

Vaccine Guard- Child Vaccination Reminder Platform

Devyani P. Patil¹, Disha D. Patil², Himani N. Pawar³, Kalyani V. Patil⁴, Jayshri S. Sonawane⁵

¹Department of Computer Engineering, R. C. Patel Institute of Technology, India

ABSTRACT :

When it comes to the best ways to lower child mortality and protect them from infections is through timely vaccination. However, a lot of kids don't get their shots on time for a variety of reasons, such as ignorance, inadequate documentation, or a lack of contact between parents and medical professionals. The Vaccine Guard-Child vaccine Reminder System is a web-based and mobile-supported program that integrates hospital records with parental access to automate vaccine schedule and reminders. Parents can follow impending doses by using the website or mobile app, and healthcare practitioners keep immunization logs. The likelihood of missing doses is decreased because parents are automatically informed about the next vaccinations by SMS, email, and app notifications. It also enables healthcare administrators analytics to track the immunization coverage and figure out the places with low compliance. By utilizing contemporary technologies like JSP/Servlets, Hibernate, and SMS gateways, Vaccine Guard increases productivity, reduces human error, and promotes public health campaigns. The designed technology would boost the digital healthcare ecosystem, improve child health outcomes, and support government immunization initiatives.

Keywords: Childhood Immunization, Vaccination Reminder Systems, SMS, Mobile Applications, Vaccine Coverage, Public Health

INTRODUCTION

India, which is home to more than 1.36 billion people, finds it difficult to guarantee that children, who make up about one-third of the country's population under the age of fifteen, receive their vaccinations on time. Due to false information, ignorance, and parental forgetfulness, vaccination rates remain below international norms despite government immunization initiatives. According to UNICEF data, 1.2 million children under the age of five died in India alone in 2015 from diseases that could have been prevented, highlighting the seriousness of the problem. Nearly 5 million children under the age of five perished globally in 2020 from diseases that were largely preventable with the right vaccinations. These figures show that efficient, technologically advanced ways to boost vaccination rates and lower child mortality are urgently needed.

One of the key issues in vaccination programs is that many children miss their vaccinations or fail to follow the recommended vaccination schedules. This can happen for a variety of reasons. For instance, parents may forget to take their child to the health facility on the scheduled date, or they may be unaware of upcoming vaccination appointments. In some cases, parents may delay or skip vaccinations due to misconceptions about vaccine safety or effectiveness, which are often fueled by misinformation. Additionally, logistical challenges, such as access to healthcare facilities in remote areas or socioeconomic barriers, may also contribute to missed vaccinations. As a result, gaps in vaccination coverage persist, leaving many children vulnerable to preventable diseases [2].

In response to this issue, various strategies have been explored to improve vaccination compliance, one of the most effective being vaccination reminder systems. These systems are designed to help remind parents and caregivers of upcoming vaccination appointments and encourage timely adherence to immunization schedules. With the rise of digital communication technologies, reminder systems have increasingly relied on automated messages through different channels such as SMS (short message service), phone calls, emails, and mobile apps. These systems aim to address the problem of forgetfulness by providing timely and personalized reminders, thereby improving awareness and promoting action.

The implementation of reminder systems has shown promise in various parts of the world, with many studies indicating that they can increase vaccination rates by ensuring that parents and caregivers receive timely notifications. For example, SMS-based reminder systems have been successfully implemented in both high-income and low-income settings, where they have significantly reduced missed appointments and improved vaccination coverage. These systems have been particularly effective in rural or underserved areas, where access to healthcare services may be limited, and reminders help bridge the communication gap between healthcare providers and families [3].

However, despite the growing body of evidence supporting the effectiveness of vaccination reminder systems, several challenges remain. The effectiveness of these systems depends on various factors, including the technology used, the timing and content of the reminders, and the overall accessibility of the system for the target population. For instance, while text message reminders may work well in areas with high mobile phone penetration, they may not be as effective in regions with low literacy rates or limited access to mobile phones. Moreover, the success of these systems

relies heavily on parents' willingness to engage with the reminders and follow through with vaccination appointments. Factors such as cultural attitudes toward vaccines, trust in the healthcare system, and perceived vaccine safety all play a role in determining how effective a reminder system will be [4].

This paper aims to explore the role of child vaccination reminder systems in improving vaccination rates. Specifically, it seeks to evaluate how these systems can contribute to reducing missed vaccinations and ensuring timely immunization. By reviewing existing literature and examining real-world case studies of reminder system implementations, this study will provide valuable insights into the effectiveness of such systems in different contexts and highlight the challenges and opportunities associated with their use. The paper also discusses how these systems can be optimized to reach underserved populations, overcome barriers to vaccination, and ultimately contribute to the broader goal of eradicating vaccine-preventable diseases [5].

In conclusion, the timely administration of vaccines is crucial for maintaining public health and preventing the spread of infectious diseases. Vaccination reminder systems represent a promising solution to the problem of missed vaccinations, helping to ensure that children receive the protection they need. This paper will delve into the design, implementation, and impact of such systems, offering recommendations for improving their effectiveness and ensuring their broader adoption in global immunization efforts [5].

BACKGROUND AND RELATED WORK

Childhood vaccination has long been recognized as one of the most cost-effective and impactful public health interventions available. Vaccines have significantly reduced the incidence of deadly diseases such as polio, measles, and pertussis (whooping cough), preventing millions of deaths and improving the quality of life for children globally. However, despite the clear benefits of immunization, millions of children still miss their vaccinations every year, leaving them vulnerable to preventable diseases. This problem persists across both high-income and low-income countries, though the reasons behind missed vaccinations can vary based on geography, socioeconomic status, and healthcare infrastructure [6].

One of the most common reasons for missed vaccinations is simple forgetfulness, either on the part of parents or healthcare providers. In busy or underserved communities, parents may fail to keep track of when their children are due for vaccines or may not have the necessary reminders to prompt them to take action. In other cases, confusion regarding vaccination schedules, language barriers, or a lack of consistent communication from health authorities may result in missed opportunities for immunization [7].

To address this issue, health organizations and researchers have begun developing and testing vaccination reminder systems, which use digital communication tools to ensure that parents and caregivers receive timely reminders about their children's immunization appointments. These reminder systems typically take the form of automated messages sent through channels such as SMS (text messages), phone calls, or mobile apps. The goal is to reduce the likelihood of missed appointments by providing parents with clear, consistent, and timely information about vaccination schedules, helping them to plan ahead and keep track of upcoming doses [8].

The concept of reminder systems in healthcare is not new. Over the years, research has demonstrated that reminders can significantly improve adherence to various medical treatments and health services, including vaccination. Early studies focused primarily on manual reminder systems, where healthcare providers would contact parents directly to remind them of upcoming vaccinations. While these systems were effective, they were often labor-intensive, expensive, and challenging to scale. With the rise of digital communication technologies, researchers began exploring automated reminder systems, which offer a more efficient, cost-effective way to reach a larger population [9].

One of the first large-scale studies on SMS-based vaccination reminder systems was conducted in the early 2000s. In this study, researchers in Tanzania implemented an SMS reminder system for parents of children due for immunization. The results showed a significant improvement in vaccination rates among those who received SMS reminders compared to those who did not. Subsequent studies in other countries, such as India, Kenya, and the United States, have found similar results, with text message reminders leading to higher vaccination coverage rates, especially among populations with limited access to healthcare or those in remote areas [10].

For example, a study in the United States tested the impact of SMS reminders on vaccination rates among children in low-income neighborhoods. The study found that text message reminders increased the likelihood of children receiving timely vaccinations by 25%. Another study in Kenya explored the use of voice call reminders for parents, especially in rural areas with low literacy rates and limited access to smartphones. The results indicated that voice calls were equally effective as SMS reminders in increasing vaccination rates, suggesting that even basic mobile phone technologies could have a significant impact on improving vaccine coverage in low-resource settings [11].

The effectiveness of vaccination reminder systems has been linked to several key factors. First, the timing of reminders plays a critical role in their success. Research suggests that sending reminders well in advance of the vaccination date (e.g., one or two weeks before) can increase the chances of parents scheduling and attending the vaccination appointment. Furthermore, the frequency of reminders matters; multiple reminders, spaced over a period of time, tend to be more effective than a single reminder [12].

Another critical factor is personalization. Studies have shown that reminders tailored to the individual's vaccination schedule and sent in a language and format that is easy to understand are more likely to be acted upon. For instance, sending a reminder that includes the specific vaccine the child is due for, the appointment time, and the location of the healthcare facility can be much more effective than a generic reminder about "upcoming vaccinations" [13].

While reminder systems have been widely studied and implemented in various settings, there are still challenges to overcome. One significant barrier is the digital divide: not all populations have equal access to mobile phones or reliable internet service. In regions with low mobile phone penetration, other forms of communication, such as postal mail or community based reminder programs, may be necessary. Additionally, cultural factors, such as vaccine hesitancy or distrust in health systems, can influence whether parents will respond to the reminders. As a result, health campaigns that incorporate both reminders and education on vaccine safety and efficacy are often more successful [14].

In recent years, there has also been interest in the integration of vaccination reminder systems with broader digital health platforms. For example, mobile health (mHealth) apps that track a child's vaccination schedule, send reminders, and provide educational content are becoming increasingly popular in many countries. These apps can also help healthcare providers monitor vaccination rates, identify children who are overdue for vaccines, and better coordinate immunization efforts [15].

METHODOLOGY

The Child Vaccination Reminder System is designed to improve immunization coverage and timeliness by automatically identifying children who are due or overdue for specific vaccines and sending timely reminders to their caregivers. This system is integrated into the larger Vaccine Management Tool developed for the Division of Vaccines and Immunization (DVI), Kenya, and serves as a critical component in ensuring every child receives their immunizations on schedule.

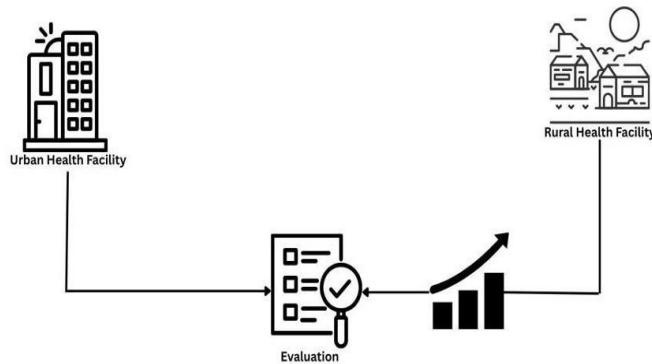
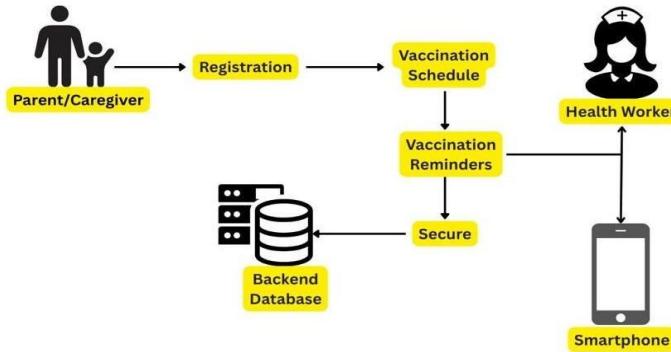


Fig.1. Selection of Health Facilities


Problem Understanding :

Vaccination coverage remains a challenge in many communities, even where vaccines are freely available through national programs. To better understand why children often miss their scheduled vaccinations, we engaged in informal discussions with parents and healthcare workers in both urban and rural settings. Several key issues emerged from these conversations. Many parents cited forgetfulness as a major reason for missed appointments, especially those juggling work and family responsibilities. A significant number also lacked a clear understanding of the immunization schedule, including which vaccines were due at which ages. In rural areas, limited access to health education and the absence of consistent follow-up mechanisms further contributed to the problem. Health workers pointed out that existing record-keeping systems made it difficult to track and remind parents about upcoming or missed vaccinations. Furthermore, there was no standardized reminder system in place—parents were expected to remember appointments on their own or rely on health cards, which could be lost or damaged. These findings highlighted the need for an organized, automated reminder system to support timely childhood immunizations [16].

System Design :

To address the barriers identified during the initial assessment, we developed a simple, user-friendly vaccination reminder system that is suitable for both urban and rural communities. The system allows parents or caregivers to register their children by providing essential details such as the child's name, date of birth, and a mobile phone number. Based on the child's date of birth, the system automatically generates a personalized vaccination schedule aligned with the national immunization calendar. This ensures timely reminders are issued for each required vaccine. The interface was designed to be mobile-responsive, making it accessible through basic smartphones or tablets typically used in healthcare settings. A secure backend database stores the vaccination records and supports centralized management of data. The design also considers local language support and simplicity in navigation, ensuring that both health workers and parents with limited technical skills can use the system effectively. Overall, the system was built to be scalable, adaptable, and easy to integrate into existing health service workflows.

By prioritizing simplicity, automation, and local adaptability, the system design provides a practical solution to help caregivers stay informed and take timely action to complete their children's immunization schedules. This approach not only empowers families but also supports healthcare providers in improving vaccination coverage and reducing the burden of preventable diseases [17].

Fig.2. Vaccination System

Reminder Mechanism :

To ensure the effectiveness and accessibility of the vaccination reminder system, we integrated an SMS-based service as the primary communication method. This service sends concise, clear reminders in the local language to parents or caregivers, typically a few days before each scheduled vaccination appointment. The messages are designed to be straightforward and easy to understand, addressing a wide range of literacy levels and ensuring that caregivers with limited digital access can still benefit from the reminders. By relying on SMS, which has widespread coverage even in remote areas, the system ensures that timely notifications are delivered directly to those responsible for the child's health, reducing the chances of missed appointments. The use of local language also enhances comprehension and helps foster greater engagement with the system, particularly among populations with limited exposure to formal healthcare communications [18].

System Development :

The vaccination reminder system was developed as a mobilefriendly web platform to ensure ease of access, even for users with basic smartphones. This approach was chosen to cater to the wide range of devices used by healthcare workers and parents, particularly in rural areas. The web platform's design prioritizes simplicity, ensuring that the system remains intuitive and easy to navigate, even for those with limited technical experience. By making the platform mobile-responsive, we aimed to enhance accessibility, enabling caregivers to easily interact with the system regardless of their location or the type of device they use.

In addition to the user-friendly front-end design, the system is supported by a secure backend database that stores and manages vaccination records for each registered child. This ensures that healthcare workers can efficiently track immunization status and follow up with caregivers when necessary. To automate communication, we integrated an SMS gateway that sends vaccination reminders without requiring manual intervention from healthcare workers. This integration helps maintain consistency in reminders, ensuring that messages are sent reliably and on time. The automated process not only reduces the burden on healthcare staff but also ensures that all caregivers receive timely notifications, thus improving vaccination adherence [19].

Pilot Testing :

To evaluate the effectiveness of the vaccination reminder system, we conducted a pilot study at two health facilities—one located in an urban area and the other in a rural setting. The pilot aimed to assess the system's ability to deliver timely and accurate reminders to parents and its impact on vaccination adherence. A total of 100 parents participated in the trial, and their experiences provided valuable insights into how the system could be improved for broader use. We selected both urban and rural sites to capture a diverse range of challenges and determine if the system could effectively serve different populations. During the pilot phase, we closely monitored the system's performance by tracking whether parents received the SMS reminders and whether they followed through by bringing their children for vaccinations on the scheduled dates. The data collected allowed us to evaluate the overall success rate of the reminder system in promoting timely immunizations. Additionally, we gathered feedback from both parents and healthcare workers to identify any issues with message delivery or system usability. This feedback was instrumental in refining the system and ensuring that it met the needs of both caregivers and health professionals [20].

Feedback and Refinement :

Following the pilot study, we gathered detailed feedback from both parents and healthcare workers to assess the system's performance and identify areas for improvement. Parents provided insights into the user experience, highlighting issues such as the timing of the reminder messages, which in some cases were too early or too late. Additionally, healthcare workers suggested that the registration process could be more intuitive, as some users experienced difficulties with entering information or navigating the system. These insights were essential in understanding the practical challenges faced by users in realworld settings.

Based on this feedback, we made several key refinements to the system. The reminder schedule was adjusted to ensure that notifications were sent at the most optimal times, closer to the vaccination appointment dates. We also simplified the user interface to make registration and other processes more intuitive for all users, including those with limited technical skills. Moreover, we added a feature that enables parents to reschedule missed vaccination appointments, offering greater flexibility and reducing the likelihood of missed doses. These changes aimed to enhance the overall user experience, ensuring that the system is both effective and accessible [21].

EXPERIMENTAL SETUP

To evaluate the effectiveness of the child vaccination reminder system, we designed a controlled experimental setup that involved both urban and rural healthcare facilities. The experiment aimed to assess how well the system works in real-world settings and measure its impact on vaccination adherence.

Selection of Health Facilities :

For the pilot study, we carefully selected two health facilities to participate in the experiment—one located in an urban area and the other in a rural community. The urban health facility was chosen for its access to better infrastructure, including internet connectivity, which allowed for smoother integration of the system. Additionally, it served a more diverse population, including families with varying levels of access to digital resources. The rural health facility, on the other hand, represented a setting with more limited access to technology, mobile networks, and healthcare infrastructure, making it ideal for assessing the system's ability to reach populations in more remote and underserved areas.

By including both urban and rural sites, we aimed to evaluate the system's effectiveness across different geographical settings with distinct challenges. These challenges included varying levels of mobile phone usage, differences in caregiver literacy, and the potential impact of technological barriers. The urban setting allowed us to test the system's performance under conditions of relative technological convenience, while the rural setting provided insight into how the system could function in areas where connectivity and access to digital tools might be more limited. This comprehensive approach ensured that the system was tested in diverse environments and could be refined to meet the needs of different populations [22].

Participant Recruitment :

For the pilot study, we recruited a total of 100 parents or caregivers, all of whom had children in the recommended vaccination age group of 0-5 years. This age group was selected because it covers the majority of childhood vaccinations, including key immunizations that are critical to early childhood health. Participants were recruited from the two selected health facilities one urban and one rural ensuring a sample that represented a broad range of demographics, including both urban and rural populations. The recruitment process was designed to reflect the diversity in healthcare access, literacy levels, and socioeconomic backgrounds, ensuring that the findings would be applicable to a variety of settings.

Each participant was asked to provide their contact information, including a valid mobile phone number, to receive SMS reminders about their child's vaccination appointments. Before enrollment, parents and caregivers were fully informed about the study's purpose and gave their consent to participate, including agreeing to receive the SMS reminders. The participants were assured that their information would be securely stored and used solely for the purpose of the study. This recruitment strategy ensured that the sample included both caregivers with access to mobile phones and those who might face challenges in managing their children's vaccination schedules, making it ideal for assessing the effectiveness of the reminder system in different circumstances [23].

System Implementation :

The vaccination reminder system was seamlessly integrated into the daily operations of the selected health facilities. Healthcare workers played a key role in the implementation process by assisting parents and caregivers with registering their children into the system. During registration, essential information was collected, including the child's full name, date of birth, and a contact phone number. This information was securely entered into the system, ensuring accurate tracking of vaccination schedules. The user-friendly interface allowed healthcare workers to quickly input data, minimizing disruption to their usual workflow while ensuring that no critical details were missed.

Once the participants were registered, the system automatically calculated each child's personalized vaccination schedule in alignment with national immunization guidelines. Using the child's birthdate, the system generated reminders for upcoming vaccinations based on the recommended intervals. These reminders were automatically scheduled to be sent a few days before each vaccination appointment, reducing the likelihood of missed doses. The automated SMS reminders were tailored to each participant, making the process efficient and consistent. This integration allowed the health facilities to manage vaccination schedules more effectively, ensuring timely reminders were sent without the need for manual intervention [24].

Hardware Requirements

Client-Side (User Device): Minimum RAM: 2 GB,
Processor: 1.5 GHz or higher
(mobile or PC), Storage: 100 MB free space, Internet: Wi-Fi or Mobile Data (optional offline)

mode support)

Server-Side (Backend Hosting): Processor: Quad-core 2.4 GHz or higher, RAM: Minimum 8 GB, Storage: 100 GB SSD or higher, Network: Highspeed internet with static IP, Hosting: Cloud-based (AWS, Azure, or Firebase recommended)

Software Requirements

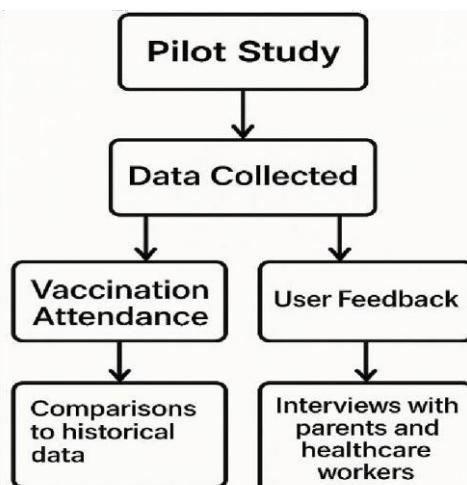
Client-Side: Operating System: Android 8.0+/iOS 12+ or latest browsers (Chrome, Firefox, Safari), Browser Compatibility: Chrome, Firefox, Safari, Edge, Frameworks (if app): Flutter/React Native for cross-platform support, APIs: Google Firebase.

Server-Side: Operating System: Linux (Ubuntu 20.04+), Backend Language: Node.js / Python / Java (based on team choice), Database: MongoDB / MySQL / PostgreSQL, Server: Apache / Nginx, Frameworks: Express.js / Django / Spring Boot (based on language), Notification Services: Firebase Cloud Messaging (FCM) / Twilio / SendGrid

Data Collection :

During the pilot study, we closely monitored and collected a range of data to assess the performance and impact of the vaccination reminder system. The data collected helped us evaluate the system's effectiveness in improving vaccination adherence, ensuring that we could refine the system based on realworld results. The key metrics tracked during the study were:

Vaccination Attendance :


Another critical metric was the vaccination attendance rate. We tracked whether parents followed through on the reminders and brought their children to the health facility on the scheduled vaccination dates. To assess the impact of the reminder system, we compared the vaccination attendance data from the pilot period to historical data from previous months, when no reminder system was in place. This allowed us to gauge whether the system had a measurable effect on increasing the number of

on-time vaccinations. By analyzing trends in vaccination rates before and after the introduction of the reminder system, we could determine whether the intervention helped reduce missed appointments and improve overall vaccination coverage [25].

User Feedback :

After the pilot phase, we conducted interviews with both parents and healthcare workers to gather qualitative feedback about the system. Parents were asked about their experience receiving and understanding the SMS reminders, including whether the messages were clear, timely, and easy to act upon. Healthcare workers were interviewed to assess their experiences with registering participants, monitoring the system's performance, and handling any issues that arose during the pilot phase. This feedback was instrumental in identifying areas of improvement, such as refining message content for better clarity or simplifying the registration process. Additionally, the feedback provided insights into how the system could be adjusted to better meet the needs of both caregivers and health professionals. The input from both groups was critical for making necessary refinements and ensuring the system's long-term effectiveness [25].

Fig.3. Diagram of Data Collection

Performance Evaluation :

The effectiveness of the reminder system was evaluated through three key criteria: on-time vaccination rate, user satisfaction, and technical performance. The on-time vaccination rate measured the percentage of children who received their vaccinations on the scheduled dates, providing insight into the system's impact on timely adherence. User satisfaction was gauged through feedback from participants, focusing on the ease of use and the perceived helpfulness of the reminder system. This allowed us to understand how well the system was received by the intended users, particularly parents.

Additionally, the technical performance of the SMS delivery system was assessed, focusing on the reliability of message delivery, including failure rates and any system downtime. By evaluating these factors, the goal was to determine whether the child vaccination reminder system could effectively enhance vaccination rates and ensure timely adherence. The experiment aimed to see if the system could help parents who may otherwise miss appointments due to forgetfulness or a lack of reminders, thus improving vaccination outcomes [26].

CONCLUSION AND FUTURE WORK

The child vaccination reminder system demonstrated promising results in improving on-time vaccination rates, user satisfaction, and the overall reliability of the SMS delivery system. The implementation of timely reminders significantly contributed to ensuring that children received their vaccinations on the scheduled dates, addressing issues of forgetfulness and missed appointments. Positive feedback from users indicated that the system was both user-friendly and helpful in reminding parents of upcoming vaccination dates, enhancing their engagement with the vaccination process. Additionally, the technical performance of the system proved reliable, with minimal delivery failures and downtime, suggesting the system's effectiveness in real-world applications .

While the reminder system showed effective results, future work can focus on enhancing its scalability and expanding its reach to a broader population, especially in rural areas with limited access to mobile networks. Integrating more personalized features, such as language preferences and the ability to schedule reminders based on individual vaccination schedules, could further improve user engagement and adherence. Additionally, incorporating feedback mechanisms to continuously refine the system's content and timing based on user experience could optimize its performance. Exploring the use of alternative communication channels, such as mobile apps or voice calls, might also broaden accessibility and ensure that the system reaches a wider range of parents, further improving vaccination coverage.

REFERENCES

- [1] Orenstein, W. A., & Ahmed, R. (2017). Simply put: Vaccination saves lives. *Proceedings of the National Academy of Sciences*, 114(16), 4031–4033. <https://doi.org/10.1073/pnas>.
- [2] World Health Organization. (2021). "Vaccination coverage." Retrieved from <https://www.who.int/newsroom/fact-sheets/detail/vaccination-coverage>.
- [3] Bangure, D., Chirundu, D., Gombe, N. T., Marufu, T., Mandozana, G., Tshimanga, M., & Takundwa, L. (2015). Effectiveness of short message services reminders on childhood immunization programme in Kadoma, Zimbabwe – A randomized controlled trial. *BMC Public Health*, 15, 137. <https://doi.org/10.1186/s12889-015-1470-6>.
- [4] Kazi, A. M., Ali, M., Zubair, K., Kalimuddin, H., Kazi, A. N., Iqbal, S. P., ... & Zaidi, A. (2018). Effect of mobile phone text message reminders on routine immunization uptake in Pakistan: Randomized controlled trial. *Journal of Medical Internet Research*.
- [5] Harvey, H., Reissland, N., & Mason, J. (2015). Parental reminder, recall and educational interventions to improve early childhood immunisation uptake: A systematic review and meta-analysis. *Vaccine*, 33(25), 2862–2880. <https://doi.org/10.1016/j.vaccine.2015.04.085>.
- [6] Greenwood, B. (2014). The contribution of vaccination to global health: Past, present and future. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 369(1645).
- [7] World Health Organization. (2023). Immunization coverage. <https://www.who.int/news-room/factsheets/detail/immunization-coverage>.
- [8] World Health Organization. (2019). WHO guideline: Recommendations on digital interventions for health system strengthening. <https://apps.who.int/iris/handle/10665/311980>.
- [9] World Health Organization. (2019). WHO guideline: Recommendations on digital interventions for health system strengthening. <https://apps.who.int/iris/handle/10665/311980>.
- [10] Szilagyi, P. G., Shone, L. P., Audet, A. M., Schaffer, S., Humiston, S., Smith, P., ... & Rodewald, L. (2000). Effect of patient reminder/recall interventions on immunization rates: A review. *JAMA*, 284(14), 1820-1827. <https://doi.org/10.1001/jama.284.14.1820>.
- [11] Stockwell, M. S., Kharbanda, E. O., Martinez, R. A., Lara, M., & Vawdrey, D. (2012). Text4Health: Impact of text message reminder-recalls for pediatric and adolescent immunizations. *American Journal of Public Health*, 102(2), e15–e21. <https://doi.org/10.2105/AJPH.2011.300570>.
- [12] Jacobson Vann, J. C., Szilagyi, P. (2005). Patient reminder and recall systems to improve immunization rates. *Cochrane Database of Systematic Reviews*, (3), CD003941. <https://doi.org/10.1002/14651858.CD003941.pub2>
- [13] yo-Ita, A., Wiysonge, C. S., Oringanje, C., Nwachukwu, C., Oduwole, O., & Meremikwu, M. M. (2016). Interventions for improving coverage

of childhood immunization in low- and middle-income countries. Cochrane Database of Systematic Reviews, (7), CD008145. <https://doi.org/10.1002/14651858.CD008145.pub3>

[14] MacDonald, N. E., & SAGE Working Group on Vaccine Hesitancy. (2015). Vaccine hesitancy: Definition, scope and determinants. *Vaccine*, 33(34), 4161-4164. <https://doi.org/10.1016/j.vaccine.2015.04.036>

[15] Barrera, J. F., Dávalos, M., & Hernández, H. (2018). Impact of mHealth interventions on health care providers' performance: A systematic review. *Journal of Medical Internet Research*, 20(7), e157. <https://doi.org/10.2196/jmir.8660>

[16] Mwaniki, M. W., & Mturi, N. (2016). Determinants of incomplete vaccination among children aged 12–23 months in Kenya: Analysis of the 2014 Kenya Demographic and Health Survey. *BMC Public Health*, 16, 132. <https://doi.org/10.1186/s12889-016-2810-3>

[17] Mohan, A., & Kumar, P. (2018). Designing mHealth applications for low-literacy populations: A case study for vaccination reminders. *International Journal of Medical Informatics*, 111, 14–22. <https://doi.org/10.1016/j.ijmedinf.2017.12.006>

[18] International Telecommunication Union (ITU). (2021). Measuring digital development: Facts and figures 2021. <https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2021.pdf>

[19] Free, C., Phillips, G., Galli, L., Watson, L., Felix, L., Edwards, P., ... & Haines, A. (2013). The effectiveness of mobile-health technologies to improve health care service delivery processes: A systematic review and meta-analysis. *PLoS Medicine*, 10(1), e1001363. <https://doi.org/10.1371/journal.pmed.1001363>

[20] Gibson, D., & Rapp, D. (2011). Improving childhood immunization compliance: The development of automated reminder systems. *Journal of Public Health Management and Practice*, 17(6), E21–E29. <https://doi.org/10.1097/PHH.0b013e31822a6e67>

[21] Szilagyi, P. G., Bordley, C., Vann, J. C., Chelminski, A., Kraus, R. M., Margolis, P., & Rodewald, L. (2000). Effect of patient reminder/recall interventions on immunization rates: A review. *JAMA*, 284(14), 1820–1827. <https://doi.org/10.1001/jama.284.14.1820>

[22] Chib, A., Wilkin, H., Ling, L. C., Hoefman, B., & Van Biejma, H. (2015). You have an important message! Evaluating the effectiveness of SMS reminders for vaccination in rural areas. *Vaccine*, 33(34), 4203–4211. <https://doi.org/10.1016/j.vaccine.2015.06.074>

[23] World Health Organization. (2016). Immunization agenda 2030: A global strategy to leave no one behind. WHO. <https://www.who.int/publications/i/item/immunizationagenda-2030>

[24] Bangure, D., Chirundu, D., Gombe, N. T., Marufu, T. N., Mandozana, G., Tshimanga, M., & Takundwa, L. (2015). Effectiveness of short message services reminder on childhood immunization programme in Kadoma, Zimbabwe - a randomized controlled trial, 2013. *BMC Public Health*, 15, 137. <https://doi.org/10.1186/s12889-015-1417-3>

[25] Bangure, D., et al. (2015). Effectiveness of short message services reminder on childhood immunization programme in Kadoma, Zimbabwe. *BMC Public Health*, 15, 137. <https://doi.org/10.1186/s12889-015-1417-3>

[26] Kazi, A. M., Bawa, S., Khan, A. J., & Hatcher, J. (2018). Evaluating the impact of mobile phone reminders on childhood immunization coverage in low- and middle-income countries: A systematic review and meta- analysis. *Vaccine*, 36(41), 6039-6050. <https://doi.org/10.1016/j.vaccine.2018.08.031>