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A B S T R A C T 

Federated Learning (FL) preserve privacy by training models on decentralized devices and sharing only model updates instead of sharing the raw data to a central 

server. The focus is on learning data patterns in a heterogeneous environment to train a stable model capable of making precise predictions. Federated Learning 

(FL) applications spans numerous areas including autonomous self-driven cars, fraud detection, natural language processing and in most internet based 

organizations. Despite these privacy assurances, inference attacks present a viable threat by deciphering sensitive information from the shared model parameters. 

This investigation delineates the operational mechanisms of Membership Inference (MIA) and Property Inference Attacks (PIA) within FL, elucidating their 

mathematical foundations rooted in gradient analysis and statistical inference. A central thesis of this work is that the paramount threat emanates from a malicious 

central server, an adversary whose privileged access to all updates facilitates potent, large-scale privacy breaches. Through a synthesis of cutting-edge attacks and 

a critical evaluation of defenses, this work exposes a critical vulnerability in prevailing FL security paradigms. Our position negates strong assumptions which 

poses central server as honest and non-malicious. We conclude that future research must prioritize developing defenses effective against server-side adversaries to 

fulfill FL's promise of privacy-preserving collaborative learning. 

Keywords: Membership Inferencing Attack, Property Inferencing, Generative Adversarial Attack, Bayesian Inferencing, Deep Leakage, Gradient 

Matching, Regularization, Homomorphic Encryption, Multiparty Computation, Source Inferencing  

1. Introduction 

To tackle security challenges in AI, distributed learning methods like federated learning are now widely used (Albshaier et al., 2025; Feng et al., 2025). 

This methodology entails multiple rounds of local model training on decentralized data subsets. The fundamental privacy mechanism is the transmission 

of only learned model updates (such as gradients or weights) to a central server, circumventing the need to exchange raw data (McMahan et al., 2016). 

This server then combines all the received updates to create a single, refined global model (McMahan et al., 2016). Given global model 𝜽𝟎, with 𝒏 number 

of clients, each containing a data 𝑫𝒊 where 𝒊 represent the index of a client. The updated global model is calculated as; 

Equation 1 Federated Averaging 

𝜽𝟎 =
𝟏

𝒏
∑ 𝜽𝒊

𝑫𝒏
𝒊=𝟏          (1) 

The global update 𝜽𝟎 is based on a learning rate 𝜼𝒈 which may also be considered as a step-size (Lin et al., 2025). If  𝜽𝟎 = 𝑮, then global model is 

calculated using the expression, 𝑮𝒕 = 𝑮 + 𝜼𝒈𝜽𝟎, with 𝑮𝒕 becoming a stable model after 𝒕 rounds of training. Each client model is also trained in stochastic 

gradient descent (SGD) (Mills et al., 2023) and an updated local model is calculated using the formula 𝜽𝒊
𝒓 = 𝜽𝒊 − 𝜼𝒍

𝝏𝑳

𝝏𝛉𝒊
𝑫 

 where L is the loss objective 

function (Jadbabaie et al., 2023), 𝜼𝒍 the local step-size and 𝒓 is the number of epochs.   

Even though baseline framework was designed for privacy preservation, recent studies suggests intentional violation of privacy through leakage leading 

to threats such as inference attacks (Bai, Hu, et al., 2025; Carlini et al., 2022; Hasan, 2023; Rao et al., 2025). Membership inferencing attack (MIA) and 

property inferencing attack (PIA) are two major categories of inferencing that adversaries may use to infer private information from participating devices 

in a distributed machine learning such as FL systems (Bai, Hu, et al., 2025; Wang et al., 2023). MIA is where an adversary may determine whether a 

specific record was used to train a model and reveal information about clients (Bai, Hu, et al., 2025). PIA tends to perform analysis on the states of local 

datasets and correlate it with possible information that is not present in training process (M. Li et al., 2025). Experimental studies (Bai, Hu, et al., 2025; 

Carlini et al., 2022; Rao et al., 2025; Wan et al., 2024) proved that baseline FL protocol may not withstand success of these attacks. 

According to Das et al. (2025), the most notable state-of-art MIAs include WikiMIA (Shi et al., 2023), BookMIA (Y. Liu et al., 2022) and Temporal 

Wiki. Das et al. (2025) assessed the LAION-MI attack (Schuhmann et al., 2022) on a temporally partitioned arXiv dataset and performance was quantified 
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using metrics including the Area Under the ROC Curve (AUC ROC) and the True Positive Rate at low False Positive Rates (such as TPR@1% FPR), 

emphasizing the attack's capability to identify members with high confidence under stringent privacy constraints. W. Wei et al. (2020), developed a 

framework to measure how gradient compression in federated learning impacts the effectiveness of client privacy leakage attacks. It also proposed 

preliminary mitigation strategies to underscore the need for a systematic evaluation method for understanding MI threats and building theoretical defenses 

against them.  

In this work, we discuss the fundamental concepts of inference attacks, including attack mechanisms, theoretical groundings and their implications for 

the design of secure FL systems. A keen attention is on the attack formulations and vectors, differentiating between a malicious client attack and curious 

server. We elaborate the understanding of attack strategies in a schematic diagram and tables for clarity. Further this study examines contemporary 

defense techniques and their limitations with a view to persuade researchers in embracing multiple defense strategies going forward.   

1.1 Motivation 

The core motivation for federated learning (FL) is to leverage the patterns within distributed datasets while respecting data locality and privacy. This is 

crucial in domains like healthcare, finance, and personal devices, where data is inherently sensitive and governed by strict regulations. The initial design 

of FL operated on the assumption that sharing model parameters, rather than raw data, constituted a sufficient privacy safeguard. However, the discovery 

of inference attacks fundamentally challenges this assumption. The local updates shared to improve the global model serve as a side channel that can be 

exploited by a curious central server. This leads to a twofold motivation for this study: First, Nasr, Shokri, and Houmansadr (2019) opines that inference 

attacks are not merely theoretical but are practical and can achieve high accuracy. A successful MIA can reveal that an individual's record was used to 

train a model for a sensitive condition violating their privacy. A PIA, as described by Ganju et al. (2018), can deduce hidden attributes of an entire user 

group leading to discrimination and bias exploitation. Second, Zang et al. (2022) argue that many proposed solutions operate under the assumption of a 

trusted server and focus primarily on defending against attacks from other clients. This leaves the system highly vulnerable to a far more potent adversary 

(curious central server). The server has unobstructed access to all model updates and can aggregate them to launch powerful, large-scale inference attacks 

with minimal effort. Developing defenses that are effective against both client-side and server-side adversaries is therefore a critical and urgent challenge. 

This paper is motivated by the need to comprehensively analyze these threats to build a more realistic and robust foundation for privacy-preserving 

federated learning. 

1.2 Organization 

The remainder of this paper is structured as follows: Section 2 contains related work, describing empirical studies on various kinds of inferencing attacks 

in federated learning. Section 3, examines inferencing attack, strategies, their mathematical foundations and formulations in federated learning. Section 

4 provides summaries of attack techniques and limitations in table and a schematic diagram illustrating attack strategies in various components of 

federated learning. Finally, in section 5, the paper outlines a roadmap for subsequent investigation geared towards mitigating inferencing attacks in 

distributed machine learning systems (FL). 

2. Related Work 

Our work builds upon and synthesizes a growing body of literature focused on privacy vulnerabilities in Federated Learning. We explored the following 

as related work of this study. A comprehensive survey by Bai et al. (2025) examined Membership Inference Attacks (MIAs) in Federated Learning (FL), 

categorizing them into novel update-based and trend-based approaches that exploits the protocol's unique multi-round collaborative nature. Their work 

highlighted FL-specific attacks and how they differ from centralized learning by leveraging internal model details and historical data trajectories. It also 

discussed associated defenses to address these enhanced privacy risks. Lee et al. (2021) conducted empirical study using Digestive Neural Network 

(DNN) defense to protect against inferencing. According to experiment, there was significant improvement of accuracy upto 16.17% compared to 

differential privacy (DP) and a reduction of attack accuracy of 9% in gradient sharing. To measure MI attack efficacy, Carlini et al. (2022) proposed using 

the TPR at a low FPR (e.g., 0.1%). As reported by Das et al. (2025), following an empirical study, TPR which is similar to FPR meant the attack was no 

better than guessing local data points. However, a TPR that is ten times higher (e.g., 1%) showed the adversary could accurately identify a small fraction 

of members with high confidence (Das et al., 2025). Source Inference Attack (SIA) demonstrated a critical privacy risk beyond standard membership 

inference as described in (Hu et al., 2021). Lyu et al. (2020), revealed that Vertical Federated Learning (VFL) is vulnerable to novel label inference 

attacks, where a malicious participant infers private labels owned by another, even for data outside the training set. Xia et al. (2023), conducted a survey 

and provided a comprehensive classification and analysis of both poisoning attacks and their corresponding defense strategies in federated learning. 

3. Inferencing Attack and Foundations 

Inferencing of private data through training updates from local models is widely categorized by various studies (Bai, Hu, et al., 2025; M. Li et al., 2025; 

Lyu et al., 2020; Rao et al., 2025; Xia et al., 2023) into two major categories as described below 
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3.1. Membership Inference Attacks (MIA) 

The foundational work by Shokri et al. (2017) demonstrated that ML models are vulnerable to MIAs due to their different behavior on training versus 

non-training data. The work of Nasr et al. (2019) categorized FL attacks into two methods: a non-disruptive approach using a shadow model for inference 

(passive) and an aggressive method that injects malicious parameters into the training process to force increased data exposure (active). With reference 

to MIA, the key distinction in the threat model is the role of the adversary (Nasr et al., 2019). Most early defenses assumed a malicious client, as noted 

by Zhang et al. (2022). However, a server-based MIA is arguably a more significant threat, as the server has direct access to every client's model update, 

making it trivial to query the global model and perform inference on any data point of interest (Bai, Hu, et al., 2025). Our analysis emphasizes that any 

robust FL system must be designed to mitigate this server-level threat. 

3.2. Property Inference Attacks (PIA) 

Whereas MIA targets specific data records, Property Inference Attacks (PIA) aim to deduce global properties of a client's dataset (Bai, Zhang, et al., 

2025). Building on the foundational work of Ganju et al. (2018), adversaries may train a meta-model using synthetically generated data that mimics a 

target client’s dataset, enabling the extraction of hidden properties by analyzing gradient updates. Shen et al. (2022) further demonstrated that even 

aggregated global models can inadvertently reveal statistical properties of client data, highlighting the persistent risk of information leakage in FL. These 

PIAs can deduce unlabeled sensitive attributes such as demographic or financial information solely from model training behavior (Yadav et al., 2023). 

3.3. Mathematical Preliminaries and Formulation Strategies of Attacks 

The following mathematical formulations may be used by an adversary to launch attack by inferencing data points from training distribution. 

Equation 2 Probability Density Function  

𝑓(𝑥) =
1

√2𝜋
𝜎 𝑒

1

2
(

𝑥−𝜇

𝜎
)2

       (2) 

Where x is the data point within data distribution μ is mean and σ is standard deviation (Hollands & Huget, 1983; Ren et al., 2019). 

Equation 3 Continuous Density Function (Yamato, 1971) 

𝐹(𝑥) = 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑(𝑥)
𝑏

𝑎
     (3) 

Equation 4 Bayes' Theorem (Schulman, 1984) 

𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
=

𝑃(𝐴).𝑃(𝐵|𝐴)

𝑃(𝐵)
        (4) 

where P(A) and P(B) probabilities of A and B respectively, with P(A|B) being probability of A given B and P(B|A) is probability of B given A, while 

probability of both A and B occurring remains as 𝑃(𝐴 ∩ 𝐵) 

Equation 5 Neyman-Pearson Lemma Function (Ji & Zhou, 2010) 

𝜆 =
𝐿(𝜃0)

𝐿(𝜃1)
=

𝑃(𝑥|𝐻0)

𝑃(𝑥|𝐻1)
≤ 𝑘       (5) 

Equation 6 GAN value Function (Goodfellow et al., 2020) 

𝑉(𝐺, 𝐷) = ℮𝑥  ̴ 𝑃𝑑𝑎𝑡𝑎
[ln(𝐷(𝑥)] + ℮𝑧  ̴ 𝑃𝑧

[ln(1 − 𝐷(𝐺(𝑧))]   (6) 

Equation 7 Gradient Leakage Function 

(𝑥∗, 𝑦∗) = 𝑎𝑟𝑔 min
𝑥′,𝑦′

||∇𝜃 𝐿(𝑓𝜃(𝑥′), 𝑦′) − ∇𝜃𝐿(𝑓𝜃(𝑥), 𝑦)||||2
2   (7)  

(𝑥′∗, 𝑦′∗) = 𝑎𝑟𝑔 min
𝑥′,𝑦′

||
𝜕𝑙(𝐹(𝑥′,𝑊),𝑦′)

𝜕𝑊
− ∇𝑊||2  where ∇𝑊′ =

𝑙(𝐹(𝑥′,𝑊),𝑦′)

𝑊
 (8)  

Equation 8 L2 Regularization (Cortes et al., 2012) 

min
𝜃

 [∑ ℓ(𝜃: 𝑧𝑖) +
𝜆

2𝑧𝑖∈𝐷𝑡𝑟𝑎𝑖𝑛
||𝜃||2]      (9) 

Equation 9 Cosine Similarity (Ye, 2011) 

𝑠𝑐𝑖 = cos 𝜃𝑖 =
〈𝑦𝑖,𝑥0〉

‖𝑦𝑖‖.‖𝑥0‖
       (10) 

Equation 10 Gradient Matching Formula (W. Wei & Liu, 2022) 

(𝑥∗, 𝑦∗) = 𝑎𝑟𝑔 min
𝑥′,𝑦′

||∇𝜃 𝐿(𝑓𝜃(𝑥′), 𝑦′) − ∇𝜃𝐿(𝑓𝜃(𝑥), 𝑦)||||2
2   (11) 
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3.4 Membership Inferencing Using Probability Density Function and Bayes Theorem 

Eq. 2 is known as Gaussian equation which is a foundational probabilistic framework that allows attacker to model differences in model behavior and 

construct optimal statistical tests to infer private information about the clients' training data from the FL updates (X. Yang & Wu, 2023). Gaussian-based 

ratio test provides a statistically rigorous method for launching an inference attack (Ma et al., 2024). 

Given the described FL process in Eq. 1 a stable global model 𝐺𝑡 is derived from aggregating clients’ updates: 𝜃0 =
1

𝑛
∑ 𝜃𝑖

𝐷𝑛
𝑖=1 , and each client perform 

local SGD given by 𝜃𝑖
𝑟 = 𝜃𝑖 − 𝜂𝑙

𝜕𝐿

𝜕θ𝑖
𝐷

 
, where L is the loss function, 𝜂𝑙 is the local learning rate, and 𝑟 is the number of local epochs. An attacker can 

leverage Bayesian reasoning based on Eq. 4 above to perform a Membership Inference Attack (MIA) against a target client. 

The attacker's goal is to determine if a specific data point z = (x, y) was present in client 𝑖′𝑠 private dataset 𝐷𝑖, based on the information revealed from  

FL training, primarily the client's model update θ𝑖
𝐷

. The optimal approach is to calculate the posterior probability using Bayes' Theorem in Eq. 4, the 

concept is also applied in (Campbell & Gustafson, 2023): 

𝑃(𝑀𝑒𝑚𝑏𝑒𝑟 | 𝜃𝑖
𝐷, 𝑧)  =  [ 𝑓(𝜃𝑖

𝐷 | 𝑧, 𝑀𝑒𝑚𝑏𝑒𝑟)  ∗  𝑃(𝑀𝑒𝑚𝑏𝑒𝑟) ] / 𝑓(𝜃𝑖
𝐷 | 𝑧) 

Where  

𝑃(𝑀𝑒𝑚𝑏𝑒𝑟 | 𝜃𝑖
𝐷, 𝑧) is Posterior Probability, defines the probability that z is a member of 𝐷𝑖,  given the observed client update θ𝑖

𝐷
 

𝑓(𝜃𝑖
𝐷 | 𝑧, 𝑀𝑒𝑚𝑏𝑒𝑟) is Likelihood. This is the probability density of observing the specific model update θ𝑖

𝐷
 given that the point 𝑧 is a member of the 

client's dataset.  

𝑃(𝑀𝑒𝑚𝑏𝑒𝑟) is the Prior Probability which explains attacker's initial belief about the probability that 𝑧 is a member (given by 0.5). 

𝑓(𝜃𝑖
𝐷 | 𝑧) is the Marginal Likelihood which is the total probability of observing the update θ𝑖

𝐷
 under all hypotheses (Member and Non-member). It used 

to normalize the equation. 

The optimal decision rule supported by Eq. 5 implies the attacker will infer membership if the posterior probability for "Member" is greater than for 

"Non-member": 

Infer "Member" if: 𝑃(𝑀𝑒𝑚𝑏𝑒𝑟 | 𝜃𝑖
𝐷, 𝑧) > 𝑃(𝑁𝑜𝑛 − 𝑀𝑒𝑚𝑏𝑒𝑟 | 𝜃𝑖

𝐷, 𝑧) 

The malicious server rains multiple dummy client models and in every case it determines whether a specific point 𝑧 was included in the training data or 

not. The server also compute the model update updates to estimate the two critical likelihood distributions (𝑓(𝜃𝑖
𝐷 | 𝑧, 𝑀𝑒𝑚𝑏𝑒𝑟) and 𝑓(𝜃𝑖

𝐷 |𝑧, 𝑁𝑜𝑛 −

𝑀𝑒𝑚𝑏𝑒𝑟)). To execute the attack, the server calculates the likelihood of this update under both PDFs. 

3.5. Deep Leakage Gradients 

The Deep Leakage from Gradients (DLG) (W. Wei & Liu, 2022) method minimizes the distance between the observed gradient and a dummy gradient. 

Eq. 10 involves optimizing a dummy data point and its label such that the gradient computed from this dummy pair (𝑥′, 𝑦′) closely approximates the real 

gradient derived from the original data (𝑥, 𝑦) (H. Yang et al., 2024). Employing a batch size of 8, P. Liu et al. (2022) evaluated that both the training 

image and its corresponding label can be successfully reconstructed. The formula presented above (Eq. 10) optimizes the similarity between the dummy 

gradients and the gradients of the original data, as follows: 

(𝑥′∗, 𝑦′∗) = 𝑎𝑟𝑔 min
𝑥′,𝑦′

||
𝜕𝑙(𝐹(𝑥′,𝑊),𝑦′)

𝜕𝑊
− ∇𝑊||2   

  where ∇𝑊′ =
𝑙(𝐹(𝑥′,𝑊),𝑦′)

𝑊
   

Wainakh et al. (2021) leveraged inherent properties of gradients to uncover a significant relationship between the gradient and the model's output. 

Specifically, they demonstrated that gradients contain highly sensitive information about the training data, including features that can be extracted through 

careful analysis. Typically, these gradient properties reveal a direct correlation between the input data (and its label) and the resulting gradient. Their 

research showed that even without full data reconstruction, attributes like class representatives and feature correlations can be extracted from gradient 

updates (Wainakh et al., 2021). These exploitable properties are particularly pronounced in the final layer of a neural network, where gradients directly 

correspond to output predictions and contain the most discriminative information. Wainakh et al., (2021), described properties that were utilized to 

develop the attack methodology as gradient sparsity patterns that reveal feature importance, gradient magnitude distributions that correlate with class 

separation, and gradient direction similarities that expose data relationships within and across classes. 

3.6. Source Inferencing 

Source Inference Attacks (Hu et al., 2023) employ mathematical formulations to identify the specific client responsible for contributing a particular data 

point within a federated learning system. This attack methodology utilizes vector similarity measures (Elhussein & Gursoy, 2024) to trace data provenance 

through gradient analysis. Given the gradient of loss function 𝑔 =  𝛻𝑖ℓ(𝜃, 𝑧) computed on the target data point z and model update or gradient vector 
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𝛥𝜃𝑖 submitted by client 𝑖. The attack employs cosine similarity in Eq. 9 as the core mathematical measure to quantify the alignment between the target 

data point's gradient and each client's model update: 

𝑠𝑖𝑚(𝑖)  =  (𝛥𝜃𝑖  ·  𝑔) / (‖𝛥𝜃𝑖‖ × ‖𝑔‖) 

This formulation computes the cosine of the angle between the two vectors (weights), providing a normalized measure of directional similarity that is 

invariant to vector magnitude.  The optimization objective is then formulized as 

𝑖∗ = arg max
𝑖

(𝑖) 

where the optimal client identification 𝑖∗ is determined by finding the maximum value of the similarity function across all clients. The foundation of this 

attack rests on the mathematical principle that a client's model update represents the aggregation of gradients from all data points in its local dataset. The 

gradient of an individual data point g will demonstrate maximal directional alignment with the aggregate update 𝛥𝜃𝑖  from the client that originally 

contributed that data point, due to the additive nature of gradient computation. 

This mathematical approach transforms the source identification problem into a measurable optimization task, leveraging geometric properties of vector 

spaces to infer data provenance within collaborative learning systems. This body of research delineates a key distinction where Membership Inference 

Attacks (MIAs) determine whether a specific sample was used during training, PIAs deduce underlying characteristics or labels within client datasets. 

Although countermeasures like Differential Privacy (DP) are commonly employed, they frequently necessitate a compromise between privacy protection 

and model performance. Our analysis synthesizes these insights and advocates for an updated threat model that prioritizes defense against sophisticated 

server-side adversaries a critical step toward designing robust, privacy-conscious federated learning frameworks. 

4. Applications of Inferencing and Defense Strategies 

This study summarizes areas where the attack techniques formulations have been applied using a table format. Specific gaps of every attack strategy is 

also defined in order to inform mitigation and secure strategies. This table catalogs how centralized server exploit the shared updates to infer sensitive 

information about the clients' private training data.  

Table 1 Existing Implementations of Inferencing Attack Strategies 

Author(s) 
Attack 

Strategy 

Technique 

Name 

Adversarial 

Component 
Methodology Limitation 

(B. Wang et al., 

2019; Shokri et 

al., 2017b) 

Membership 

Inference 

(MIA) 

Passive MIA 

via Shadow 

Models 

Server 
Train shadow-model-based 

membership classifiers 

Computationally expensive; requires 

accurate distribution matching 

(Nasr et al., 

2019) 
MIA 

Active MIA 

via Gradient 

Ascent 

Server 
Client correction reveals 

data membership 

Highly intrusive, detectable, degrades 

global model performance  

(Nasr et al., 

2019) 
MIA 

KKT-based 

MIA 

curious central 

server Formulates MIA via integer 

programming using KKT 

conditions. 
 

Limited to simpler models (e.g., logistic 

regression) where KKT conditions are 

tractable. Becomes computationally 

infeasible for large models like deep 

neural networks. 

(Ganju et al., 

2018; Melis et 

al., 2018) 

Property 

Inference 

(PIA) 

Gradient 

Signature 

Analysis 

Server The server analyzes client 

gradient statistics (mean, 

variance) to train an attack 

model that infers data 

membership 

Attacker trains on synthetic data, which 

may not match real distribution, 

reducing accuracy 
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Author(s) 
Attack 

Strategy 

Technique 

Name 

Adversarial 

Component 
Methodology Limitation 

(Geiping et al., 

2020; Huang et 

al., 2021; Zhu et 

al., 2019) 

Source 

Inference 

Cosine 

Similarity 

Attack 

Server Compare client update-to-

target gradient cosine 

similarity to identify the 

source client 

Larger client batch sizes dilute the 

target's gradient signal, reducing attack 

effectiveness 

(Huang et al., 

2021; Zhu et al., 

2019) 

Gradient 

Inversion 

Deep Leakage 

from 

Gradients 

(DLG) 

Server/Client 
Optimize dummy data to 

match a client's gradient, 

reconstructing their private 

dataset 

Only works effectively on very small 

batch sizes (often 1). Fails with larger 

batches, modern architectures 

(BatchNorm), and any form of gradient 

compression or noise (e.g., DP). 

(Kabir et al., 

2023) 

IoT 

Volumetric 

MIA 

Traffic 

Analysis MIA 

Server High classifier confidence in 

a device type suggests its 

traffic was in the training 

data, revealing its network 

presence 

Only detects device type presence, not 

activity. Mitigated by lowering 

prediction confidence. 

4.1 Schematic Diagram of Attack Inferencing Strategies 

The study illustrates how inference attacks may be used by centralized server to infers data from clients by use using updates from clients.  Loss 

optimization is managed through stochastic gradient descent in both client and server. In Figure 1, we intentionally located each inference attack strategy 

within a specific client to demonstrate how a local update can be computationally manipulated by the server to infer private information. 

 

Figure 1 Schematic Diagram of Federated Learning with Inferencing Attacks 

4.2 Existing Defence Techniques 



International Journal of Research Publication and Reviews, Vol 6, Issue 9, pp 947-958 September, 2025                                     953 

 

 

The table below illustrates a taxonomy of foundational defence methods designed to neutralize privacy inference threats within the Federated Learning 

(FL) model. Every defence category contains a corresponding technique and existing vulnerability associated with exchange of model updates. These 

methods include homomorphic encryption (HE), differential privacy (DP), secure multi-party computation, anonymization and regularization.  

Table 2 Defence Against Inferencing Attacks in FL 

Proponents 
Defense 

Classification 
Objective Common Techniques Trade-off 

(Cui et al., 2023; Z. Li & Zhang, 

2020; McMahan et al., 2017; K. Wei 

et al., 2020) 

Differential 

Privacy (DP) 

Protect individual 

data points through 

perturbation 

DP-SGD, Noise 

injection before 

aggregation. 

Adding noise reduces model utility 

and performance accuracy. Requires 

careful tuning of the privacy budget 

(ε). 

(Cheon et al., 2017; Phong et al., 

2018; Q. Zhang et al., 2021) 

Homomorphic 

Encryption 

(HE) 

Perform computation 

on encrypted data. 

Paillier encryption for 

secure aggregation. 

CKKS encryption 

Have significant computational 

overhead and communication costs, 

making training slow and 

impractical for large models. 

(Mohassel & Rindal, 2018; So et al., 

2020; X. Zhang et al., 2023) 

Secure Multi-

Party 

Computation 

(SMPC) 

Jointly compute a 

function with private 

inputs. 

Secret sharing of model 

updates. 

Introduces communication overhead 

between parties and complex 

coordination protocols. 

(Chen et al., 2025; Wu et al., 2018; 

X. Zhang et al., 2023) 

Anonymization 

& Mixing 

Break the link 

between update and 

client. 

Secure Aggregation, 

Update shuffling. 

Secure Aggregation protocols can be 

broken if the server colludes with a 

subset of clients. 

(Fereidooni et al., 2021; Pillutla et 

al., 2019; Shejwalkar & 

Houmansadr, 2021) 

Anomaly 

Detection 

filter out malicious 

or anomalous client 

updates. 

Statistical filtering 

(e.g., median/trimmed 

mean), Clustering-

based methods (e.g., K-

Means), Norm-based 

thresholding, metric 

distance 

Elimination of legitimate updates 

from clients with non-IID data, 

potentially biasing the global model 

(Abbasi Tadi et al., 2023; Bai, Hu, et 

al., 2025; Salem et al., 2019) 
Regularization 

Reduce overfitting to 

lessen MIA leakage. 

Increased L2 weight 

decay, Early stopping. 

Introduce underfitting, limiting the 

final performance (accuracy) of the 

global model. 
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5. Conclusion and Future Work 

This paper offers a systematic exploration of the technical and procedural mechanics behind server-side inference attacks in Federated Learning, asserting 

that the central server is the primary and most formidable malicious entity. The privileged role of the central server in Federated Learning enables it to 

be a powerful adversary, capable of orchestrating precise, large-scale privacy breaches through various inference attacks. This capability undermines FL's 

initial promise that sharing gradient updates alone provides sufficient privacy protection. A curious server can can therefore utilize mathematical toolkit 

to exploit privacy of individual devices in a network. 

Techniques spanning theoretical frameworks like Bayesian inference and the Neyman-Pearson lemma to practical optimizations like gradient matching 

and cosine similarity equip a server with potent means to deduce sensitive information. Our synthesis of these attacks into a unified schematic (Figure 1) 

and taxonomic classification (Tables 1 & 2) clarifies the attack landscape and exposes a critical vulnerability in prevailing FL security paradigms. 

This paper's evaluation demonstrates that contemporary defense mechanisms suffer shortcomings in dealing with inference attacks within federated 

learning. The study shows that techniques like Differential Privacy, Homomorphic Encryption, and Secure Multi-Party Computation incur prohibitive 

costs in utility or efficiency and are largely ineffective against a primary adversarial server. By negating the naive assumption of honest central server, 

this analysis concludes that realizing true privacy-preserving collaborative learning demands a paradigm shift towards defenses explicitly engineered to 

mitigate server-side adversaries. 

Future research should pioneer cryptographic techniques, such as zero-knowledge proofs or verifiable secret sharing, which empower clients to 

cryptographically confirm that the server has correctly aggregated their updates without manipulation. This capability would directly neutralize the core 

threat posed by a malicious central server, ensuring the integrity of the aggregation process itself. There is need to theoretically tighten the privacy-utility 

trade-off through new algorithms that offer stronger formal guarantees against inference attacks without crippling model performance. This endeavor 

should involve creating adaptive differential privacy mechanisms with dynamic privacy budgets, developing hybrid models that combine defenses like 

lightweight secure multi-party computation with minimal noise injection, and establishing novel FL-specific privacy metrics and game-theoretic 

frameworks to move beyond ad-hoc evaluations.  
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