a model that other jurisdictions are observing closely (Alnabulsi, 2024; Saari et al., 2022).

5.4 Asia-Pacific Region

Singapore has established itself as an Asian hub for real-world asset tokenization through the Monetary Authority of Singapore's (MAS) Project Guardian initiative. Launched in 2022, Project Guardian had tested over 15 tokenized asset trials by 2025, including real estate, across six currencies. Participation is limited to accredited investors meeting wealth thresholds, but the clear regulatory framework has attracted substantial institutional interest. Hong Kong's Securities and Futures Commission (SFC) launched Project Ensemble in 2024 to test tokenized transactions with major financial institutions, including HSBC, implementing strict KYC/AML and investor protection requirements (Rogers & Dutta, 2020).

Japan presents an interesting case of rapid adoption within traditional structures. Tokenized REITs have seen remarkable growth, accounting for 14% of all IPOs on the Tokyo Stock Exchange in 2023. The Financial Instruments and Exchange Act (FIEA) treats tokenized real-world assets as securities, providing clear legal classification while enabling innovation within established frameworks (Izadin & Yusof, 2024).

6. Investor Behaviour and Adoption Patterns

6.1 Democratization of Access

Real estate tokenization has fundamentally altered investor demographics by eliminating traditional capital barriers. Where conventional real estate investment typically required minimum commitments of \$50,000-\$100,000 or more, tokenized platforms have reduced entry points to as low as \$50, enabling participation from investors previously excluded from property markets. This democratization extends beyond capital requirements to geographic barriers, with platforms enabling global investor access to properties in previously inaccessible markets (Baltais et al., 2024).

The behavioural implications of reduced minimums are significant. Rather than concentrating capital in single assets, investors can now diversify across multiple properties, geographic regions, and asset classes. An investment of \$1,000 can be distributed across 20 different properties rather than requiring concentration in a single asset. This portfolio approach, previously available only to institutional investors, enables retail participants to implement sophisticated diversification strategies (Baltais et al., 2024; Liu & Chen, 2025).

6.2 Institutional Adoption Trends

Institutional participation in tokenized real estate has accelerated substantially. Data indicates that nearly 70% of deployed capital in tokenized assets during 2024 stemmed from large institutional investors seeking improved efficiency and access to alternative yield and liquidity. Projections suggest that institutional investors may allocate between 7% and 9% of their portfolios to tokenized assets by 2027, with real estate consistently ranking as a preferred asset class.

Notable institutional initiatives demonstrate growing acceptance. BlackRock's BUIDL tokenized money market fund reached \$3 billion in total value locked. BNY Mellon has integrated tokenized money-market funds and is exploring digital asset custody services for Asia. Kin Capital launched a \$100 million real estate debt fund on blockchain infrastructure, targeting institutional investors with \$50,000 minimum investments. These developments signal that tokenization is transitioning from experimental technology to a legitimate institutional asset class (Baltais et al., 2024; Liu & Chen, 2025).

6.3 Behavioural Preferences

Investor behavioural analysis reveals distinct preferences across platform types. Retail investors gravitating toward platforms like RealT and Lofty frequently cite the convenience of daily or weekly income distributions, particularly for smaller investments where compounding effects from frequent payouts become meaningful. The ability to dollar-cost average into multiple rental properties with sub-\$100 investments appeals to investors seeking systematic wealth-building approaches.

More sophisticated investors utilizing platforms like Honey Bricks emphasize features including the ability to use tokens as collateral for loans, access to institutional-grade commercial real estate deal flow, and integration with decentralized finance protocols enabling yield optimization. The passive

management model, eliminating tenant search, claims management, and repair responsibilities, attracts investors seeking pure yield exposure without operational involvement (Swinkels, 2025; Baltais et al., 2024; Liu & Chen, 2025).

7. Liquidity Effects and Market Outcomes

7.1 Liquidity Enhancement Mechanisms

Tokenization addresses real estate's historic illiquidity through multiple mechanisms. First, fractionalization transforms large, indivisible assets into smaller, tradeable units. Rather than requiring a single buyer for a \$1 million property, tokenization enables sales to multiple investors in minutes or hours. Second, blockchain-based settlement reduces transaction timelines from the traditional 60-90 days to under 24 hours on many platforms. Third, smart contract automation eliminates intermediary dependencies, enabling 24/7 trading capabilities. Fourth, reduced minimum investments expand the potential buyer pool for any given token (Swinkels, 2025; Ciminelli et al., 2024).

Empirical evidence supports these theoretical liquidity benefits. Platforms supporting tokenized commercial real estate have achieved transaction speeds, reducing settlement times from weeks to hours. The ability to exit positions in days rather than months represents a fundamental change in real estate investment dynamics. Secondary market platforms like tZero, ADDX, INX, and Oasis Pro Markets are enabling active trading of real-world asset tokens (Ciminelli et al., 2024).

7.2 Secondary Market Development

Despite liquidity improvements, secondary market development remains an evolving challenge. Research indicates that tokens are often traded primarily within the platforms where they were issued, limiting investor reach and inhibiting full liquidity benefits. Deloitte's 2024 Tokenization guide identified scarce secondary markets among primary barriers to mainstream tokenization adoption (Swinkels, 2025; Baltais et al., 2024).

Academic research examining real estate security token offerings confirms this pattern. Studies document that most real-world asset tokens exhibit low trading volumes, extended holding periods, and limited investor participation despite their potential for 24/7 global markets. While tokenized treasury and money-market fund assets reached \$7.4 billion in 2025 (marking an 80% increase year-to-date), secondary trading activity for many tokenized real estate assets remains limited (Baltais et al., 2024; Ciminelli et al., 2024).

Emerging solutions address interoperability challenges. Swift's collaboration with Chainlink and major financial institutions to enable cross-network transfer of tokenized assets promises to enable secondary trading across multiple centralized and decentralized marketplaces. Once implemented, such solutions could substantially enhance liquidity by connecting previously siloed platform ecosystems (Swinkels, 2025; Baltais et al., 2024; Ciminelli et al., 2024).

7.3 Value Effects

The liquidity enhancement from tokenization may drive property value appreciation. The relationship between liquidity and asset pricing is well-established in financial economics. Liquid assets command premiums over illiquid equivalents. The St. Regis Aspen token's 3.3x appreciation over 2022-2024 provides suggestive evidence, though causally attributing value changes to tokenization versus underlying property performance requires careful analysis (Swinkels, 2025; Baltais et al., 2024; Ciminelli et al., 2024).

Transaction cost reductions offer more direct value creation. By eliminating intermediaries and automating processes, tokenization can reduce real estate transaction costs substantially below the typical 5-6% of property value. These savings benefit both buyers and sellers, potentially increasing realized returns for investors while reducing capital requirements for property owners (Baltais et al., 2024; Ciminelli et al., 2024).

8. Challenges and Barriers to Adoption

8.1 Regulatory Uncertainty

Despite progress in jurisdictions like the EU and UAE, regulatory uncertainty persists in key markets. The United States lacks comprehensive federal legislation specifically addressing real-world asset tokenization, creating compliance complexity for platforms navigating overlapping securities, banking, and money transmission regulations. This uncertainty constrains institutional participation and limits platform scalability. The absence of standardized regulatory approaches across jurisdictions complicates cross-border operations and limits the global liquidity benefits tokenization could otherwise provide (Saari et al., 2022; Garcia-Teruel & Simón-Moreno, 2021).

8.2 Legal Infrastructure Gaps

A fundamental challenge involves bridging traditional property law with blockchain-based ownership. Real estate ownership is ultimately governed by local land registries, title systems, and property law frameworks that predate the advent of blockchain technology. While tokens can represent ownership claims on-chain, their enforceability depends on off-chain legal structures, typically SPVs or LLCs that hold the actual title. This two-layer system

introduces complexity and potential points of failure. Systematic reviews identify the lack of standardized regulations bridging tokenization with traditional land law as a significant barrier (Izadin & Yusof, 2024).

The legal classification of tokens varies across jurisdictions and even within single legal systems, depending on the token structure. Misclassification can result in non-compliance with securities law or crypto-asset regulations. Founders and asset managers must perform careful legal analysis at project inception, often requiring specialized counsel across multiple jurisdictions (Saari et al., 2022; Garcia-Teruel & Simón-Moreno, 2021).

8.3 Technical and Scalability Issues

Blockchain scalability constraints present ongoing challenges. Ethereum's base-layer limitations require platforms to either accept higher costs and slower transactions or migrate to Layer-2 solutions and alternative chains that may offer reduced security guarantees or ecosystem maturity. Cross-chain interoperability remains nascent, limiting token portability and liquidity aggregation across networks (Garcia-Teruel et al., 2021).

Security considerations are paramount given the high-value nature of real estate assets. Smart contract vulnerabilities, key management risks, and potential for oracle manipulation require robust security architectures. Platform operators must balance user experience, particularly for mainstream investors unfamiliar with cryptocurrency operations, against security requirements. The emergence of 'wallet-less' solutions addresses onboarding friction but introduces custodial dependencies that may concern security-conscious investors (Saari et al., 2022).

8.4 Market Development Challenges

Secondary market fragmentation limits liquidity benefits. Tokens trading primarily within originating platforms restricts investor reach and price discovery efficiency. The absence of consolidated marketplaces or interoperable trading infrastructure means investors may face challenges exiting positions despite theoretical 24/7 trading availability (Garcia-Teruel & Simón-Moreno, 2021).

Investor education remains an ongoing requirement. Many potential participants lack understanding of blockchain technology, security token mechanics, or the distinction between tokenized ownership and other investment vehicles like REITs. Platforms must invest in educational resources while ensuring appropriate investor protection measures prevent unsuitable investments (Saari et al., 2022; Garcia-Teruel & Simón-Moreno, 2021).

8.5 Valuation and Price Discovery Challenges

Price discovery in tokenized real estate markets presents unique challenges distinct from both traditional property markets and liquid securities markets. Unlike publicly traded REITs with continuous price discovery through exchange trading, tokenized real estate tokens may trade infrequently on secondary platforms, leading to stale pricing and potential valuation discrepancies. The absence of standardized valuation methodologies across platforms complicates comparative analysis and may introduce pricing inefficiencies (Izadin & Yusof, 2024; Saari et al., 2022; Garcia-Teruel & Simón-Moreno, 2021; Rosiers, n.d.).

Oracle-based valuation systems attempt to bridge on-chain and off-chain price information by feeding external appraisals and market data into smart contracts. However, the frequency of these updates varies across platforms, and reliance on third-party appraisers introduces potential conflicts of interest. Some platforms update valuations quarterly, while others maintain static values until properties are sold, creating information asymmetries that sophisticated investors may exploit at the expense of retail participants. Developing standardized, transparent valuation protocols remains a critical infrastructure requirement for market maturation (Teruel & Simón-Moreno, 2021).

8.6 Counterparty and Platform Risk

Investors in tokenized real estate face counterparty risks that differ from traditional property investment. Platform operational continuity represents a significant concern—if a tokenization platform ceases operations, investors may face difficulties exercising ownership rights despite holding valid tokens. The legal structures underpinning tokenized ownership (typically SPVs or LLCs managed by platform operators) create dependencies on platform viability and management integrity (Garcia-Teruel & Simón-Moreno, 2021; Rosiers, n.d.).

Property management quality introduces additional variability. Tokenized platforms typically outsource property management to third parties, with performance varying significantly across providers and properties. Unlike direct property ownership, where investors can select and replace property managers, tokenized investors depend on platform decisions regarding management arrangements. Transparency regarding management performance, fee structures, and accountability mechanisms varies across platforms, complicating investor due diligence (Saari et al., 2022; Garcia-Teruel & Simón-Moreno, 2021; Rosiers, n.d.).

8A. Case Studies in Regional Implementation

8A.1 Dubai Land Department REES Initiative

The Dubai Land Department's Real Estate Evolution System (REES) represents the most comprehensive government-led tokenization initiative globally. Launched as a pilot program in 2024, REES enables fractional ownership of Dubai properties with titles recorded directly on blockchain infrastructure.

maintained by the government land registry. This integration of land registry functions with blockchain infrastructure distinguishes Dubai's approach from platforms operating in regulatory grey areas (Liu & Chen, 2025).

The Qarat initiative, operating within the REES framework, has tokenized properties across residential and commercial segments, demonstrating scalability across asset classes. Critical success factors include clear regulatory support from VARA, integration with existing land registry systems, and established dispute resolution mechanisms through Dubai's legal framework. The initiative provides a template for other jurisdictions considering government-led tokenization infrastructure (Baum, 2021).

8A.2 Luxembourg Blockchain Law IV

Luxembourg's enactment of Blockchain Law IV in December 2024 explicitly authorizes the tokenization of physical assets, including real estate, using distributed ledger technology. The legislation builds on Luxembourg's established position as a European financial center, extending legal certainty to DLT-based securities while maintaining investor protections. The law authorizes digital management of equity securities and facilitates tokenization within the existing regulatory framework rather than creating parallel structures (Liu & Chen, 2025; Baum, 2021).

The Luxembourg approach emphasizes integration with European Union regulations, enabling tokenized assets issued under Luxembourg law to potentially benefit from EU passport rights. Financial services supervisory authority CSSF has established sandbox programs enabling controlled experimentation with tokenized structures. Major financial institutions have established Luxembourg-based tokenization operations, attracted by regulatory clarity and access to European markets (Liu & Chen, 2025; Baum, 2021).

8A.3 Singapore Project Guardian

Singapore's Monetary Authority (MAS) launched Project Guardian in 2022 as a collaborative initiative with the industry to explore asset tokenization potential. By 2025, the project had completed over 15 tokenized asset trials across six currencies, including multiple real estate tokenization pilots. The initiative brings together regulators, financial institutions, and technology providers to test tokenization infrastructure under controlled conditions (Liu & Chen, 2025; Baum, 2021).

Project Guardian's real estate components have tested fractional ownership structures, cross-border investment flows, and integration with decentralized finance protocols. Participation remains limited to accredited investors meeting wealth thresholds (SGD 2 million net worth or SGD 300,000 annual income), reflecting MAS's cautious approach to retail investor protection. Findings from the project inform regulatory development, with potential for broader retail access as the framework matures (Liu & Chen, 2025; Baum, 2021).

Table 2 – Regional Market Development Comparison

Region	Regulatory Status	Key Platforms	Investor Access	Market Maturity
United States	Exemptions-based	RealT, Lofty, Securitize	Varies by exemption	Developed
European Union	MiCA/MiFID II	Tokeny, Assetera	Retail with limits	Maturing
UAE/Dubai	VARA/DLD	REES, StegX	Open	Early leader
Singapore	SFA/Sandbox	ADDX, Propine	Accredited only	Pilot phase
Japan	FIEA	TSE-listed REITs	Retail	Exchange-listed

9. Future Directions and Emerging Trends

9.1 Regulatory Evolution

Regulatory frameworks are expected to continue maturing, with 2025 marking an inflection point. The European Commission's upcoming Savings and Investment Union proposals aim to unify fragmented capital markets through distributed ledger technology. Regulatory sandboxes in jurisdictions including Hong Kong, Singapore, and the UAE enable controlled experimentation that informs policy development. Industry observers expect a proliferation of such sandbox initiatives designed to support responsible tokenization development among financial institutions (Ciminelli et al., 2024; Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

9.2 Institutional Integration

Institutional adoption is projected to accelerate substantially. Major financial institutions are exploring tokenization infrastructure, with firms like BNY Mellon, BlackRock, and HSBC actively deploying or testing tokenized products. The integration of tokenized real estate with traditional financial infrastructure, including custody services, clearing systems, and investment platforms, will facilitate institutional participation at scale (Ciminelli et al., 2024; Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

Hybrid capital structures represent an emerging trend. Issuers will increasingly bundle equity, debt, and revenue-share layers on unified platforms, enabling investors to select instruments matching their risk-return preferences. This sophistication mirrors traditional structured finance while leveraging blockchain efficiency (Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

9.3 Technological Advancement

Layer-2 scaling solutions and cross-chain bridges will mature, addressing current throughput and interoperability limitations. The adoption of interoperable token standards like ERC-3643 with cross-chain bridges will enable assets to move across networks while preserving compliance data. Oracle infrastructure improvements, including decentralized oracle networks like Chainlink, will enable dynamic token metadata reflecting real-world conditions, property values, tenant data, and rental rates in real-time (Ciminelli et al., 2024; Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

Decentralized identity solutions will streamline compliance. KYC and accreditation are shifting from centralized databases to verifiable credentials stored in user-controlled wallets, enabling privacy-preserving compliance that transfers across platforms and jurisdictions (Meinrath, 2025; Arnautović et al., 2025).

9.4 Market Expansion

Geographic expansion will diversify tokenized real estate offerings beyond current US and European concentrations. Platforms are expanding into Latin America (Brazil's COFECI and CVM have issued sandbox programs), the Middle East (beyond Dubai's pilot programs), and broader Asia-Pacific markets. This expansion will create opportunities for cross-border diversification while introducing complexity around multi-jurisdictional compliance (Ciminelli et al., 2024; Baltais et al., 2024).

Market projections suggest substantial growth trajectories. The asset tokenization market broadly is projected to reach \$2.08 trillion by 2025 and potentially \$13.55-16 trillion by 2030. Real estate has remained the largest single class among tokenized assets, accounting for approximately 31% of tokenized issuance in 2024. If current trends continue, tokenized real estate could represent \$4 trillion by 2035, capturing 15% of real estate assets under management globally (Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

9.5 DeFi Integration and Yield Optimization

Integration between tokenized real estate and decentralized finance (DeFi) protocols represents a significant emerging trend. Tokenized property assets can serve as collateral for borrowing on DeFi lending platforms, enabling investors to access liquidity without selling their positions. Honey Bricks already enables token holders to borrow against their holdings at up to 60% loan-to-value ratios, demonstrating this functionality's commercial viability (Ciminelli et al., 2024; Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

Aave Labs launched Horizon in August 2025, specifically targeting institutional borrowers seeking stablecoin loans collateralized by tokenized real-world assets. This integration reflects the expanding \$26 billion RWA tokenization market and institutional interest in deploying capital efficiently on-chain. As DeFi infrastructure matures and regulatory frameworks accommodate such integrations, tokenized real estate may become embedded in broader decentralized financial ecosystems, enhancing capital efficiency and yield opportunities (Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

9.6 Sustainability and ESG Integration

Environmental, Social, and Governance (ESG) considerations are increasingly influencing tokenized real estate development. Energy-efficient blockchain networks like Algorand and Tezos, utilizing Proof-of-Stake consensus mechanisms, appeal to sustainability-conscious investors and platforms. Some platforms are developing ESG-focused tokenized offerings featuring properties with strong environmental credentials or social impact characteristics (Ciminelli et al., 2024; Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

The programmability of tokenized assets enables novel ESG implementation mechanisms. Smart contracts can automate carbon credit allocations, track sustainability metrics, and enforce governance requirements programmatically. These capabilities may position tokenized real estate as a vehicle for sustainable investment at scale, potentially attracting capital from ESG-mandated institutional investors who increasingly require demonstrable sustainability credentials (Baltais et al., 2024; Meinrath, 2025; Arnautović et al., 2025).

10. Conclusion

This review has examined the global landscape of tokenized real estate platforms and their transformative impact on property investment models. The evidence demonstrates that real estate tokenization has progressed from an experimental concept to an emerging mainstream investment category, with market projections suggesting growth from \$3.5 billion in 2024 to \$4 trillion by 2035 (Liu & Chen, 2025; Saari et al., 2022).

Key findings include the following. First, technical infrastructure has matured considerably, with diverse blockchain platforms (Ethereum, Polygon, Algorand, and others) supporting various platform requirements for security, scalability, and cost-efficiency. Token standards like ERC-1400 and ERC-3643 enable compliance-aware security tokens suitable for regulated real estate offerings. Second, regulatory frameworks are evolving toward greater clarity, with the EU's MiCA regulation, Dubai's VARA framework, and Singapore's Project Guardian providing models for balanced innovation and

investor protection. However, significant jurisdictional variations and persistent uncertainty in key markets like the United States continue to constrain adoption (Saari et al., 2022).

Third, investor behavior has shifted notably, with reduced minimum investments (as low as \$50), democratizing access to property investment. Institutional participation has accelerated, with approximately 70% of 2024 deployed capital coming from large investors. Fourth, liquidity effects, while promising, remain incompletely realized due to fragmented secondary markets and limited cross-platform interoperability. Solutions addressing these limitations are emerging but not yet fully deployed (Izadin & Yusof, 2024; Baum, 2021).

Fifth, persistent challenges include regulatory uncertainty, legal infrastructure gaps bridging traditional property law with blockchain ownership, technical scalability constraints, and ongoing requirements for investor education. Addressing these challenges will require coordinated efforts among regulators, platform operators, legal practitioners, and technology developers (Saari et al., 2022).

The trajectory of tokenized real estate suggests transformational potential for property investment. The technology offers meaningful solutions to historic limitations of illiquidity, high capital requirements, and restricted access that have characterized real estate markets. As regulatory frameworks mature, technical infrastructure scales, and institutional adoption increases, tokenized real estate may indeed reshape how individuals and institutions access, trade, and profit from the world's largest asset class. For investors, platform operators, and policymakers, understanding these dynamics will be essential for navigating the evolving landscape of property investment in the blockchain era (Liu & Chen, 2025).

11. Acknowledgements

The author acknowledges the contributions of industry practitioners, academic researchers, and market analysts whose work informed this review. Special appreciation is extended to the research teams at Deloitte, Boston Consulting Group, and academic institutions whose reports provided foundational data for this analysis.

12. References

1. Liu, A., & Chen, C. (2025). From real estate financialization to decentralization: A comparative review of REITs and blockchain-based tokenization. *Geoforum*, 159, 104193. <https://doi.org/10.1016/j.geoforum.2024.104193>
2. Sternik, S. G., & Safronova, N. B. (2021). Financialization of real estate markets is a macroeconomic trend of the digital economy. *Studies on Russian Economic Development*, 32(6), 676-682. <https://link.springer.com/article/10.1134/S1075700721060149>
3. Mottaghi, S. F., Steininger, B. I., & Yanagawa, N. (2024). Real Estate Insights: The current state and the new future of tokenization in real estate. *Journal of Property Investment & Finance*, 42(6), 614-620. <https://doi.org/10.1108/JPIF-07-2024-0087>
4. Meinrath, H. (2025). *Digital Real Estate Markets: Tokenization, blockchain, and new property models in an international context*. BoD – Books on Demand.
5. Dubrovina, I. (2023). Tokenization of Real Estate: the Future Trend in Investments. <https://unitesi.unive.it/handle/20.500.14247/2798>
6. Baum, A. (2021). Tokenization—The future of real estate investment. *The Journal of Portfolio Management*, 47(10), 41-61. <https://www.sbs.ox.ac.uk/sites/default/files/2020-01/tokenisation.pdf>
7. Starr, C. W., Saginor, J., & Worzala, E. (2021). The rise of PropTech: Emerging industrial technologies and their impact on real estate. *Journal of Property Investment & Finance*, 39(2), 157-169. <https://doi.org/10.1108/JPIF-08-2020-0090>
8. García-Teruel, R. M., & Simón-Moreno, H. (2021). The digital tokenization of property rights. A comparative perspective. *Computer Law & Security Review*, 41, 105543. <https://doi.org/10.1016/j.clsr.2021.105543>
9. Bolandhemat, S. (2025). Decentralizing Real Estate Markets: Evaluating REITs and Blockchain Tokenization Approaches. *Journal of Economics, Finance and Accounting Studies*, 7(4), 185-189. <https://doi.org/10.32996/jefas.2025.7.4.14>
10. Boggio Viola, A. (2024). *The Tokenization of Assets: Analysing the Emergence of a New Market Trend* (Doctoral dissertation, Politecnico di Torino). <http://webthesis.biblio.polito.it/id/eprint/32684>
11. Sabuncuoğlu, G. (2024). Istoken: The digital revolution of fractional Ownership & Real estate tokenization model in Türkiye. <https://polen.itu.edu.tr/server/api/core/bitstreams/2c9eb88c-7c19-48c7-87de-f50008d1d0c2/content>
12. Mistrangelo, P., Tagliabue, L. C., & Tezel, A. (2022, July). Property tokenization digital framework for inclusive and sustainable asset markets development. In *Proc. 2022 European Conference on Computing in Construction. DOI* (Vol. 10).
13. Alnabulsi, K. (2024). Asset tokenization in real estate: Theoretical perspectives and empirical approaches. *Blockchain in Real Estate: Theoretical Advances and New Empirical Applications*, 153-168. https://link.springer.com/chapter/10.1007/978-981-99-8533-3_8
14. Bhat, B. A., & Gupta, N. (2022). Integration of blockchain tokenisation in real estate: a review. *Applications, challenges, and opportunities of blockchain technology in banking and insurance*, 213-230.

15. Rogers, M., & Dutta, S. K. (2020). Tokenization of the Japanese real estate market. In *The Definitive Guide to Blockchain for Accounting and Business: Understanding the Revolutionary Technology* (pp. 177-207). Emerald Publishing Limited. <https://doi.org/10.1108/978-1-78973-865-020201010>
16. Arnautović, A., Zrakić, M. D., & Bogdanović, Z. (2025, March). Innovating Real Estate Business Models with Blockchain. In *2025 24th International Symposium INFOTEH-JAHORINA (INFOTEH)* (pp. 1-5). IEEE. <https://doi.org/10.1109/INFOTEH64129.2025.10959232>
17. Gupta, A., Rathod, J., Patel, D., Bothra, J., Shanbhag, S., & Bhalerao, T. (2020, October). Tokenization of real estate using blockchain technology. In *International Conference on Applied Cryptography and Network Security* (pp. 77-90). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-61638-0_5
18. Baltais, M., Sondore, E., Putniņš, T. J., & Karlsen, J. R. (2024). Economic impact potential of real-world asset tokenization. *UTS Business School, University of Technology Sydney, Report*, 2024-06. https://www.makroekonomika.lv/sites/default/files/2024-06/06_Baltais%20%26%20Sondore.pdf
19. Wang, D. (2021). Tokenisation of corporate real estate on the blockchain: New strategies for corporate ownership and financial management. *Corporate Real Estate Journal*, 10(2), 168-180.
20. Ciminelli, V., Mazzoni, N., & Morisani, G. (2024). Asset tokenization: potential applications. *Research Paper Series, IASON*. https://iason-onigiri-prod.s3.eu-south-1.amazonaws.com/asset_tokenization_potential_applications_ab05fe4b7d.pdf
21. Swinkels, L. (2025). Empirical evidence on the ownership and liquidity of real estate tokens. In *Blockchain, Crypto Assets, and Financial Innovation: A Decade of Insights and Advances* (pp. 434-467). Singapore: Springer Nature Singapore. https://link.springer.com/chapter/10.1007/978-981-96-6839-7_16
22. Obushnyi, S., Virovets, D., Zhytar, M., & Zhdanova, Y. (2024). Unlocking the Economic Potential of Real Estate Tokenization in Ukraine. In *Digital Economy Concepts and Technologies Workshop 2024* (Vol. 3665, pp. 79-87). Germany. <https://elibrary.kubg.edu.ua/id/eprint/48772>
23. Ogundu, P. G. (2025). Decentralized housing finance models: Blockchain-based mortgage systems and crowdfunded real estate investment for affordability. *International Research Journal of Modernization in Engineering, Technology and Science*, 7(2), 1916. <https://www.doi.org/10.56726/IRJMETS67513>
24. Lu, Y. (2022). Real Estate Tokenization Based on the Blockchain. <https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Akth%3Adiva-314928>
25. Kasprzak, P. (2021). Blockchain to the rescue—tokenization of residential real estate in the emerging token economy. In *Digitalization, Digital Transformation and Sustainability in the Global Economy: Risks and Opportunities* (pp. 21-35). Cham: Springer International Publishing.
26. Rosiers, B. What are the obstacles and opportunities of real estate tokenization in Belgium?.
27. Izadin, A. A. I., & Yusof, R. (2024). Democratizing Real Estate Investment: A Systematic Review of Tokenization in Real Estate. Available at SSRN 5015941. <https://dx.doi.org/10.2139/ssrn.5015941>
28. Saari, A., Vimpari, J., & Junnila, S. (2022). Blockchain in real estate: Recent developments and empirical applications. *Land use policy*, 121, 106334. <https://doi.org/10.1016/j.landusepol.2022.106334>
29. Colomer Forne, C. (2023). *Tokenization of rental contracts: exploring Blockchain-based solutions for efficiency and transparency in the rental industry* (Doctoral dissertation, Politecnico di Torino).
30. Mottaghi, F. N., & Steininger, B. I. (2024). Real Estate Tokens: Evaluating Long-Term Relationships with Major Asset Classes. <https://dx.doi.org/10.2139/ssm.5208400>