

Face Recognition Attendance System

Basavaraj^a, Arun^b, Vishnu Prasad^c, Darshan K^d, Mr. Prem Kumar^e

^{a,b,c,d} Department of Computer Science and Engineering, AMC Engineering Collage , Bengaluru, India

^e Guide, Department of Computer Science and Engineering, AMC Engineering Collage, Bengaluru, India

ABSTRACT:

The proposed work develops and evaluates the attendance management system using a Haar Cascade Algorithm for face recognition. The system caters to the need of an organized and effective recording of attendance in educational institutions or workplaces.

Facial recognition is the core technology behind this approach, whereby automation of identification and verification of students or employees means elimination of the possibility of manual errors common with traditional attendance methods, such as paper sign-in sheets or calling of names. This not only saves instructors' or administrators' valuable time but also improves data accuracy by minimizing human error at the very stage of recording attendance. It proves capable of handling variations in facial expressions and lighting conditions, thus being more applicable to real-life scenarios. For example, it would easily recognize students or employees even when smiling, frowning, or with glasses on. Such robustness is essential in guaranteeing the reliability and acceptability of the system in daily application.

Keywords: Face recognition, Attendance Management, Haar Cascade Classifier, Automated System, Real-time tracking

Introduction

The Face Recognition Attendance System is a computerized system created to ensure accurate and efficient recording of attendance through face recognition technology. The conventional way of recording attendance, such as registers and ID cards, is not efficient and is prone to issues such as manual attendance and data tampering. The system incorporates a camera to take pictures of people and their images are matched to those stored in a database to mark their attendance automatically. The system increases productivity and is a modern way of doing things in schools and organizations. The system is contactless and works at a faster pace.

With the advancement of Artificial Intelligence and Machine Learning algorithms, face recognition has been made more accurate. The Face Recognition Attendance system uses various algorithms of image processing to detect and track faces in real time. As soon as the face is detected and recognized, the record of attendance is safely stored in a digital record system with the details of date and time. This increases transparency in the system as well as reduces documentation. It is also easier to generate reports from the system. It further increases security as only authenticated users will be allowed to enter. This system is highly effective in terms of providing the best attendance system.

The Face Recognition Attendance System also supports scalability and further enhancements. The system can be integrated with databases, cloud storage, and web or mobile applications for remote access and monitoring. This face recognition attendance system allows the least possibility of fake or duplicate entries, as the face of an individual would be distinct and unique. It is very helpful in class rooms, offices, and in secured environments of great importance. Without any physical contact, it keeps away a number of health hazards and prevents spreading infections. The time is saved for both the user and the administration. All in all, it's a smart move toward digitization and automation of attendance management systems.

Literature Survey

A face recognition-based attendance system using image processing was proposed by [1]. This eliminates proxy attendance and requires less human effort since it uses a camera to capture facial images and then matches them with existing datasets to register attendance automatically. Another such attendance system was proposed by Patil and Desai in [2] for a classroom setting using OpenCV and machine learning techniques with increased accuracy over other methods.

[3] proposed an automated attendance system based on Haar Cascade classifiers and Eigenfaces. The proposed system emphasized the need for real-time face detection and efficient database management. Similarly, Singh et al. [4] proposed a smart attendance system based on facial recognition and cloud storage. The system had major time-saving advantages for lecturers and school administrators.

Joshi and Kulkarni [5] also created an automatic face recognition attendance system based on deep learning using CNN, which performed well in

recognizing faces in varying lighting conditions. For real-time automatic attendance system implementation using Python and OpenCV, Rao et al. [6] developed an effective system, which performed well in an institutional environment.

More recently, a smart attendance system using IoT capabilities was proposed by Mehta et al. [7] in which face recognition technology was combined with web-based interfaces for monitoring attendance in real-time. The need for data security and privacy was stressed by Kavitha et al. [8] while developing biometric attendance systems with secure authentications and encrypted databases.

On the basis of the findings of the aforementioned existing works, the proposed Face Recognition Attendance System has been developed to offer a more accurate, secure, and efficient solution. Unlike the existing works, the proposed system not only performs face detection or recognition but also provides a real-time solution to face recognition, automated attendance, and data management in a single system. The proposed system has been designed using advanced machine learning techniques and efficient data management, resulting in a transparent, less manual, and more reliable attendance management system.

System Architecture and Methodology

The approach taken in the Face Recognition Attendance System is designed to ensure a precise, automated, and secure way of managing attendance through the use of computer vision algorithms. In light of the literature review and shortcomings in the current attendance management systems, the proposed system adopts a systematic approach to its development, involving requirement analysis, system design, algorithm selection, and testing. The approach seeks to eliminate an element of manual input, proxy attendance, and ensure data reliability for storage. The approach taken in each step of the development was deliberate in order to ensure efficiency, precision, and scalability. Requirement analysis was done by considering various approaches in the current systems for attendance management, involving manual and biometric systems in light of shortcomings such as the time taken, errors, and the delay in access to data.

A thorough examination of existing face recognition systems for attendance tracking and biometric systems has been undertaken to determine gaps in terms of accuracy in low-light environments, real-time processing capabilities, and data protection requirements. From this evaluation, system requirements were determined to include:

1. automatic face detection and recognition,
2. real-time attendance marking,
3. secure storage of attendance records, and

easy access to the report for administrators. These were the factors that shaped the design and implementation of the proposed system. The system makes use of a camera to capture images of persons' faces and then utilizes image processing and machine learning techniques to detect those whose faces are registered in the system.

The system it utilizes is a modular approach that enables it to separate roles. It contains the following:

- User Interface Layer: It enables the administrator's ability to register users as well as view attendance reports.
- Processing Layer: This layer focuses on face detection, extraction, and recognition by using computer vision techniques.
- Database Layer: It is used for facial data, user information, and attendance records.
- Security Layer: responsible for providing authorization access and safeguarding sensitive biometric information.

It makes the system more maintainable, scaleable, and performs better.

The whole procedure of attendance marking starts with image acquisition through a camera during a session. The system captures faces in real time and matches them with the stored facial database. When a match occurs, attendance is automatically marked along with the date and time. The whole database of attendance is maintained securely and can be accessed later for report generation. The system keeps a record of all attendance activities to ensure transparency and reliability. The proposed methodology thus provides a contactless and accurate system of attendance management.

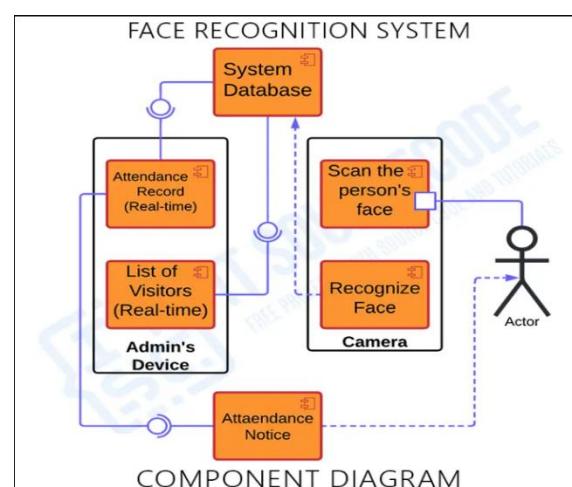


Figure 1: Architecture Diagram

Implementation Details

The Face Recognition Attendance System is created utilizing computer vision and machine learning to mark the attendance automatically. The system is developed in a modular way to increase the accuracy and scalability of the system.

1. Face Image Acquisition

A webcam is utilized to capture images of users' facial expressions in real-time. Various images are acquired from each individual under diverse situations to ensure accuracy in facial recognition. The acquired images are used to form a training data set.

2. Face Detection Method

Face Detection is done via the help of the Haar Cascade Classifier. The method is able to detect human facial features like eyes, nose, and mouth, making it fast and efficient for real-time applications.

3. Face Recognition Technique

In The Local Binary Pattern Histogram technique, also known as LBPH, is an algorithm applied during the face recognition process. LBPH works by breaking down images into histograms, which are then matched against sample images to obtain recognition. This algorithm works perfectly regardless of the lighting condition.

4. Training Models

All captured facial images undergo pre-processing as features of LBPH model training. The trained model is then retained and utilized in real-time facial recognition.

5. Attendance Marking

Once the face has been identified, the system automatically records the attendance based on the user ID, name, and time. The attendance information is in CSV or Excel form.

6. User Interface Implementation

A graphical user interface (GUI) is implemented using Tkinter, which helps the admin register new users, train the model, mark attendance, and generate reports.

7. Data Storage and Management

The data relating to presence records and users is safely recorded in digit form. It allows ease in reporting and analysis.

Results and Discussions

This topic will focus on the outcome of the implementation of the Face Recognition Attendance System. This system will be subjected to several users in order to determine its accuracy, response time, and reliability.

5.1 Result Discussion

The system has been able to detect and recognize faces in real time using a webcam. When a face has been recognized, the attendance of the person has been automatically marked along with the date and time. The problem of manual intervention has been eliminated, as well as the problem of proxy attendance. The user registration and model training modules of the project had been working properly.

The data for attendance was maintained correctly in CSV/Excel format and was easily accessible from the UI. The system was working well for various users and was also performing well even when it was run continuously.

5.2 Performance Analysis

• Accuracy:

The system had a high level of recognition accuracy under normal lighting conditions. Accuracy levelled off under low lighting or with extreme orientation angles.

• Response Time:

The face detection and recognition process was done in real time without delay. This makes the system applicable in a classroom or office setup.

• Reliability:

The system ran well without crashes every time the testing sessions were conducted.

• Scalability:

The system was able to accommodate more users effectively with only minor increases in the time taken for training with the increase in the size of the dataset.

• Efficiency:

The attendance information and facial photographs required less storage space and were handled effectively.

Future Work

- Developing Android and iOS mobile applications for easy and remote access to the system.
- Integration of a safe online payment gateway for speedy and efficient digital transactions.
- Add a volunteer management module to track and support volunteers in the delivery of donations.
- Accurate placement of orphanages and locations of donors in Google Maps for better navigation.
- Real-time notification for updated status of donation among donors, orphanages, and volunteers.
- Improved analytics and reporting features to enhance monitoring and decision-making.

Conclusion

The OrphanCare Network project has been able to provide a secure, transparent, and efficient online platform for managing orphanage donations. The system is able to incorporate orphanage registration validation, real-time tracking of donations, and donor-to-orphanage direct interactions. The system is able to handle problems associated with traditional platforms that manage orphanage donations. It has a scalable architecture.

The proposed system improves trust and accountability through the storage of comprehensive audit trails and status updates of all donations. The donation process is made much simpler in the proposed system with assurance that all donations will effectively reach the targeted orphans. In conclusion, the OrphanCare Network marks a substantial step towards the digitalization of social services.

The OrphanCare Network system is thus providing a technology-enabled and reliable platform to manage orphanage donations. The system will ensure that authenticated orphan facilities are well linked to the potential donors. This will ensure transparency and effective handling of the donations. The system has incorporated features such as user authentication, real-time status update, and audit logging.

REFERENCES

- [1] Harshit Kesharwani; Tamoshree Mallick; Ayushi Gupta; Gaurav Raj, "Automated Attendance System Using Computer Vision", in IEEE, September 2022.
- [2] Mohammed Abduljabbar Mohammed; Diyar Qader Zeebaree; Adnan Mohsin Abdulazeez; Dilovan Asaad Zebari, "Machine Learning Algorithm for Developing Classroom Attendance Management System Based on Haar Cascade Frontal Face", in IEEE, July 2021.
- [3] Shashank Joshi; Sandeep Shinde; Prerna Shinde; Neha Sagar; Sairam Rathod, "Facial Recognition Attendance System using Machine Learning and Deep Learning", in IJERT, vol. 12, no.04, pp.73-80, April 2023.
- [4] Shahad Salh Ali; Jamila Harbi Al' Ameri; Thekra Abbas, "Face Detection Using Haar Cascade Algorithm", in IEEE, June 2023.
- [5] Hitesh Akshat Kumar Rai; A. Akash; G.Kavyashree & Thaseen Taj, "Attendance System Based on Face Recognition Using Haar Cascade and LBPH Algorithm", in SPRINGER LINK, vol.947,pp 9-21, February 2023.
- [6] Michos; Gkoumas; Siakampeti; Fidas, "On the Extension of the Haar Cascade Algorithm for Face Recognition: Case Study and Results ", in ACM, vol.10,pp 53-56, November 2020
- [7] Ruth Ramya Kalangi; Suman Maloji; P. Syam Sundar; Sk Hasane Ahammad, "Deployment of Haar Cascade Algorithm to Detect Real-Time Faces", in IEEE, February 2022.
- [8] Suraj Raj & Saikat Basu, "Attendance Automation Using Computer Vision and Biometrics-Based Authentication-A Review", in Springer Link, vol. 58, no. 7, pp. 757-767, June 2021.