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ABSTRACT

Metabolite profiling is essential to contemporary medication development since it ensures the safety and effectiveness of therapeutic candidates and offers
insights into the biotransformation of novel chemical entities (NCEs). The FDA and EMA's Metabolites in Safety Testing (MIST) guidelines are two regulatory
frameworks that emphasize the importance of metabolite profiling. The functions of advanced analytical methods, such as imaging mass spectrometry, LC-MS,
GC-MS, NMR spectroscopy, CE-MS, radiolabelling, and others, in detecting and measuring metabolites in intricate biological matrices are thoroughly examined.
Difficulties involve low metabolite concentrations, matrix effects, isomeric interferences, a lack of reliable standards, metabolite instability, and inter-individual
variability still exist despite tremendous advances in technology. High-resolution chromatographic and spectrometric techniques, surrogate standard development,
pharmacogenomic integration of data, and sample preparation optimization are some of the strategies to get beyond these challenges. In order to obtain
trustworthy metabolite data that support pharmacokinetic modelling, regulatory filings, and individualized therapeutic methods, these analytical obstacles must be
removed. This review emphasizes how metabolite profiling is multidisciplinary and how important it is to safe, efficient, and scientifically sound medication
development.
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1. Introduction

The term "metabolomics" defines a general analytical approach for the identification and quantification of metabolites in biological systems. This
research will seek differences among metabolites, obtain comprehensive metabolite profiles, and formulate theories to describe the differences.
Metabolite analysis, especially metabolite profiling in biological samples that are challenging to analyze, is crucial to many life sciences. Metabolite
profiling is a well-established concept. Mass spectrometry metabolic profiling was originally reported by Horning and Horning in 1971 In the same
year, Pauling et al. analyzed breath vapor and urine using gas chromatography (GC) and compared the profiles to the results of a particular diet. The
analyses of metabolites from various samples have been indispensable in the majority of research fields with the advent of various strong analytic
methods, both chromatographic and spectroscopic. It is still hard to identify metabolites with absolute certainty despite the high sensitivity and
resolution of numerous methods in such studies. [1,2,3,5,6]

Metabolomics is an interdisciplinary field that includes physiology, nutrition, microbiome analysis, exposomics, environmental evaluations, and
biomarker identification. [7, 8] Quantitative metabolomics publications increased more than two-fold in the past eight years and exceeded 800 in 2023.
The chemical nature of the analytes creates a number of challenges for quantitative metabolomics. Metabolites are endogenous molecules with
molecular weights less than 1500 Da and varying physical and chemical properties. [7,9]

There are two major stages of drug metabolism: Phase II and Phase I. The prominent enzymes of Phase II metabolism include methyl transferase (MT),
glutathione transferase (GST), sulfotransferase (SULT), UDP glucuronosyltransferase (UGT), and N-acetyltransferase (NAT). The prominent enzyme
system for Phase I metabolism is cytochrome P450 (CYP).[10]The efficacy and safety of a drug to a significant extent depend on its metabolism.

Most functional metabolites that are stable exist in pharmacologically inactive forms during drug metabolism. In addition, metabolism also generates
reactive metabolites that are potentially toxic. In the process of finding and designing new chemical entities (NCE) with acceptable safety attributes,
different drug metabolic studies are conducted. It is the overall goal of the metabolic profiling experiments to find out the metabolites and pathways of
participation in the biotransformation process. [11]

Some of the metabolites, such as lipids, are considerably less polar, but others, such as organic acids or amino acids, are small and strongly polar.
Sensitive analytical techniques, such as nuclear magnetic resonance or liquid (or gas) chromatography coupled with mass spectrometry (LC-MS or GC-
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MS), are needed to accurately quantify and accurately characterize such metabolites in such complicated biological specimens. [11,12,13, 14] Less specific
analyses, e.g., high-resolution mass spectrometry, can also be used for absolute quantification. [15,16, 17,18]

2. TECHNIQUES USED FOR METABOLITE PROFILING

Many scientific disciplines, including integrated systems biology, biomarker identification, functional genomics, and studies of biological and
environmental stress, have made use of metabolomics. To cover the entire spectrum of metabolites, several analytical platforms are required due to the
metabolome's complexity and dynamic nature. The three most popular methods are mass spectrometry (MS), nuclear magnetic resonance (NMR), and
Fourier transform infrared (FT-IR). [20,21,22,23,24]

A number of recent advances in technology in metabolite separation, detection, identification, and quantification have led to the collection of data that
metabolomics seeks to combine. The identification and separation of metabolites have been regarded as crucial phases in metabolic profiling. Capillary
electrophoresis (CE), gas chromatography (GC), and liquid chromatography (LC) in its high-performance (HPLC) or ultra-performance (UPLC)
variants are the most often used separation methods. The most often used detection methods are nuclear magnetic resonance (NMR), mass spectrometry
(MS), and near infrared spectroscopy (NIR). [25]

NMR [28], Fourier transform-infrared spectroscopy (FT-IR) [29,30], mass spectrometry (MS), and separation techniques, or direct flow injection. Among
the many advantages of NMR are its potential for high-throughput fingerprinting, its low sample preparation requirements, and its non-destructive and
non-discriminating nature. [26]

Since the quality of the experimental design and sample treatment determines the quality of the instrumental data, the entire metabolomics experiment
should be organized as an integrated unit in addition to the analytical technique selection. Analyte separation and identification, data extraction and
mining, sample collection and preparation, and data analysis are the four main components of a metabolomics experiment. [27]

Figure 1. General workflow for metabolomics analyses. Adapted from Saigusa et al., 2023

2.1 Sampling and Quenching

Sample collection is primarily dictated by the experiment's design and nature. A power analysis should be carried out, if at all possible, in order to
guarantee that an adequate number of samples are collected, to lessen the impact of biological variability, and to produce statistically validated data. In
the case of human samples, the effects of genetic variables, age, gender, and diet must be taken into account. Consequently, metabolic fingerprinting
analysis frequently analyses a large number of samples in order to identify sample clustering that is biologically significant. Sample replicates,
analytical replicates, blanks, including method blanks, and representative quality control samples must also be examined. Processing biological samples
requires extra care to minimize the production or breakdown of metabolites following sampling because of residual oxidation or enzymatic activity.

2.2 Sample Preparation

For any analytical technique to be successful, sample preparation quality is a critical component. Usually, it has multiple uses. The primary objective is
to extract the analytes from complex biological matrices, such as whole blood, serum, plasma, tissue homogenates, saliva, urine, cell pellets, or cell
media, and to convert them into a format suitable for the analytical method while eliminating matrix components that might obstruct the analysis. A
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pre-concentration phase may be incorporated into the extraction process for low-abundance metabolites in order to meet the analytical technique's
detection limits.

A sample preparation procedure needs to be as simple and ubiquitous as feasible. It is important to remember that sample processing of any kind will
result in analyte losses. Extraction techniques used on aqueous materials, in particular, will yield poor recoveries of highly polar chemicals. The
following techniques can be used for sample preparation and introduction in biological sample analysis: direct injection, liquid-liquid extraction (LLE),
solid-phase extraction (SPE), supercritical fluid extraction, accelerated solvent extraction, microwave-assisted extraction, protein precipitation, and
membrane techniques like dialysis or ultracentrifugation. [26]

2.3 Separation and Detection of Metabolites

Mass spectrometry (MS) and nuclear magnetic resonance (NMR) are the two primary analytical tools utilized in metabolomics. Both instruments can
measure a large number of metabolites in a high throughput and reproducible manner. [27]

2.3.1 High-performance liquid chromatography [HPLC]-

This commonly employed method allows for the separation of various chemicals by packing them into columns with 3–5 μm porous particles of a
stationary phase that interact with them in diverse ways. However, using a traditional HPLC system to separate many components at the same time is
quite challenging. Liquid chromatography is classified based on the stationary phase and on the mode of separation.

a] Adsorption chromatography, where an adsorbent (silica gel) acts as the stationary phase and the separation occurs due to repeated adsorption–
desorption steps. There are two types of this type of chromatography: normal and reversed-phase chromatography, depending upon the relative polarity
of the two phases. Normal phase chromatography employs a nonpolar mobile phase and a very polar stationary bed. Polar samples spend more time on
the surface of the column packing than do less polar samples. Reversed-phase chromatography employs a polar liquid as the mobile phase and a
nonpolar (hydrophobic) stationary bed, however, and the more nonpolar the substance, the more it will be retained.

b] In ion-exchange chromatography, ions in the sample are charged oppositely on the surface ionically charged stationary bed. Only ionic or ionizable
samples are utilized using it. It will take longer for the sample to elute if its charge is stronger. The ionic strength and pH of the mobile phase, an
aqueous buffer, regulate the elution time.

c] Size exclusion chromatography involves filling the column with material with controlled pore sizes, then screening or filtering the sample according
to its solvated molecular size. Bigger molecules elute faster than smaller ones because the latter enter the porous structure of the packing particles and
elute more slowly. While the stationary phase is no longer restricted to a "gel," this technique is also referred to as gel filtration or gel permeation
chromatography. The basis of detection methods can be mass spectrometry (MS), fluorescence, evaporative light scattering, UV light, or refractive
index. High-performance anion exchange chromatography (HPAEC) uses either pulsed amperometry detection or conductivity detection under ion
suppression. [31]

Figure-2: Schematic overview of a high-performance liquid chromatography (HPLC) system [infusion pump, degasser, sampler/autosampler,
chromatographic column, detector, and data processing unit], from Creative Proteomics Pronalyse HPLC service page.

2.3.2 Ultra-performance liquid chromatography [UPLC]-

Ultra-performance liquid chromatography [UPLC]: The rise of UPLC has led to recent technological developments in liquid chromatography. High
pressure operations are made possible by advancements in pump systems that combine high working pressures with 1.7-μm porous particles packed in
long capillary columns. Higher peak capacity, resolution, sensitivity, and speed are all provided by UPLC technology in comparison to HPLC. [32]
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Similar results to those obtained with HPLC can be obtained with this method in a significantly shorter amount of time. According to [33] (2005),
running durations could be shortened by ten times in this regard, indicating that UPLC is a viable analytical method for metabolomic studies. The same
detectors used in traditional HPLC, including UV-VIS, fluorescence, and MS, are also used in UPLC. Although UPLC-MS technology is mostly used
in pharmaceutical and bioanalysis research, it has also been used in food studies to identify dangerous substances, food additives, and food components.
[31]

Fgure-3: Schematic overview of a UPLC- tandem mass spectrometry (UPLC-MS/MS) system, showing key components such as solvent reservoir,
high-pressure pump, PFC isolator column, UPLC analytical column, tandem mass spectrometers, and data processing/display. Adapted from
Taleuzzaman et al.

2.3.3 NMR Spectroscopy

- In order to conduct NMR spectroscopy, a chemical must be exposed to a magnetic field. The isotopes in the compound (e.g., 1H, 13C, 14N, 15N, and
17O) absorb the radiation and resonate at a unique frequency depending on their location inside the small molecule. [28] The resulting NMR spectrum is
a collection of peaks at different positions and intensities, with a unique pattern for every chemical. In contrast to MS, NMR does not discriminate (any
molecule with protons, carbon, nitrogen, or oxygen can be recognized), necessitates minimal sample preparation, and does not cause sample
degradation while being analysed. One of the most significant benefits of NMR is probably its capacity to offer structural data that can be used to
identify an unknown metabolite. One of NMR's primary drawbacks is its low sensitivity. [34] Since NMR-based approaches usually overlook low
abundance metabolites, the metabolomics field has recently moved toward the use of more MS-based techniques. [26]

Figure 4: Workflow for NMR tracer‑based metabolism: cell cultures are grown in a medium containing 13C- or 15N-labelled precursors…, from
Saborano et al. [2019] Scientific Reports 9:2520.

2.3.4 MS –

The overall strategy for identifying target analytes by MS is outlined in Figure. The sample's biomolecules are separated and ionized using either gas
chromatography (GC) or liquid chromatography (LC). MS determines the mass-to-charge (m/z) ratios of ions that are obtained by breaking down the
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ionized parent chemical. Data collection software can be used to obtain a complete scan mass spectrum from target analytes. To find variations in
important metabolites, bioinformatic methods can be used. Tandem mass spectrometry (MS/MS) is an alternative method for quantifying the analyte.
Chemical ionization (CI) and electron impact ionization (EI) are methods for detecting and measuring biomolecules at sub-femtomole levels. High
sensitivity, high selectivity, speed, and connectivity to GC or LC are the benefits of MS-based techniques. [35] Multiple sclerosis's main disadvantages
are that it can be costly, selective (not all samples ionize in a given environment, and the source ion polarity may need to be adjusted), harmful to the
sample, and typically requires sample processing, which can result in metabolite losses. [27]

2.3.5 Gas Chromatography/Mass Spectrometry [GC/MS]—

GC/MS is a widely used metabolomics tool that is effective in detecting volatile compounds such as fatty acids and organic acids. Because GC
separation takes place in an oven at high temperatures, analytes must be volatile and thermally stable, and sample derivatization is frequently required
before analysis. Although required, it is crucial to remember that one of the main disadvantages of GC/MS is that derivatization is an extra sample
processing step that may cause metabolite loss. In GC/MS, EI or CI ionize samples as they enter the source. GC/MS can perform targeted and
untargeted metabolomics by using the full scan and selective ion monitoring modes, respectively. To increase the sensitivity and separation of
complicated metabolite mixtures, different techniques have recently been used. One of them, GC × GC, or "comprehensive GC," diverts each peak
from a GC column to a second GC column in order to separate complex samples. By integrating GC or GC ×GC with a time of flight (TOF) mass
analyser, mass accuracy (and hence chemical identification) can be enhanced. [36]

2.3.6 Liquid Chromatography/Mass Spectrometry [LC/MS]—

Biomedical mass spectrometry has evolved since electrospray ionization (ESI) was developed, allowing the coupling of mass spectrometry (MS) and
liquid chromatography (LC). Metabolomics is currently the main application for this technology. The metabolome's extensive coverage is one of the
main challenges in LC/MS. Reversed phase LC and C18 columns are commonly used and provide good separation of weakly polar and nonpolar
substances. However, polar analytes are not retained by these C18 columns. Tolstikov and Fiehn recently presented hydrophilic interaction
chromatography (HILIC), a unique type of LC for examining polar chemicals in plant extracts. HILIC columns, which employ modified stationary
phases, employ reversed phase LC, but they specifically retain polar chemicals that elute as the mobile phase becomes more aqueous. HILIC has some
drawbacks despite its benefits, such as poor repeatability of retention time and analytical drift when analyzing many samples. Lipids and other non-
polar substances are commonly subjected to atmospheric pressure chemical ionization (APCI). For lipid species that are thermally stable, APCI is a
reliable ionization method that produces minimal fragmentation and maintains the molecular ion. Capillary LC and nano-LC with low flow rates offer
remarkable dynamic range and sensitivity when paired with ESI and APCI. Nowadays, metabolomic research uses these methods, which were widely
utilized in proteomics. The resulting microdroplets improve chromatographic resolution and mass analyzer detection while requiring less time for
evaporation. Recent applications of Matrix Assisted Laser Desorption Ionization (MALDI) include the study of amino acids and metabolites from
bacterial cells and islets. [40, 41] However, MALDI has significant limitations, including matrix interference for low-molecular-weight compounds and
ion suppression.

Metabolomic research based on LC/MS can employ a variety of mass analysers. The most used analyzers for metabolomic studies are quadrupole, ion
trap, and time of flight (TOF) based analyzers. Other kinds are orbitraps and Fourier Transform (FT) MS. By sequentially joining three quadrupoles,
the triple quadrupole (QQQ) makes MS/MS possible. When used with multiple reaction monitoring (MRM), the QQQ can be used to experimentally
confirm potential biomarkers. An ion-trap mass analyzer may focus on a group of ions with a certain m/z, just like a QQQ. Ion-traps have the ability to
do a multistep MS/MS, sometimes referred to as MSn, in which a specific fragment ion is stored in the chamber and repeatedly disassociated. [27]

Figure-5: Analytical workflow for metabolomics in systems biology. Adapted from Smith et al., 2010
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2.3.7 High-resolution Mass Spectrometry-

Numerous analytical domains have greatly benefited from the use of high-resolution (HR) MS. The majority of applications make use of the strong
accuracy of contemporary instruments to perform unsupervised searches or catalog the ions that are present in a particular sample. The identification of
unknown proteins [43] and protein modification [44,45,46], peptide mapping [47,48], metabonomics [49], and biomarker discovery [50] are a few instances of how
HR-MS affects these kinds of applications. There are numerous parallels between the use of HR-MS technology in drug metabolism and applications
in fields like doping control and forensic science. [51,52,53]

When determining the empirical formulas of metabolites or their fragments was necessary, HR-MS devices were used. [55,56,57] This comprehensive
technique requires a number of instruments and repeated MS tests, yet it was successful in understanding unexpected metabolites. [56,58] New and
enhanced HR-MS instruments [35,36,37,38] and data processing methods [54,63-73] have been developed for metabolite identification in the last 6–8 years.
Because of this, HRMS devices can now perform all necessary metabolite identification tasks with much higher quality and productivity [68,72–75] [42]

Figure-6: Generalized workflow for drug metabolite profiling via high-resolution mass spectrometry. Adapted from Zhu et al., 2011.

3. CHALLENGES OF METABOLOMICS ANALYSIS

The metabolome may be affected by a number of genetic and environmental factors. Therefore, in order to minimize variables and maximize
information recovery, a number of factors must be taken into account when conducting a metabolomic investigation. Reducing interindividual variance
requires improving experimental design, and choosing the best analytical platform for the experiment or laboratory is crucial because both might impact
the experiment's outcome and data recovery. Identifying the biomarkers is another drawback of metabolomics, especially when it comes to LC-MS-
based metabolomics. [76]

3.1 Pre-Analytical Challenges

Measures should be taken to assure that the samples are chosen and handled appropriately before the method measuring the analyte of interest is
analytically validated. If pre-analytical factors are not taken into account, confounders may be introduced into the results, which would lower the
analytical method's perceived accuracy and reproducibility. [78] Both targeted and untargeted metabolomics techniques based on LC-MS can face these
pre-analytical difficulties. Since the effect on the entire metabolome is unknown, these factors should be avoided for untargeted metabolomics. The
effect of these pre-analytical parameters on the target metabolites should be examined in a targeted metabolomics investigation, particularly when
validating an analytical method, to guarantee appropriate sample handling and procurement.

3.1.1 Patient Selection

Environmental and genetic variables are among the many sources that impact the metabolome, which is always changing. [80, 81, 83] Environmental
contaminants, medications, lifestyle choices, and food are examples of these environmental influences. [82, 83] The metabolome can be altered by
environmental factors such as nutrition and smoking. It has been discovered that smoking cigarettes changes the metabolome and related metabolites,
and that smoking is linked to body mass index (BMI). [79] Even while every patient sample will naturally differ metabolically, confounders such
medications and comorbidities must be kept to a minimum because they might significantly affect the analytes of interest. It is crucial to reduce the
effects of confusing factors wherever possible, even though it is impossible to regulate every possible source.
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3.1.2 Sample Collection and Storage

Once patients who meet your inclusion and exclusion criteria have been chosen, samples must be gathered and kept in a systematic way until they are
needed. The quality of the samples will be affected by the collecting and storage methods. It is crucial to make sure that the standard operating
procedures (SOPs) are created specifically for metabolomics analysis and that they are adhered to. Otherwise, metabolomic analysis may be highly
variable due to improper sample treatment, metabolite degradation, and other reasons.

Reagents like anticoagulants can affect a metabolomics study's outcome. Different storage containers and vials can be built of different materials, which
can have varied effects on the metabolome, much as the concepts underlying various anticoagulants for plasma collection. One can skip the clotting
time when dealing with plasma samples. But in order to keep blood from coagulating, it needs to be drawn in tubes containing anticoagulation agents
such sodium citrate, heparin, or ethylenediaminetetraacetic acid (EDTA). [84, 85] Research has indicated notable variations in the expression of
triglycerides, cholesterol, and other lipid species across plasma samples treated with sodium citrate or EDTA. [86] Additionally, it has been discovered
that anticoagulants may cause matrix effects that change the quantities of metabolites observed; these effects may increase, decrease, or completely
eliminate the detection of metabolites. [85,86] Therefore, it is advised to collect plasma samples using the same anticoagulant and to make sure that any
experimental reagents added do not cause ion suppression or boost your target analytes. [77]

3.2 Analytical Challenges in Drug Metabolite Profiling

3.2.1 Low Concentrations and Matrix Effects

Metabolites are hard to detect as they usually occur in biological matrices such as plasma, urine, or bile at nanomolar concentrations. Endogenous
metabolites may suppress or enhance ionization in mass spectrometry and co-elute during chromatographic separation, thus resulting in precise
measurement. These issues are to be avoided and sufficient analytical performance attained with correct sample preparation, estimation of matrix effect,
and use of proper internal standards.

3.2.2 Lack of Authentic Standards

Metabolite measurement accuracy is influenced by the unavailability of robust reference standards, particularly at early stages of development.
Surrogate quantitation with the parent drug can cause major bias due to variations in ionization efficiency and matrix effects. Stable isotope-labelled
internal standards or highly validated surrogate analytes can enhance measurement robustness and regulatory acceptability.

3.2.3 Complex Biological Matrices:

There are thousands of endogenous metabolites in biological specimens (e.g., plasma, urine, and tissues), so it is a challenge to locate commonly low-
abundance drug metabolites hidden in such complex backgrounds.

3.2.4 Low Metabolite Concentrations and Wide Dynamic Range:

The fact that drug metabolites exist in very small amounts (e.g., nanomolar) requires highly sensitive analytical equipment capable of detecting traces
of endogenous molecules amidst a sea of others.

3.2.5 Structural Complexity and Unknown Metabolites:

A single analytical technique is rarely adequate to afford the extensive structural elucidation that is required for new or unanticipated metabolites.
Orthogonal methods will often need to be employed since fragmentation patterns are not always definitive.

3.2.6 Instrumental Variability and Data Quality:

The most important platform, liquid chromatography–mass spectrometry (LC-MS), is prone to matrix-induced ion suppression, batch effects, and
experimental drift, all of which can bias metabolite identification and quantification in the absence of rigorous quality control (QC). [87]

3.2.7 Incomplete Metabolite Coverage:

Chemical complexity precludes the analysis of all the metabolites by one type of analysis. For comprehensive profiling, multi-platform-based combined
techniques are required due to differences in biases and sensitivities of different platforms. [88]
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4. STRATEGIES TO OVERCOME ANALYTICAL CHALLENGES

The U.S. Food and Drug Administration [FDA) published a formal advice on metabolite safety testing criteria [MIST) in February 2008. One It is
important to pay attention to three assertions in the FDA guidance: In general, while evaluating safety, metabolites that are exclusively present in
human plasma or that are present in humans at disproportionately greater levels than in any of the animal test species should be taken into account; 3)
As early as possible in the drug development process, human in vivo metabolic evaluation is strongly advised; and 4) human metabolites that can cause
safety concerns are those that generate at more than 10% of the parent drug's systemic exposure at steady state. The International Conference on
Harmonization [ICH) subsequently established that 10% of the total exposure linked to the drug is the level of a metabolite needed for nonclinical
safety testing. [89, 90]

4.1. Use of Complementary Analytical Platforms

4.1.1 High-Resolution LC-MS [HR-LC-MS]:

High sensitivity and precise mass measurements are provided by HR-LC-MS, the foundation of metabolite profiling, to
differentiate compounds from endogenous background. Both anticipated and unanticipated metabolites can be detected using
data acquisition modes including full-scan MS and data-dependent MS/MS with sophisticated data mining. [87]

4.1.2 Gas Chromatography–Mass Spectrometry [GC-MS]:

useful for volatile and derivatized metabolites (such organic acids and amino acids) . It offers a large metabolite library to
facilitate identification and excellent chromatographic resolution. [91]

4.1.3 Nuclear Magnetic Resonance [NMR] Spectroscopy:

it offers extremely reproducible, structurally descriptive, and non-destructive information that is especially valuable in the
identification and quantitation of abundant metabolites. By detecting metabolites that MS would find challenging to determine on
its own, NMR complements MS methods. [92]

4.1.4 Hybrid Techniques [e.g., HPLC-NMR]:

used to provide extensive structural elucidation when metabolite structures cannot be definitively resolved using normal MS or
NMR techniques. [87]

4.1.5 Additional Methods:

Direct infusion MS (DI-MS) and capillary electrophoresis-MS (CE-MS) can increase coverage for polar or quickly screened
compounds, but they have drawbacks including complicated data interpretation or ion suppression effects. [87]

4.2. Robust Quality Control and Data Validation

4.2.1 Randomization:
The samples' randomized order analysis is required to lessen the systematic bias brought on by temporal instrument drift. [87]

4.2.2 Quality Control [QC] Samples:

Instrument performance is monitored by regularly analyzing pooled matrix samples or standard metabolites during runs.
Multivariate statistical approaches are used to evaluate QC data in order to identify any problems or batch effects that could
invalidate the results. [87]

4.2.3 Statistical QC Assessment:

Prior to biological interpretation, clustering of QC sample data without time trends shows consistent instrument performance and
data validity. [93]

4. 3. Optimized Sample Preparation and Enrichment

4.3.1 Solid-Phase Extraction [SPE] or Similar Techniques:

improves detection sensitivity, enriches target metabolites, and lowers matrix complexity. [87]

4.3.2 Chemical Derivatization:

increases detectability by enhancing the thermal stability and volatility of certain metabolites to facilitate GC-MS analysis. [91]
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4.4. Iterative and Integrated Profiling Approaches

 It is possible to thoroughly identify minor, active, or dangerous metabolites by beginning metabolite profiling early in drug development and
iteratively evaluating metabolites at various stages. [94]

5. APPLICATIONS

Although metabolomic applications are heavily emphasized in later phases of drug discovery, such as clinical trials, early discovery - which includes
fields like target validation and high-throughput screening (HTS) - represents the costliest aspect of pharmaceutical development. The earliest phases of
drug research may be the most cost-effective times to apply attrition reduction strategies. [95, 96] The primary uses of metabolomics in drug discovery
have been in the following areas:

 Chemical library testing;

 High throughput natural product analysis;

 Analyzing metabolic networks computationally.

Furthermore, metabolomics has been demonstrated to be a valuable technique for tracking dietary or behavioural (e.g., drug or alcohol use) compliance
[100–102], monitoring drug utilization with analysis of patient compliance of adherence [99], analyzing therapeutic response which provides markers of
disease or drug application or toxicity [103,104], stratifying patients and theragnostic [105–107], and determining drug dose or individual drug metabolism
[98,108-110]. [97]

5.1 Metabolomics in natural product discovery and analysis

Natural products - chemical compounds or substances made by living things, such as metabolites - offer a conventional source of lead molecules in
drug development because of their bioactivity and structural variety. [111] Natural products can be employed directly or as structural scaffolds to create
analogues with better safety and pharmacological potency. Individual, bioactive metabolites are the focus of natural product discovery, whereas
metabolomics attempts to derive meaning from intricate databases of metabolic mixtures. Metabolomics and natural product analysis share the goal of
metabolite identification and employ the same analytical methodologies, despite their historical differences. When it comes to analyzing complicated
mixtures of metabolites, metabolomics is a comprehensive technique that aims to analyse known and unknown substances in biological samples—
metabolite mixtures - objectively and at high throughput. [114] Approximately 170,000 distinct plant secondary metabolites have been listed in the
Dictionary of Natural Products to far. [111] In spite of the enormous number of known metabolites, the great majority of metabolites in the diverse range
of biological systems have not been well studied. Since metabolomics would enable the examination of complicated mixtures, such phytochemical
preparations, without requiring the isolation of individual chemicals, Advances in this area are expected to revive interest in high throughput natural
product analysis. Clustering and grouping samples are the foundation of the main metabolomics data analysis techniques. Extracts from various sources
or with varying activity can be directly compared using high dimensional measurements of natural product mixes. Without first separating the
metabolites, multivariate data analysis techniques for both unsupervised and supervised analysis can be utilized to identify similarities and differences
between samples of various activities.

5.2 Metabolomics in chemical libraries testing

Chemical libraries are collections of stored compounds that are either targeted or untargeted and are compiled from natural product libraries or
synthesized using different kinds of combinatorial chemistry. A range of high-throughput screening techniques are used to test these massive chemical
assemblages in order to identify subsets of molecules of interest for specific uses. Biological or chemical tests can effectively measure the effects of
agents or circumstances thanks to high-throughput screening techniques. For these techniques to boost test speed and scale, robotics, imaging, and
computation are frequently needed. Thus, fewer drug candidates are found and chosen from libraries according to their chemical characteristics and
high-throughput screening efficacy. Lipinski's rule of five properties can be used to predict a compound's drug-likeness in the library. [115] Drug
properties can be more precisely predicted by the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of medications. This
information can be used to pre-select medications from libraries. [116,117] Metabolomics analysis can be used to improve the investigation of ADMET
properties for several chemicals and to provide molecular information. The application of metabolomics analysis to toxicology testing has included
examining potential toxins generated by a drug's metabolism as well as the mechanisms of action that result in drug toxicity. [103, 107, 108]

5.3 Metabolomics and metabolism modelling in optimization of drug discovery [and preparation]

Models of cell metabolic networks and pathways have become increasingly sophisticated thanks to the widespread usage of metabolomics data in
conjunction with other omics data. These networks can be used to better produce a range of small molecules (drugs, bio actives) or proteins
(bioimmunes, for example), as well as identify key targets within various cell phenotypes and the metabolites that interact with these targets, which can
serve as inspiration for new drug development. Information regarding the ideal development and behaviour of cells under various settings and gene
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alterations can be obtained using in silico metabolic modelling based on genome-wide models. [118,119] This method has already shown promise in
identifying leads for the development of pharmacological targets [120–122] and in optimizing the manufacturing of bioreactors. [123–125]

5.4 Other applications – metabolic biomarkers of drug function and theragnostics

The greatest potential for metabolomics contribution to health care is in determination of disease markers and their detection. [127] Either the same or
different groups of metabolites can be used as markers of drug efficacy either in organisms or in cells or enzymatic assays used in testing new drug
leads. Metabolomics analysis of various biological fluids and tissue samples can have a role in clinical and surgical practice from prognostic, through
diagnostic, treatment planning and monitoring to recovery, rehabilitation or critical care. [128] Individual metabotypes, i.e. metabolic profiles in body
fluids of an individual, are related to disease risk factors as well as treatment outcomes, providing an interesting avenue for personalized medicine [129–

131]. Drug or food interactions, individual differences, disease stage and type, patient behaviour, general health, etc. are all important elements that affect
a safe and effective drug dosage. In light of the growing issue of drug overdose in individual individuals, metabolomics can offer a method for
objectively tracking the levels of drugs and drug metabolites in bodily fluids to establish the best dosages for each case. Unbiased monitoring can also
reveal details regarding a patient's potential drug toxicity and reactions. Numerous articles have already demonstrated how to trace both illegal and
prescription drugs using metabolomics. [126] The FDA offered a preliminary viewpoint on the application of omics technologies, such as metabolomics,
in assessing the safety of novel medications in 2009. Since these early viewpoints, metabolomics has been widely applied in drug safety assessment in
animal models. For example, Jeong et al. [101] and Mattes et al. have examined metabolic markers of liver injury in rats. [128] Recently, Weiler et al. [103],
have provided numerous examples of biomarker analysis, including metabolic markers of drug-induced liver impairment.

6. CONCLUSION:

Metabolomics is a strong and crucial technology of contemporary life sciences and drug discovery with deep perception of metabolites in different
biological systems. By using advanced analytical techniques like NMR, LC-MS, GC-MS, and high-resolution mass spectrometry, researchers can
identify, measure, and get a vision of the dynamics of the metabolites involved in the physiological, pathological, and pharmaceutical processes.

Metabolomics is confronted with numerous challenges to its efforts in revolutionizing the field. These are short metabolite coverage, matrix effect,
issues of sample handling and storage, run-to-run analysis variation, and insufficient standards. Yet, these obstacles can sufficiently be handled by
taking proper quality control, employing complementary analysis platforms, iterative profiling protocols, and proper experimental design.

Metabolomics integrates a broad range of applications including metabolic modeling, ADMET prediction, personalized medicine, and natural product
discovery and screening of chemical libraries. Metabolomics has become a core pillar for target-based precision drug discovery and development
because it is capable of identifying metabolic biomarkers, determining drug efficacy and toxicity, and informing theragnostic deployment.

Metabolomics will more and more be a critical driver in further refining our knowledge of complex biological systems, in directing therapeutic
interventions, and allowing for safer and more effective drug development pipelines as analytics evolve and interface with computation platforms and
multi-omics.
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