

Automatic Number Plate Detection

Dileep M R¹, Ankith N P², Mrs. Shruthy K N³

Department of Electronics and Communication, Coorg Institute Of Technology, Halligattu, Ponnampet, Kodagu, 571216
Email: dileepdeekshi14@gmail.com, ankithanki949@gmail.com

ABSTRACT :

This paper presents the design and implementation of an Automatic Number Plate Detection (ANPD) is an intelligent vehicle identification system designed to automatically detect and recognize vehicle registration numbers from images or real-time video streams. This project focuses on the design and implementation of an ANPD system using a Raspberry Pi and a camera module for real-time data acquisition. The captured images are processed using OpenCV techniques such as grayscale conversion, noise filtering, edge detection, and contour analysis to accurately localize the number plate region.

Keywords: Automatic Number Plate Detection, ANPD, Image Processing, OpenCV, Optical Character Recognition (OCR), Raspberry Pi, Computer Vision, Vehicle Identification, Traffic Monitoring.

INTRODUCTION

The rapid growth of vehicles and urbanization, efficient traffic management and vehicle monitoring have become critical challenges. Automatic Number Plate Detection (ANPD) is a computer vision-based technology developed to automatically identify vehicles by extracting and recognizing their registration numbers from images or video streams. Unlike manual monitoring, ANPD systems provide fast, accurate, and real-time vehicle identification with minimal human intervention.

ANPD works by capturing vehicle images using a camera and applying image processing techniques such as preprocessing, edge detection, and contour analysis to locate the number plate region. Optical Character Recognition (OCR) is then used to convert the extracted plate characters into machine-readable text. Advances in embedded systems and open-source libraries like OpenCV have made it possible to implement ANPD systems on low-cost platforms such as the Raspberry Pi.

To ensure reliable performance, the system utilizes the following key components:

1. **Raspberry Pi** – Acts as the main processing unit, handling image acquisition, processing, and control operations.
2. **Camera Module** – Captures real-time images or video of vehicles for number plate detection.
3. **OpenCV Library** – Performs image preprocessing, enhancement, edge detection, and number plate localization.
4. **Power Supply** – Provides stable power to the Raspberry Pi and connected peripherals.
5. **Display/Communication Module** – Displays or transmits the detected number plate information to the user or monitoring system.

LITERATURE SURVEY

I. Automatic Number Plate Detection System

Authors:

R. Durga Meena, P. Pandiselvam, J. Somanadh Chowdary, P. Praneeth, K. Chaitanya, N. Veera Venkata Naga Sai

Journal:

International Journal of Research Publication and Reviews (IJRPR)

Year:

2022

Summary:

This paper presents an automatic number plate detection system using image processing techniques and Optical Character Recognition (OCR). The system captures vehicle images and applies preprocessing, edge detection, and contour-based methods to localize the license plate. The extracted plate region is processed using OCR to recognize alphanumeric characters. The proposed system demonstrates improved accuracy in controlled environments and highlights the effectiveness of OpenCV-based approaches for real-time vehicle identification applications such as traffic monitoring

and parking management.

2. Automatic Number Plate Recognition Using OpenCV and OCR

Authors:

A. Patil, S. Kulkarni, R. Deshmukh, P. Pawar

Journal:

International Journal of Research Publication and Reviews (IJRPR)

Year:

2023

Summary:

This work focuses on the development of an automatic number plate recognition system using OpenCV and Tesseract OCR. Image enhancement, morphological operations, and character segmentation are used to improve recognition accuracy. The system is capable of recognizing license plates under varying lighting conditions and is suitable for implementation on low-cost embedded platforms. The study emphasizes the role of preprocessing in improving OCR performance.

METHODOLOGY

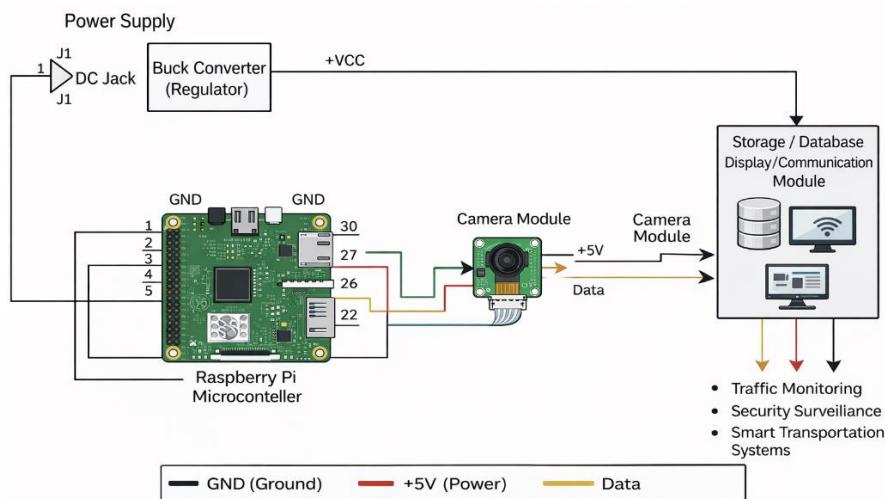
The methodology for Automatic Number Plate Detection (ANPD) system follows a systematic methodology to accurately detect and recognize vehicle license plates from images or live video streams. The overall process consists of image acquisition, preprocessing, number plate localization, character segmentation, and character recognition.

1.1 Implementation

1. Hardware Setup

- Raspberry Pi used as the main processing unit for image acquisition and processing.
- USB or Raspberry Pi Camera Module connected for capturing vehicle images or live video.
- Power supply (5V, 3A) provided to ensure stable operation of the Raspberry Pi.
- Optional monitor/HDMI display used for real-time visualization of detected number plates.
- Storage medium (SD card) used for saving images and recognized license plate data.

2. Image Acquisition


- Camera module captures images or continuous video frames of vehicles.
- Frames are extracted at regular intervals for processing.
- Acquired images are resized to reduce computational load and improve processing speed.

1.2 Program Flow

- Camera captures vehicle image or video frame.
- Captured frame is converted from RGB to grayscale.
- Noise reduction and image enhancement techniques are applied.
- Edge detection and contour analysis are performed to locate the number plate region.
- The detected plate area is cropped from the image.
- OCR is applied to recognize alphanumeric characters on the plate.
- Recognized number plate text is displayed and stored for further use.

1.3 Functions Used

- cv2.VideoCapture() – captures images or video frames from the camera.
- cv2.cvtColor() – converts RGB images to grayscale.
- cv2.GaussianBlur() – reduces noise in the image.
- cv2.Canny() – performs edge detection for plate localization.
- cv2.findContours() – detects contours to identify number plate region.
- cv2.boundingRect() – extracts the license plate area.

Fig : Block Diagram

2. Algorithm and Protocols

The Automatic Number Plate Detection (ANPD) system operates through a structured image-processing algorithm supported by standard communication and data-handling protocols to ensure accurate and reliable vehicle identification.

1. System Initialization

- Raspberry Pi is powered on and initializes the camera module and peripheral devices.
- Required software libraries such as OpenCV and OCR engine (Tesseract) are loaded. User Input

2. Image Acquisition

- Camera captures real-time images or video frames of vehicles.
- Frames are acquired at predefined intervals for processing.
- Image data is transferred internally using the Camera Serial Interface (CSI) or USB protocol. Display Update

3. Image Preprocessing

- Captured frames are converted from RGB to grayscale to reduce computational complexity.
- Contrast enhancement and adaptive thresholding improve number plate visibility.

4. Loop Continuation

- The system continuously monitors for new vehicles.

Advantages

- Enables automatic vehicle identification without human intervention.
- Provides real-time monitoring and recognition of vehicle number plates.
- Uses low-cost hardware such as Raspberry Pi and camera modules.
- Improves accuracy and efficiency in traffic management systems.
- Enhances security in parking areas, toll booths, and restricted zones.
- Supports data logging for analysis and law enforcement purposes.
- Easily scalable and adaptable for smart city applications.
- Reduces manual errors associated with traditional monitoring methods.

Limitations

- Recognition accuracy decreases under poor lighting conditions such as night-time or heavy shadows.
- Performance may be affected by motion blur caused by high-speed vehicles.
- Variations in license plate formats, fonts, sizes, and colors reduce detection consistency.
- OCR accuracy is limited when plates are damaged, dirty, or partially occluded.
- System performance depends on camera quality and proper alignment.

- Real-time processing speed is constrained by the computational capability of the Raspberry Pi.
- Environmental factors such as rain, fog, and glare can affect image clarity.
- Limited support for multi-line or regional language license plates in the current OCR model.
- High accuracy requires frequent tuning of image preprocessing parameters.

Result

The Automatic Number Plate Detection (ANPD) system was successfully designed and implemented using a Raspberry Pi and camera module, demonstrating reliable real-time vehicle identification. During testing, the system effectively captured vehicle images and accurately localized license plate regions using OpenCV-based image processing techniques. The OCR module successfully recognized alphanumeric characters from clear and moderately complex plates, with detection results generated within a few seconds per frame. The system performed consistently under controlled lighting conditions and moderate vehicle speeds, with recognized license plate data displayed and stored for further analysis. The integration of preprocessing techniques such as noise reduction and edge detection significantly improved recognition accuracy. Data logging enabled vehicle records to be maintained with timestamps, supporting applications in traffic monitoring and security surveillance. Overall, the results validate the proposed ANPD system as a cost-effective, efficient, and scalable solution suitable for intelligent transportation and smart city applications.

Conclusion and Future Scope

Conclusion

The Automatic Number Plate Detection (ANPD) system successfully demonstrates the application of image processing and computer vision techniques for automated vehicle identification. By integrating a Raspberry Pi, camera module, OpenCV, and Optical Character Recognition (OCR), the system provides an efficient and cost-effective solution for real-time license plate detection and recognition. Experimental results confirmed accurate plate localization and reliable character recognition under controlled conditions, with minimal human intervention. The system effectively reduces manual monitoring efforts and enhances efficiency in traffic management, parking systems, and security surveillance. Its low hardware cost, ease of deployment, and scalability make it suitable for intelligent transportation systems and smart city applications. Overall, the project validates ANPD as a practical and reliable approach for automated vehicle monitoring and data collection.

Future Scope

- Integration of deep learning-based models (YOLO, CNNs) to improve detection accuracy under complex conditions.
- Support for multi-line and regional language license plates to enhance recognition capability.
- Development of a cloud-based database for centralized storage and large-scale vehicle monitoring.
- Implementation of real-time alert systems for stolen or unauthorized vehicles.
- Integration with IoT platforms for smart traffic and parking management.
- Enhancement of night-time performance using infrared (IR) cameras and illumination.
- Deployment of mobile and web dashboards for real-time monitoring and analytics.
- Optimization through hardware acceleration and model compression for faster processing..

REFERENCE

- [1] R. Patel, A. Shah, and K. Mehta, “Automatic Number Plate Recognition System Using Image Processing,” *International Journal of Computer Applications*, vol. 69, no. 9, pp. 21–26, 2013
- [2] P. Viola and M. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2001.
- [3] R. Smith, “An Overview of the Tesseract OCR Engine,” *Proceedings of the International Conference on Document Analysis and Recognition (ICDAR)*, pp. 629–633, 2007.
- [4] G. Bradski, “The OpenCV Library,” *Dr. Dobb’s Journal of Software Tools*, 2000.