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ABSTRACT :

This thesis presents a simulation-driven, multi-response optimization of cold deep drawing for a stainless-steel cap using a hybrid Grey–Response Surface
Methodology (Grey–RSM) built on finite-element analysis in ANSYS Workbench. Four controllable factors with direct shop-floor relevance were studied in a
27-run, three-level design: friction (μ), punch nose radius (R​ ), punch displacement rate (v) and radial clearance (c). All parts (punch, die, holder, blank) were
modeled as solid bodies; the blank used Stainless Steel NL (elastic–plastic), tools used Structural Steel (rigid behavior). A uniform mesh and large-deflection
contact were adopted; the die was fixed, blank-holder pressure held constant, and the punch prescribed to the target draw height in a verified quasi-static regime.
For each run, end-of-stroke fields equivalent elastic strain, equivalent plastic strain, von Mises stress, and total deformation were post-processed into three
compact, smaller-the-better indices: PSI, EEI and EPR as an elastic–plastic partition indicator. Grey normalization produced a single Grey grade per run; a
quadratic RSM (uncoded variables) modeled this grade for continuous optimization and ANOVA-based diagnostics.
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Introduction

Deep drawing transforms a flat circular blank into a seamless cup by pushing it through a die opening with a punch while a blank-holder restrains the
flange. The operation unfolds in stages. At the outset the flange feeds toward the die and bends over the die radius; as the punch advances, the wall
forms and is pulled in axial tension while the flange remains in radial tension and hoop compression. The material simultaneously bends and unbends
across the die and punch radii, which concentrates strain and often governs where failure initiates. The force–stroke response typically rises to a peak as
bending, friction, and wall formation demand energy, may decline as steady drawing is established, and can rise again near bottoming because of
reverse bending or incidental ironing if the die–punch clearance is tight. Process success is the balance between restraining the flange sufficiently to
suppress wrinkling and allowing enough feed to avoid tearing. The blank-holder force, friction at the die/holder and punch interfaces, die and punch
corner radii, die–punch clearance, and the initial blank diameter jointly determine this balance. Too little restraint allows circumferential buckles to
develop in the flange; too much starvation elevates tensile strain in the wall and precipitates rupture near the die entry or punch nose. Clearance close to
the sheet thickness promotes a free draw; tighter gaps introduce ironing that stabilizes thickness at the cost of force and heat, whereas generous gaps
reduce force but make wrinkling control more sensitive to the holder strategy. Material anisotropy appears as earing circumferential height lobes
aligned with rolling directions affecting trim allowance and efficiency; springback after unloading alters radii and angles, especially in high-strength or
high-modulus sheets.

Material and Methods

This section details the modeling setup, meshing strategy, boundary conditions, and result extraction used to evaluate cold deep drawing of a stainless-
steel circular cap via a finite-element (FE) model. All controllable factors are expressed in normalized form to ensure portability across gauges: friction
coefficient (μ), punch nose radius (R), punch displacement rate (v), and die–punch radial clearance (c). The measurable outputs used for analysis are
von Mises stress, equivalent plastic strain, equivalent elastic strain, and total deformation.
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Figure 1. Detailed drawings of the finished part/component and deep drawing configuration

Figure 2. 3D Model of deep drawing configuration

Figure 3. Meshed view of punch and blank component

All components the punch, die, blank-holder, and sheet blank were modeled as 3D solid bodies in ANSYS Workbench and discretized with a global
element size of 1 mm. A high-order solid mesh was used (tetrahedral) so that curvature at the punch nose and die entry is accurately represented. On all
contact faces, the surface node pitch was kept at 1 mm on both the tool and blank sides to stabilize contact tractions and avoid chattering during large
deflection.

Table 1. Design factors and three-level settings for the deep-drawing DOE

Factor Symbol
Levels

Level 1 Level 2 Level 3

Friction Coefficient, μ μ 0.14 0.16 0.18

Punch Nose Radius, Rp R 5 7 9

Punch Displacement Rate, v v 3.5 5.5 7.5
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Radial Clearance, cr c 0.2 0.3 0.4

Table 2. FE outputs and derived indices (PSI, EEI, EPR) for the 27-run deep-drawing DOE

Test Run μ R v c PSI EER EPR

1 0.14 5 3.5 0.2 2000.3 0.749 0.000749

2 0.14 7 3.5 0.3 1394.5 0.369 0.000529

3 0.14 7 7.5 0.3 1742.8 0.728 0.000835

4 0.14 7 5.5 0.2 1525.4 0.490 0.000642

5 0.14 7 5.5 0.4 1609.2 0.601 0.000748

6 0.14 9 5.5 0.3 1469.0 0.393 0.000536

7 0.16 9 3.5 0.3 1516.6 0.428 0.000564

8 0.16 7 5.5 0.3 1798.5 0.775 0.000861

9 0.16 7 3.5 0.2 1570.9 0.524 0.000667

10 0.16 9 5.5 0.4 1738.4 0.667 0.000767

11 0.16 7 5.5 0.3 1799.3 0.775 0.000862

12 0.16 9 5.5 0.2 1652.0 0.552 0.000668

13 0.16 9 7.5 0.3 1881.3 0.802 0.000853

14 0.16 5 5.5 0.2 1857.1 0.886 0.000955

15 0.16 7 3.5 0.4 1658.1 0.640 0.000772

16 0.16 5 5.5 0.4 1949.9 1.014 0.001040

17 0.16 5 7.5 0.3 2101.9 1.168 0.001111

18 0.16 7 7.5 0.4 2039.3 1.046 0.001026

19 0.16 7 7.5 0.2 1943.3 0.915 0.000942

20 0.16 7 5.5 0.3 1795.7 0.771 0.000859

21 0.16 5 3.5 0.3 1713.5 0.745 0.000870

22 0.18 7 5.5 0.4 2096.0 1.096 0.001046

23 0.18 7 5.5 0.2 1997.9 0.962 0.000963

24 0.18 7 3.5 0.3 1850.3 0.818 0.000884

25 0.18 5 5.5 0.3 1937.0 0.848 0.000876

26 0.18 9 5.5 0.3 1939.0 0.850 0.000877

27 0.18 7 7.5 0.3 2250.0 1.250 0.001111

The Plastic Severity Index (PSI, MPa), Elastic Energy Index (EEI, MJ/m³), Elastic–Plastic Partition Ratio (EPR) can be calculated from below formula
[23]:

PSI = σ × e … (1)
EEI = 0.5 × σ × ε … (2)
EPR = ε ÷ e … (3)

Result and Discussion

This chapter presents the results of a comprehensive study to optimize the cold deep drawing of a stainless-steel cap using a Grey–Response Surface
Methodology (Grey–RSM) framework built on validated finite-element simulations in ANSYS Workbench. The objective is to identify process settings
that minimize plastic-damage propensity and springback drivers while achieving the target draw without defects. To that end, the work systematically
varies four practical factors—friction coefficient (μ), punch nose radius (R), punch displacement rate (v), and radial clearance (c) over three levels each
in a 27-run design of experiments. The sheet blank is modeled as Stainless-Steel NL, the tools as Structural Steel, and the analysis extracts core field
outputs (equivalent elastic strain, equivalent plastic strain, von Mises stress, total deformation) from which three compact, smaller-the-better indices are
constructed: PSI (Plastic Severity Index), EEI (Elastic Energy Index), and EPR (Elastic–Plastic Partition Ratio). Grey analysis is applied to RSM-
predicted responses to produce a single, auditable grade that ranks parameter combinations across competing criteria.

Table 3. ANOVA for GRG quadratic model

Source DF Adj SS Adj MS F-Value P-Value

Model 14 0.739912 0.052851 21.09 0.000*

Linear 4 0.632244 0.158061 63.06 0.000*
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μ 1 0.223495 0.223495 89.17 0.000*

R 1 0.144579 0.144579 57.68 0.000*

v 1 0.206995 0.206995 82.59 0.000*

c 1 0.013830 0.013830 5.52 0.037*

Square 4 0.012637 0.003159 1.26 0.338

μ*μ 1 0.006504 0.006504 2.60 0.133

R*R 1 0.000296 0.000296 0.12 0.737

v*v 1 0.001485 0.001485 0.59 0.456

c*c 1 0.002131 0.002131 0.85 0.375

2-Way Interaction 6 0.111029 0.018505 7.38 0.002*

μ*R 1 0.056917 0.056917 22.71 0.000*

μ*v 1 0.016816 0.016816 6.71 0.024*

μ*c 1 0.000023 0.000023 0.01 0.926

R*v 1 0.020247 0.020247 8.08 0.015*

R*c 1 0.004520 0.004520 1.80 0.204

v*c 1 0.000009 0.000009 0.00 0.954

Error 12 0.030077 0.002506

Lack-of-Fit 10 0.030074 0.003007 1983.97 0.001*

Pure Error 2 0.000003 0.000002

Total 26 0.769988

*Significant

Figure 4. shows main-effects of each factor on GRG. The slope signs match the regression: GRG decreases with increasing μ and v, and increases with
R​ and ccc within the tested range. The largest gradient is observed for μ and v, followed by R​ ; c exhibits a smaller but positive effect. This
supports the process interpretation that reducing friction and softening punch curvature lower both plastic-damage and springback drivers. Figure 5.3
assesses residual normality for the GRG model. The points largely follow a straight line, indicating approximate normality of residuals. Minor tail
departures are consistent with the significant lack-of-fit observed in ANOVA and suggest that additional curvature or design augmentation could
further improve fit.

Figure 4. Main-effects on GRG

Figure 5. Optimization plot (desirability) continuous Grey–RSM optimum and predicted GRG with composite desirability
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An optimization plot in Response Surface Methodology (RSM) is a graphical representation used to visualize the response surface and identify the
optimal conditions that maximize or minimize the response variable of interest within the experimental design. After conducting the experiments and
fitting a response surface model (often quadratic or higher-order models) to the data, the model equations are developed to represent the relationship
between the factors and the response. The optimal combination results obtained from the GRG (Figure 5)

Conclusion

The results of the Grey–RSM optimization identify an optimum at approximately μ=0.14, R= 7.35 mm, v=3.5 mm/s and c=0.2 mm yielding a predicted
Grey grade= 0.99. Relative to the baseline case, the confirmation simulation at this setting showed substantial reductions in the composite indices: PSI
decreased by roughly one-third, EEI by about sixty percent, and EPR by around forty percent, all while achieving the target draw and maintaining
stable contact and energy audits consistent with quasi-static assumptions. The agreement between predicted and observed Grey grades (within about
1%) validate both the metamodel and the optimization pathway. Collectively, these improvements indicate safer strain paths, reduced thinning/rupture
risk, and lower springback propensity—precisely the qualities desired for robust production.

REFERENCES

1. Singh Sivam, S.P.S.; Rajendran, R.; Harshavardhana, N. (2024). An investigation of hybrid models FEA coupled with AHP-ELECTRE,
RSM-GA, and ANN-GA into the process parameter optimization of high-quality deep-drawn cylindrical copper cups. Mechanics Based
Design of Structures and Machines, 52(1), 498–522. https://doi.org/10.1080/15397734.2022.2120497

2. Cao, J.; Bambach, M.; Merklein, M.; Mozaffar, M.; Xue, T. (2024). Artificial intelligence in metal forming. CIRP Annals, 73(2), 561–587.
https://doi.org/10.1016/j.cirp.2024.04.102

3. Lee, S.; Lim, Y.; Galdos, L.; Lee, T.; Quagliato, L. (2024). Gaussian process regression-driven deep drawing blank design method.
International Journal of Mechanical Sciences, 265, 108898. https://doi.org/10.1016/j.ijmecsci.2023.108898

4. Han, S.; Kim, H. (2024). Artificial neural network-based sequential approximate optimization of metal sheet architecture and forming
process. Journal of Computational Design and Engineering, 265–279. https://doi.org/10.1093/jcde/qwae049

5. Pegel, H.; Wycisk, D.; Sauer, D.U. (2023). Influence of cell dimensions and housing material on the energy density and fast-charging
performance of tabless cylindrical lithium-ion cells. Energy Storage Materials, 60, 102796.

6. Moon, C.; Lian, J.; Lee, M. (2023). Identification of elastic and plastic properties of aluminum-polymer laminated pouch film for lithium-
ion batteries: A hybrid experimental-numerical scheme. Journal of Energy Storage, 72, 108601.

7. Luyen, T.; Mac, T.; Banh, T.; Nguyen, D. (2023). Investigating the impact of yield criteria and process parameters on fracture height of
cylindrical cups in the deep drawing process of SPCC sheet steel. International Journal of Advanced Manufacturing Technology, 128(5–6),
2059–2073.

8. Li, M.; Liu, X.; Kong, D.; Guo, Q.; Wang, Y.; Yao, J. (2023). Optimization of U-shaped flow channel by RBFNN and NSGA-II.
International Journal of Mechanical Sciences, 243, 108012.

9. Géron, A. (2022). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd ed.). O’Reilly.
10. Li, K.; Wang, Y.; Chen, Z. (2022). A comparative study of battery state-of-health estimation based on empirical mode decomposition and

neural network. Journal of Energy Storage, 54, 105333.
11. Tang, X.; Wang, Z.; Deng, L.; Wang, X.; Long, J.; Jiang, X.; Jin, J.; Xia, J. (2022). A review of the intelligent optimization and decision in

plastic forming. Materials, 15(19), 7019. https://doi.org/10.3390/ma15197019
12. El Mrabti, I.; Touache, A.; El Hakimi, A.; Chamat, A. (2021). Springback optimization of deep drawing process based on FEM-ANN-PSO

strategy. Structural and Multidisciplinary Optimization, 64(1), 321–333.
13. Xie, Y.; Du, L.; Zhao, J.; Liu, C.; Li, W. (2021). Multi-objective optimization of process parameters in stamping based on an improved

RBM–BPNN network and MOPSO algorithm. Structural and Multidisciplinary Optimization, 64(6), 4209–4235.
14. Spathopoulos, S.C.; Stavroulakis, G.E. (2020). Springback prediction in sheet metal forming, based on finite element analysis and artificial

neural network approach. Applied Mechanics, 1(2), 97–110.
15. Younas, N.; Chalal, H.; Abed-Meraim, F. (2020). Finite element simulation of sheet metal forming processes using non-quadratic

anisotropic plasticity models and solid-shell finite elements. Procedia Manufacturing, 47, 1416–1423.
16. Montgomery, D.C. (2020). Design and Analysis of Experiments (10th ed.). Wiley.
17. Blank, J.; Deb, K. (2020). pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497–89509.
18. Barrett, T.J.; Knezevic, M. (2019). Deep drawing simulations using the finite element method embedding a multi-level crystal plasticity

constitutive law: Experimental verification and sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 354, 245–
270. https://doi.org/10.1016/j.cma.2019.05.035

19. Deng, J.; Sun, J.; Peng, W.; Hu, Y.; Zhang, D. (2019). Application of neural networks for predicting hot-rolled strip crown. Applied Soft
Computing, 78, 119–131.

20. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. (2018). Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560.

21. Amree, C.; Chaijit, S. (2018). Strain hardening analysis of SUS304 stainless steel cup for multi-stage deep drawing using finite element
simulation—comparison with experiment result. 2nd International Conference on Engineering Innovation (ICEI 2018), 35–41.
https://doi.org/10.1109/ICEI18.2018.8448624

https://doi.org/10.1080/15397734.2022.2120497?utm_source=chatgpt.com
https://doi.org/10.1016/j.ijmecsci.2023.108898?utm_source=chatgpt.com
https://doi.org/10.1093/jcde/qwae049?utm_source=chatgpt.com
https://doi.org/10.3390/ma15197019?utm_source=chatgpt.com
https://doi.org/10.1016/j.cma.2019.05.035?utm_source=chatgpt.com


International Journal of Research Publication and Reviews, Vol (6), Issue (9), September (2025), Page – 1732-1737 1737

22. Coër, J.; Laurent, H.; Oliveira, M.C.; Manach, P.; Menezes, L.F. (2018). Detailed experimental and numerical analysis of a cylindrical cup
deep drawing: Pros and cons of using solid-shell elements. International Journal of Material Forming, 11(3), 357–373.

23. Hibbeler, R.C. (2017). Mechanics of Materials (10th ed.). Pearson.
24. Irthiea, I.K.; Green, G. (2017). Evaluation of micro deep drawing technique using soft die—simulation and experiments. International

Journal of Advanced Manufacturing Technology, 89(5–8), 2363–2374.
25. Torabi, S.H.R.; Alibabaei, S.; Bonab, B.B.; Sadeghi, M.H.; Faraji, G. (2017). Design and optimization of turbine blade preform forging

using RSM and NSGA-II. Journal of Intelligent Manufacturing, 28(6), 1409–1419.
26. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; … Zheng, X. (2016).

TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
27. Reddy, A.C. (2015). Parametric significance of warm drawing process for 2024-T4 aluminum alloy through FEA. International Journal of

Science and Research, 4(4), 2345–2351.
28. Xothapalli, C.; Reddy, A.C. (2015). Parametric importance of warm deep drawing process for 1070 aluminum alloy: Validation through

FEA. International Journal of Scientific & Engineering Research, 6(4).
29. Thirunagari, S.; Reddy, A.C. (2015). Parametric optimization of warm deep drawing process of 1100 aluminum alloy: Validation through

FEA. International Journal of Scientific & Engineering Research, 6(4), 425–435.
30. Reddy, A.C. (2015). Formability of superplastic deep drawing process with moving blank holder for AA1050-H18 conical cups.

International Journal of Research in Engineering and Technology, 4(8), 124–132.
31. Reddy, A.C. (2015). Homogenization and parametric consequence of warm deep drawing process for 1050A aluminum alloy: Validation

through FEA. International Journal of Science and Research, 4(4), 2034–2042.
32. Balla, Y.; Reddy, A.C. (2015). Parametric merit of warm deep drawing process for 1080A aluminium alloy: Validation through FEA.

International Journal of Scientific & Engineering Research, 6(4).
33. Ciancio, C.; Citrea, T.; Ambrogio, G.; Filice, L.; Musmanno, R. (2015). Design of a high performance predictive tool for forging. Procedia

CIRP, 33, 173–178.
34. Irthiea, I.K. (2014). Process analysis and design in micro deep drawing utilizing a flexible die. PhD thesis, University of Glasgow.
35. Brabie, G.; Costache, E.M.; Nanu, N.; Chirița, V. (2013). Prediction and minimisation of sheet thickness variation during deep drawing of

micro/milli parts. International Journal of Mechanical Sciences, 68, 277–290.


	Introduction
	Material and Methods
	Result and Discussion
	Conclusion

