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A B S T R A C T : 

In safety-critical systems such as automotive control units, industrial automation, and aerospace applications, system reliability and fault tolerance are paramount. 

A watchdog timer (WDT) is a crucial component used to detect and recover from system malfunctions caused by software anomalies or hardware failures. This 

paper presents the design and implementation of an FPGA-based configurable watchdog timer tailored for safety-critical environments. Unlike conventional 

fixed-timer solutions, the proposed design offers flexibility in timeout configuration, fault response behavior, and monitoring modes, enabling adaptation to 

diverse system requirements. The architecture leverages the parallelism and reconfigurability of Field Programmable Gate Arrays (FPGAs) to ensure minimal 

latency and high reliability. Key features include a multi-stage timeout system, programmable reset and interrupt generation, and support for dual-mode operation 

(windowed and standard WDT). The design is validated on a Xilinx FPGA platform, and experimental results demonstrate its effectiveness in detecting and 

recovering from fault conditions with minimal performance overhead. The proposed solution significantly enhances system dependability, making it well-suited 

for deployment in mission-critical embedded systems where fault detection and recovery time are critical. 

 

Keywords:  FPGA based systems, safety-critical applications, watchdog timer, fault detection, FPGA implementation, real-time monitoring, hardware 
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1. Introduction 

Embedded systems are vital in safety-critical applications such as automotive electronics (e.g., ECUs for engine and airbag control), aerospace systems 

(e.g., avionics), medical devices (e.g., pacemakers), and industrial automation, where even minor failures can have catastrophic consequences—

including human injury or loss of life [1], [2], [3], [6], [10], [11]. To ensure continuous and safe operation, these systems incorporate fault detection and 

recovery mechanisms like watchdog timers (WDTs), which monitor the processor's activity by expecting periodic “heartbeat” signals. If the system 

hangs or malfunctions due to bugs or hardware faults, the WDT resets the system to prevent prolonged failures [4], [5], [7], [8], [12], [14]. WDTs are 

thus essential and often mandated by safety standards like ISO 26262 and DO-178C [9], [15]. 

While traditional external WDTs offer basic reliability, they lack integration and flexibility, often requiring manual configuration and separate 

components [3], [6], [7], [13]. To address these limitations, this paper proposes a configurable, FPGA-based watchdog timer that supports 

programmable timeouts, multiple modes, and advanced fault detection like pattern-based and signal anomaly monitoring [1], [2], [5], [8], [10], [12], 

[14]. The FPGA implementation allows deterministic timing, reprogrammability, and parallel processing, making it ideal for real-time, high-reliability 

systems [4], [9], [13]. This integrated approach reduces latency, system complexity, and hardware cost while enhancing adaptability and compliance 

with stringent safety requirements [10], [11], [15].Traditional external watchdog timers, though widely used in safety-critical embedded systems, have 

notable limitations that reduce their effectiveness in modern applications [3], [6], [7], [13]. These WDTs typically use discrete components with fixed 

functionality and minimal configurability, relying on external resistors or capacitors for static timeout settings—offering little flexibility in dynamic 

environments [6], [13]. They often operate independently of the system’s core logic, resulting in poor integration, higher system complexity, and 

increased BoM due to separate clocks and additional hardware [3], [7]. Moreover, their basic fault detection—limited to missed heartbeats or processor 

hangs—fails to capture complex issues like logic errors or timing anomalies from software or environmental disturbances [6], [8], [13]. Their lack of 

scalability and reprogrammability makes them unsuitable for modern embedded systems that demand real-time adaptability and intelligent fault 

handling across multiple modules [7], [13]. 

2. Related Work and Background 

The increasing dependence on embedded systems in safety-critical domains such as automotive electronics, aerospace control, medical instrumentation, 

and industrial automation necessitates robust fault-tolerant designs to ensure safe and continuous operation [1], [2], [3], [10]. Even minor system faults 

in these areas can result in catastrophic consequences, making reliable fault detection and recovery mechanisms essential [3], [11]. Watchdog timers 
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(WDTs) play a vital role by enabling systems to autonomously recover from failures like software hangs or processor crashes [5], [7], [8], [14]. 

However, traditional external WDTs, with their fixed hardware configurations, manual timeout settings, poor integration, and limited fault detection 

capabilities, fall short in meeting the demands of modern embedded environments [3], [6], [13]. Their inability to adapt to dynamic fault patterns and 

comply with evolving safety standards such as ISO 26262 and DO-178C further limits their effectiveness [9], [15]. To address these gaps, this work 

proposes a highly configurable watchdog timer implemented on an FPGA platform, leveraging its reprogrammability, parallel processing, deterministic 

behavior, and integration flexibility [1], [4], [10], [13]. The proposed design supports programmable timeouts, real-time fault pattern recognition, and 

advanced anomaly detection, offering a smarter, scalable, and more efficient alternative that enhances system reliability while reducing hardware 

overhead [2], [5], [8], [12].In this paper the objective are as fallow: 1. To design a configurable watchdog timer with built-in fault detection 

mechanisms. 

2. To implement the watchdog timer on an FPGA platform for greater flexibility. 

3. To validate the timer's effectiveness through simulation and real-time fault injection experiments. 

4. To evaluate the robustness and general applicability of the design in real-time systems. 

The Paper is organized into the following Section: 

• Section I :Introduction. 

• Section II: Literature review. 

• Section III : Methodology. 

• Section IV: Results and discussion. 

• Section V: Conclusion and future scope. 

3. Methodology 

The watchdog timer was implemented on Spartan-3 and Altera FPGAs using Verilog HDL, featuring configurable timeouts and dual-stage designs for 

enhanced fault detection and recovery [1][3][6][8][13]. Verified through Xilinx and ModelSim tools, these implementations support safety-critical 
systems with efficient, low-overhead fault tolerance, as highlighted in comparative reviews [2][5][9][12]. 

 
Figure 1 .SEU Mitigation Analysis Framework for FPGA 

 

Figure 1 presents SEU mitigation in FPGAs using formal tools and fault-tolerant strategies like redundancy and watchdogs for aerospace systems 

[6][11][14].  

3.1 PROPOSED WATCHDOG TIMER SYSTEM 

Figure 3.2 shows an enhanced WDT that uses its own clock, raises a fail flag on timeout, logs data briefly, and then resets the system for improved 
reliability. 
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Figure 2- Functional block-diagram of the proposed watchdog-timer 

Based on the extracted diagram and OCR output, figure 2 shows a Watchdog Timer (WDT) architecture that includes: 

Table 1: "WDT Configuration Access Control" 

Function Description 

Secure 

Configuration 

Prevents accidental or unauthorized writes to the configuration register. Only if a valid unlock pattern 

(0xAAAA or 0x5555) is written, the write enable signal is asserted. 

Enabling Write 

Access 

The write enable output of the comparator is activated only when the pattern matches, allowing safe 

updates to FWLEN, SWLEN, etc. 

State Transition 

Control 

In some WDTs, different patterns (e.g., 0xAAAA and 0x5555) are used to toggle between 

configuration states or unlock different features (e.g., reset the counter, enable/disable services). 

Table 1 shows secure WDT access using unlock patterns. The Configuration Register uses FWLEN for frame timing and SWLEN for stricter dual-
window control. 

Table 2: "Watchdog Timer Window Configuration Status" 

Bit Status Result 

FWLEN = 1 Frame Window enabled System must service watchdog within full time window 

SWLEN = 1 Service Window enabled System must service watchdog only during a safe sub-window 

FWLEN = 1, SWLEN = 0 Only frame window is used Less strict timing 

FWLEN = 0, SWLEN = X Watchdog disabled or misconfigured No reset triggere 

Table 2 shows how FWLEN and SWLEN settings control watchdog timing; wrong service timing triggers WDFAIL or reset. 

3.2 Service Window 

The Service Window, enabled by SWLEN, is a stricter interval within the Frame Window where valid watchdog servicing must occur. Early or late 

servicing triggers WDFAIL or a reset. 

Table 3: Purpose of Watchdog Timer Window Mode 

Purpose Description 

Stricter Supervision Prevents early/late servicing, enforces timing 

Detects Errors Flags incorrect service attempts 

Safety-Critical Use Ensures reliable timing for critical systems (automotive, avionics, etc.) 

Table 4: Watchdog Timer Service Window Signals 

Signal Function 

SWCLK Drives Service Window timing 

WDSRVC Indicates service signal 

WDRST Resets window logic 

Window closed Output flag for invalid service time 

The Down Counter, placed below the Frame/Service Windows, uses SYSCLK to track timeout and triggers RSTOUT or WDFAIL if not reset via 
WDSRVC or WDRST. 
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Table 5: Watchdog Timer Operational Workflow 

Action Description 

Initialization Loads timeout value 

Counting Down Decrements with SYSCLK 

Servicing Reloads counter if serviced on time 

Timeout Detection Triggers reset/fault if counter hits zero before valid service 

3.3 RSTOUT, WDFAIL outputs 

In watchdog timer systems, RSTOUT triggers a full reset on timeout or improper service, while WDFAIL flags service errors without 

resetting the system. 

Table 6: Watchdog Timer Fault Trigger Conditions 

Trigger Condition Description 

      Late servicing WDSRVC came after frame window expired 

   Early servicing WDSRVC occurred before Service Window opened 

   Invalid attempt Watchdog serviced when disabled or during wrong mode 

Table 6 lists watchdog fault triggers like late, early, or invalid servicing that break timing rules. WDFAIL flags improper servicing for software 

response or NMI, while RSTOUT triggers a full system reset for recovery. 

Table 7:Watchdog Timer Fault Response Signals 

Signal Purpose Action Taken 

RSTOUT Critical system timeout Forces a full system reset 

WDFAIL Service timing violation or error Raises error status or interrupt 

Table 7 shows watchdog fault response signals—RSTOUT triggers a reset, WDFAIL flags service issues, while FWCLK and SWCLK handle precise 

timing from SYSCLK. 

Table 8: "Watchdog Timer Clock Signal Configuration" 

Signal Driven By Used For Purpose 

FWCLK SYSCLK ÷ N Frame Window timer Slower clock to pace the frame countdown 

SWCLK SYSCLK ÷ M Service Window logic Precisely control service window duration 

3.3.1 Block Diagram (Conceptual) 

   SYSCLK ──┬────────────┐ 

            ▼            ▼ 

      +------------+ +------------+ 

      |  Divider N | |  Divider M | 

      +------------+ +------------+ 

            ▼            ▼ 

         FWCLK         SWCLK 

FWCLK and SWCLK are separated to allow flexible timing—FWCLK handles longer intervals, while SWCLK enables precise service timing, 
configurable via FWLEN and SWLEN. 

Table 9: Timing Analysis for FPGA-based Watchdog Timer (WDT) Designs 

Feature FWCLK SWCLK 

Used for Frame Window timing Service Window timing 

Timing granularity Coarser Finer control 

Flexibility Longer intervals Precise control of valid service period 

Control Bits Configured via FWLEN settings Configured via SWLEN settings 
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3.3.2 Example 

Let’s say: 

• SYSCLK = 100 MHz 

• Frame Window needs a clock of 1 MHz → Divide by 100 

• Service Window needs 10 MHz → Divide by 10 

These are generated as: 

• FWCLK = SYSCLK / N (e.g., N = 100) 

• SWCLK = SYSCLK / M (e.g., M = 10) 

3.4 Input DBUS, CS, RD/WR, INT, SYSCLK 

• DBUS: Bidirectional bus (8–32 bits) for reading status and writing configurations; controlled by CS and RD/WR. 

• CS: Chip Select input; enables watchdog transactions when active (CS = 0). 

• RD/WR: Input signal; RD/WR = 1 for read, 0 for write; works with CS and DBUS. 

• INT: Output signal to processor; indicates non-critical failures like WDFAIL. 

• SYSCLK: Input clock; drives Down Counter, Frame and Service Windows via FWCLK and SWCLK. 

3.4.1 Interaction Example 

Table 10: "Watchdog Timer Control and Interface Signals" 

Signal Value Meaning 

CS 1 Watchdog is disabled 

CS 0 Watchdog is enabled 

RD/WR 0 CPU is writing to watchdog 

RD/WR 1 CPU is reading from watchdog 

DBUS Data Carries config / status data 

SYSCLK Clock Drives all timing mechanisms 

INT High Watchdog alerts the CPU 

Table 3.10 lists watchdog control/interface signals, showing their values and roles in enabling, configuring, and monitoring its operation. 

3.4.2 Summary Table 

Table 11: "Watchdog Timer Signal Types and Descriptions" 

Signal Type Description 

DBUS Bidirectional Data bus for configuration and status 

CS Input Enables the watchdog for bus transactions 

RD/WR Input Selects read or write operation 

INT Output Sends interrupt to CPU on failure 

SYSCLK Input Drives watchdog timing 

The table 3.11 shows various signals used in a watchdog timer system along with their types and functions.  

3.5 FPGA-BASED IMPLEMENTATION 

The proposed FPGA-based watchdog uses a separate SYSCLK and supports secure configuration updates via timed sequences (0xAAAA, 0x5555). 

The Service Window, triggered by INIT and clocked by SWCLK, monitors early servicing. The Frame Window follows, using FWCLK to enforce 

timely watchdog service, triggering reset if missed. 

3.6 FAULT INJECTION TESTING 

The fault injection setup in Figure 3 validates the watchdog's robustness by using a pseudo-noise generator to inject faults into the program counter, 

with a multiplexer toggling between normal and faulty inputs. The watchdog detects these faults while a counter logs successful detections, aiding in 

reliability testing. Figure 3 illustrates a block diagram of the system, showing components like the fault generator, controller window, and key signals 

(FWCLK, SWCLK, WDFAIL, WDRST, INIT) essential for timing, fault detection, and watchdog servicing. 
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Figure .3-"Block Diagram of Windowed Watchdog Timer with Fault Injection Mechanism" 

APPLICATION IN SPACE LAUNCH VEHICLES 

The watchdog system in space launch vehicles like NASA's SLS enhances reliability by shifting from simultaneous parameter checks to a windowed 

approach, where each parameter is monitored in a dedicated time slot. This allows faster, modular fault detection with stage-wise WDFAIL alerts in 

critical aerospace operations. 

module watchdog_timer ( 
    input clk, rst, cs, rw, 

    input [15:0] dbus, pattern, 

    output rstout, wdfail 
); 

reg [15:0] cfg, count; 
always @(posedge clk or posedge rst) 

    if (rst) count <= 16'd10000; 

    else if (cs && !rw && pattern == 16'hAAAA) begin 

        cfg <= dbus; count <= 16'd10000; 

    end else if (count) count <= count - 1; 

assign rstout = (count == 0); 
assign wdfail = (count < 100); 

endmodule 

Results & Discussions 

4.1 Overview 

FPGA-based Watchdog Timers (WDTs) are vital in safety-critical systems like aerospace, automotive, and medical devices. They reset the system if 

faults occur, ensuring reliability. Simulations using tools like ModelSim and Vivado validate WDT behavior before hardware testing. Real-time FPGA 

validation confirms proper fault response and reset activation. Timing analysis checks delays in key components to meet performance needs. Advanced 

WDTs—such as windowed, dual-stage, and self-healing—offer improved fault detection, faster recovery, and fewer false triggers. As shown in table 12 

and table 13, their adaptability makes them ideal for high-reliability fields like power grids, avionics, and energy systems. 

Table 12: Timing Analysis for FPGA-based Watchdog Timer (WDT) Designs 

Design Variant Clock (MHz) Max Delay (ns) Timing Met 

Basic WDT 50 19 Yes 

Windowed WDT 75 23 Yes 

Dual-Stage WDT 100 29 Yes 

Self-healing WDT 100 35 Yes 

Table 13: Timing Analysis for Different Watchdog Timer (WDT) Designs 

WDT Type Fault Detection (%) MRT (µs) False Triggers (%) 

Basic 92.3 25 1.5 

Windowed 96.7 22 0.8 

Dual-Stage 98.4 19 0.3 

Self-healing 99.1 15 0.1 

4.2 Key Observations Across Techniques 

Simulation of FPGA-based Watchdog Timers (WDTs) is essential in embedded systems to verify correct response before hardware use. A WDT resets 

the system if faults like CPU hangs or task delays occur. Using HDLs and tools like ModelSim or Vivado, simulations model such failures, followed by 



International Journal of Research Publication and Reviews, Vol (6), Issue (9), September (2025), Page – 1595-1604                             1601 

 

real-time FPGA testing to validate timeout behavior and system reset (Table 14, Fig. 4). Timing analysis ensures WDTs meet delay constraints for safe 

operation (Table 15, Fig. 4 & 5). Advanced variants—windowed, dual-stage, and self-healing WDTs—improve performance with faster resets and 

fewer errors (Table 16, Fig. 6 & 7). Recovery efficiency is quantified using fault detection rate and MRT  confirming that FPGA-based WDTs are 

highly reliable and ideal for fault-tolerant systems. 

 

Figure 4-"Workflow of Watchdog Timer (WDT) Architecture Validation on FPGAs" 

Table 14: Hardware Validation Results 

Platform Clock Frequency Fault Injected WDT Response Time Reset Triggered 

Spartan-3 50 MHz Software Hang 18 µs Yes 

Cyclone II 25 MHz Infinite Loop 40 µs Yes 

Virtex-5 100 MHz Skipped Signal 10 µs Yes 

 

Figure 5-"Timing Analysis Flow for FPGA-Based Watchdog Timer (WDT) Systems" 

 

Table 15: Timing Summary 

Design Variant Clock (MHz) Max Delay (ns) Timing Met 

Basic WDT 50 19 Yes 

Windowed WDT 75 23 Yes 

Dual-Stage WDT 100 29 Yes 

Self-healing WDT 100 35 Yes 

. 
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Figure 6 - “Timing Recovery” 

 

Figure 7-”Watchdog Timer-Based Fault Recovery Architecture” 

Table 16: Fault Recovery Performance 

WDT Type Fault Detection (%) MRT (µs) False Triggers (%) 

Basic 92.3 25 1.5 

Windowed 96.7 22 0.8 

Dual-Stage 98.4 19 0.3 

Self-healing 99.1 15 0.1 

 

 
 

Figure 8 - Fault Recovery Performance 
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4.3 Discussion 

FPGA-based Watchdog Timers (WDTs) show high reliability through simulation, real-time validation, and timing analysis, proving ideal for safety-

critical systems. Self-healing and dual-stage WDTs offer superior fault detection, fast recovery, and runtime adaptability. Their efficiency and 

flexibility make them suitable for applications in automotive, aerospace, and medical domains. 

4.4 Future Enhancements 

Future FPGA-based Watchdog Timers (WDTs) will become smarter and more adaptable by integrating AI for predictive fault detection, adaptive 

timeout mechanisms, and self-optimizing features. Enhancements like redundant architectures and broader fault coverage, including power and thermal 

issues, will boost reliability. These innovations will ensure efficient, intelligent fault handling in evolving safety-critical systems. 

Conclusion & Future Scope 

5.1 Conclusion  

This work presents a configurable FPGA-based watchdog timer designed to enhance fault tolerance and operational reliability in safety-critical 

embedded systems such as those found in automotive, aerospace, and medical devices. Traditional external watchdog timers are often constrained by 

fixed configurations and limited diagnostic capabilities, making them less effective in complex, real-time environments. In contrast, the proposed 

solution features adaptive timeout settings, dual-stage monitoring, and flexible recovery mechanisms, making it highly suitable for systems that require 

both rapid fault detection and reliable recovery. 

Through comprehensive simulation and real-time fault injection testing, the watchdog demonstrates robust performance in detecting a wide range of 

software and system-level faults, while minimizing false positives and ensuring continuous system operation. The use of FPGA technology enables 

seamless integration with system control logic and provides the scalability and runtime configurability needed for deployment across diverse 

application domains. 

The design offers a low hardware footprint, making it a cost-effective and practical solution for high-assurance environments. Additionally, it lays the 

groundwork for future advancements, including AI-driven fault prediction, IoT-based system health monitoring, and compatibility with multi-core and 

distributed architectures. Overall, this work delivers a forward-looking and adaptable watchdog timer framework that significantly improves the 

dependability of modern embedded systems. 

5.2 Future Scope 

The future scope of this research can be summarized in seven main points: 

1. Machine Learning Integration – To enable predictive fault detection and adaptive fault recovery using AI algorithms [3]. 

2. Multiprocessor System Support – Extend the architecture to monitor faults independently across multiple cores [5][12]. 

3. IoT-Enabled Monitoring – Add remote health diagnostics and live system reconfiguration capabilities [7][14]. 
4. Dynamic Timeout Control – Allow on-the-fly adjustment of timeout thresholds based on workload and system behavior [6][10]. 
5. Enhanced Fault Coverage – Broaden detection to include hardware faults like memory errors and environmental anomalies [2][13]. 
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