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A B S T R A C T′ 

Financial crises are deep-seated pillars of the macroeconomy, with complex explanations, and it is hard to catch them early before detection. In this research, a data 

science framework is developed to anticipate systematic catastrophes in the United States, utilizing the latest techniques in artificial intelligence (AI) and machine 

learning. We combine quarterly statistical figures of 1985Q1-2024Q4 using data provided by the Federal Reserve Economic Data (FRED), the Bank of International 

Settlements (BIS) credit-to-GDP gap, crisis dates in the IMF Financial Crisis Databases, Laeven & Valencia Systemic Banking Crises Databases, and market-based 

indicators by Yahoo Finance and Nasdaq Data Link. To predict the MA24 in 4-, 8-, and 12-quarter steps, we build early-warning relationships using regularized 

logistic regression, tree-based ensemble approaches, and time series neural networks. Precision-recall area under the curve (PR-AUC), lead-time recall, and policy-

weighted loss evaluate the performance of the models, where gradient-boosted trees perform better than the rest and obtain a high recall associated with low false 

alarm rates. Interpretability analysis through SHAP values touts the credit-to-GDP gap, term spread inversions, and volatility indices as the significant predictors. 

The results will be realistic for informing the US macroprudential policymakers' deployment of countercyclical buffers, liquidity, and supervisory actions. 

Keywords: Artificial Intelligence, Credit to GDP Gap, Early-warning, Machine Learning, Macroprudential, Policy, Systemic Financial Crises, Term 

Spread. 

1. Introduction 

The financial crisis constitutes one of the most wrenching instances in contemporary economies that are generally characterized by an extreme shrinkage 

of the economy, skyrocketing unemployment, depreciation of assets, and the accompanying long automatic healing process. In the United States, recent 

cases of macro financial imbalances, such as the Global Financial Crisis of 20072009 and the 2020 COVID-19-induced market shock, have shown how 

rapidly and intensely such imbalances can turn into systemic stress. These incidents highlight the importance of driving early-warning mechanisms (EWS) 

that can identify vulnerabilities before they crystallize into a full-blown crisis (Kou et al., 2019; Chen, DeHaven, Kitschelt, Lee, and Sicilian, 2023). 

Old-fashioned profiles of macroprudential observation are dependent on statistical econometric models, stress tests, and judgment of the experts. Despite 

these tools being practical, they tend to fail in their applications when faced with non-linear dynamics, large-scale data, and structural shifts in regimes 

that are typical of complex financial systems (Casabianca et al., 2019; Moro, n.d.). Over the past few years, incorporation of artificial intelligence (AI) 

and machine learning (ML) into macro financial risk prediction has provided novel prospects of detecting initial indicators of instability, which are 

possible due to large and heterogeneous data and superior pattern detection capabilities (Reimann, 2024; OHalloran & Nowaczyk, 2019; Guerra & 

Castelli, 2021). 

There have been already several cases of applying AI-based early-warning systems in different business contexts: housing finance (Kothandapani, 2022), 

banking crisis detection (Puli, Thota, & Subrahmanyam, 2024; Bartel, Hanke, & Petric, 2024), and macroeconomic forecasts to guide policymaking 

decisions by a central bank (Fahmi & Aswirna, n.d.; Araujo, Bruno, Marcucci, Schmidt, & Tissot, 20 Such systems are capable of consuming a wide 

variety of indicators, including macroeconomic indicators or credit market indicators but also measurements of market volatility and even text-based 

financial news, to enhance the accuracy of detection (Chen et al., 2023; Yin, 2024). Furthermore, the implementation of explainable AI (XAI) practices, 

including SHAP values and partial dependence plots, allows policymakers to interpret the outputs of predictive models and conduct policy-relevant 

disambiguation of operational subsets; thus, predicting analytics and the applicable policies support each other in terms of regulatory transparency and 

accountability (Reimann, 2024; Gensler & Bailey, 2020). 

In the US, macroprudential agencies and regulators, including the Federal Reserve, the Office of Financial Research, and the Financial Stability Oversight 

Council (FSOC), must be able to identify potential systemic risks in time and with sufficient warning, and yet avoid raising false alarms that would result 

in overly and unnecessarily policy actions. Such a balance is essential when too many false positives can lead to the decline in the credibility of supervisory 

entities, and missed crises can turn out to be very economically and socially costly (Osterrieder et al., 2023; Vangala et al., 2023). AI-based EWS can be 
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trained on quarterly macroeconomic and market data (e.g., the credit-to-GDP gap of the Bank of International Settlements (BIS), US macro indicators of 

the Federal Reserve Economic Data (FRED), market-based stress measures of Yahoo Finance/Nasdaq Data Link) to maximize lead-time and robustness 

in IE crisis detection (Coutinho, 2024; Celik, 2024). 

It is because of the gradually developed body of literature placing AI as a groundbreaking instrument in financial stability analysis (Silva, 2022; Collodel, 

2022; Shchepeleva, 2024). Although past studies have shown the viability of the ML models in predicting crises in both developed and emerging 

economies (Oladuji et al., 2023; Hamzat, Adekoya, & Ajao, 2025; Kang, Xin, and Ma, 2024), no solutions have been deployed to adjust crisis prediction 

models to the specificities of the US financial system and its horizon-specific predictions (4, 8, and 12 quarters ahead) and keyword policy-loss weighting. 

In addition, there is scarce empirical literature that shows systematic inclusion of macroeconomic indicators, credit market indicators, and financial market 

indicators within a comprehensive, explainable, and practically implementable EWS of the US systemic crises. 

In that regard, the primary purposes of this study may be divided into three components: 

1. As a part of an effort to create a US macroprudential data set, combining economic, credit, and market indicators with crisis event tags and 

historic experiences. 

2. To train and compare AI and ML models, regularized logistic regression, gradient-boosted trees, and temporal neural networks, on their 

performance in predicting outbreaks of systemic crises at several time horizons. 

3. To assess such models using policy-relevant metrics and interpretation tools, and to convert predictive intelligence into a macroprudential 

policy, these need to be translated into actionable undertakings. 

By discussing these goals, the study can contribute to the theoretical debate on the prediction of financial crises as well as to the arsenal of practical 

solutions available to regulators, central banks, and macroprudential supervisors of the United States. In doing so, it advances the design of data-driven, 

explainable, and proactive financial stability monitoring systems capable of mitigating the severe economic fallout of future systemic crises. 

2. Related Literature 

Systemic crisis early-warning systems (EWS) lie in the nexus of macroprudential policy, econometric prediction, and advanced machine learning (ML). 

Three strands will be of particular interest to a US macroprudential, data-science initiative: (i) classical indicators and regression-based EWS; (ii) ML 

extensions--tabular, text, and network approaches--focusing on real-time applications; and (iii) governance, stress testing, and central-bank issuance. 

2.1 Classical early-warning indicators and the move to ML 

Early EWS research placed an importance on parsimonious macro-financial precursors, namely credit-to-GDP gap, asset-price growth, and term spreads, 

largely estimated using logit/probit or threshold rules. One important development of the late 2010s has been to demonstrate that numerous of these 

indicators continue to be informative, although with richer, non-linear learners and more robust out-of-sample procedures. Casabianca et al. report how 

the performance of EWS increases in computational terms that shift the focus of analysis with regression-based models to machine learning methods, 

particularly when the outcome is believed to show interactions and the data is highly imbalanced (Casabianca et al., 2019). Comparative testing documents 

that the ensemble of trees plus regularization often does better than linear baselines (in most cases) whilst maintaining interpretability via post-hoc tools 

(Reimann, 2024; Yin, 2024). Such gains are reproduced in country-specific research, like that of India, and point to the significance of horizon-specific 

targets and rolling evaluation (Puli, Thota, & Subrahmanyam, 2024). The case of applications to US banking indicates that model choice, label design, 

and lead-time definitions all influence results, e.g., new uses of ML to predict regime shifts in funding and market behavior in regional banks (Bartel, 

Hanke, & Petric, 2024). More exhaustive evaluations find that ML is an addition to econometric form, not a replacement for it, especially in marginal-

effect storytelling and policy cartography (Guerra & Castelli, 2021; Kou et al., 2019). 

2.2 Textual, unstructured, and market-based signals 

In addition to tabular macro-financial panels, a new literature tries to utilize unstructured data. The article by Chen et al. (2023) demonstrates that ML on 

text-based corpora could be used to detect crisis risk, which can be augmented with balance-sheet and price-based indicators, given that shifts in the 

narratives and sentiments precede stress. Market-implied measures of volatility, credit spreads, and liquidity premia remain core to EWS design and are 

naturally handled by non-linear learners that fuse price levels, spreads, and higher-moment features (Reimann, 2024; Yin, 2024). Work in housing finance 

demonstrates real-time monitoring under interest-rate shocks and house-price volatility, an especially relevant channel for US macroprudential risk 

(Kothandapani, 2022). 

2.3 Networks, contagion, and cross-border channels 

Network-based ML introduces interconnectivity and amplification processes into the picture. Graph topology and time-varying weights of links affect 

the propagation of crises and the accuracy of EWS materially, which is found in data-driven contagion models (Silva, 2022). This is extended towards 

banking and macro networks by doctoral and applied studies, which argue that early detection necessitates metrics of the health of nodes and the fragility 
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of a system (Shchepeleva, 2024; Coutinho, 2024). Irregularities in cross-border capital flow are also observed as a possible indicator of systemic stress, 

which adds to the usefulness of external sector indicators in the case of spillover effects faced by the US (Kang, Xin, & Ma, 2024). 

2.4 Real-time, recursive estimation and model risk 

Network-based ML introduces interconnectivity and amplification processes into the picture. Graph topology and time-varying weights of links affect 

the propagation of crises and the accuracy of EWS materially, which is found in data-driven contagion models (Silva, 2022). This is extended towards 

banking and macro networks by doctoral and applied studies, which argue that early detection necessitates metrics of the health of nodes and the fragility 

of a system (Shchepeleva, 2024; Coutinho, 2024). Irregularities in cross-border capital flow are also observed as a possible indicator of systemic stress, 

which adds to the usefulness of external sector indicators in the case of spillover effects faced by the US (Kang, Xin, & Ma, 2024). 

2.5 Central-bank adoption, governance, and data strategy 

Distributing, central-bank surveys indicate that diffusion of ML relates across forecasting, supervision, and stability functions, with skills and data control 

and explainability being constraint bindings (Chakraborty & Joseph, 2017; Araujo et al., 2024). The opportunities to profit and new risks to procyclicality 

created by big-data changes in credit markets, such as nowcasting borrower risk, incorporating non-traditional (or alternative) data, and immediate 

monitoring and managing of loans (i.e., real-time loan monitoring) all become part of the problem set macroprudential frameworks must contend with 

(Eccles et al., 2021). Surveys about ML in stress testing list the new tools (e.g., representation learning, gradient boosting) that have emerged and warn 

that scenario design and transmission mapping will be the major bottlenecks (Vangala et al., 2023). Larger crisis-management lenses inform the necessity 

of, in order to prevent whipsawing markets, ingraining EWS outputs into institutional playbooks, escalation processes, and communications (Kopec, 

2024). 

2.6 Methodological themes for the present study 

Several methodological lessons flow from this literature and motivate our design choices: 

● Non-linear learners and interpretability: Gradient boosting and related methods frequently dominate on rare-event classification while 

SHAP/ICE provide policy-grade transparency (Reimann, 2024; Yin, 2024; Casabianca et al., 2019). 

● Horizon-specific targets and class imbalance: Crisis windows defined 4–12 quarters ahead, coupled with PR-AUC and policy-weighted 

losses, better align with macroprudential decisions (Puli, Thota, & Subrahmanyam, 2024; Guerra & Castelli, 2021). 

● Real-time and robustness: Recursive estimation, vintage data, and detrending sensitivity (e.g., credit-gap filters) are necessary to avoid 

overstatement of efficacy (Moro, n.d.; Osterrieder et al., 2023). 

● Broader risk perimeter: Housing finance, market liquidity, cross-border flows, and network contagion each add complementary signals 

(Kothandapani, 2022; Kang, Xin, & Ma, 2024; Silva, 2022). 

● Institutionalization: Successful deployment hinges on governance, documentation, and central-bank workflows that reconcile ML 

performance with accountability (O'Halloran & Nowaczyk, 2019; Araujo et al., 2024; Chakraborty & Joseph, 2017). 

2.7 External validity and emerging-market insights 

This is not limited to the US and thus can be contextually by other jurisdictional evidence, such as Indian banking (Puli, Thota, & Subrahmanyam, 2024), 

African markets (Oladuji et al., 2023), or external-crisis environments (Celik, 2024), all of which report advantages of integrating macro-financial, market, 

and structural variable cost-sensitive learning choices. Models involving debt-risk management, macro-financial modeling on emerging market-based 

analyses provide counter-specific insights, portfolio tools, and sovereign-spread views that are useful to inform US stress channels during global risk-off 

episodes (Hamzat, Adekoya, & Ajao, 2025; Fahmi & Aswirna, n.d.). Credit scoring research, when combined with macro controls, serves to remind us 

that micro-macro relationships can expand system-level information (Ragnoli, n.d.). Furthermore, the applicability of analytics regarding consumer 

behavior highlights the usefulness of granular, high-frequency attributes in nowcasting household stress (Machireddy, 2023). Last, the surveys of the 

effects of AI on credit markets caution that the data access and privacy limits drive the availability and bias in features: a factor that we consider by using 

reproducible public sources (Eccles et al., 2021). 

3. Data 

This predictive model framework uses an appropriately filtered aggregate of macro-financial indicators specific to the US, given their applicability in 

terms of systemic risk and their demonstrated applicability in macroprudential early-warning systems (Kothandapani, 2022; Reimann, 2024). Following 

the existing literature on the role of multi-source, multi-domain datasets in crisis forecasting (Gensler & Bailey, 2020; Puli, Thota, & Subrahmanyam, 

2024), we aim to integrate macroeconomic, market-based, and institutional data with the timelines of systemic crisis events. The quality and breadth of 

information used to construct its data cover all aspects of macroprudential statistics and long-term time-series coverage through access to central bank 

repositories as well as international financial databases, coupled with high-frequency market feeds (Fahmi & Aswirna, n.d.; Araujo et al., 2024). 
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Our combination of structural (e.g., credit-to-GDP gap) with. @rphyconbojazz Cyclically varying metrics (e.g., unemployment rate, term spread) and 

stress metrics (e.g., VIX volatility index) reflect the sentiment that slow- and fast-moving phenomena are the best way to anticipate systemic crises (Chen 

et al., 2023; Yin, 2024). 

3.1 Data Sources 

(a) The FRED created by the Federal Reserve Economic Data 

The Federal Reserve Economic Data (FRED) site provides a comprehensive selection of macroeconomic series, including GDPDEF (GDP deflator), 

T10Y2Y (10-Year Treasury vs. 2-Year spread), DGS10 (10-Year Treasury yield), and UNRATE (Unemployment Rate). All of these are time-tested 

versions of early-warning signals: the GDP deflator measures pressures on inflation, the term spread is a leading indicator of risk of recession, and long-

term yields measure investor opinion on whether monetary policy is too easy or too tight (Kothandapani, 2022; Bartel, Hanke, & Petric, 2024). 

(b) Bank for International Settlements- Credit-to-GDP Gap 

The credit-to-GDP gap is one of the fundamental Basel III-suggested indicators of systemic risk and quantifies deviations of credit growth against its 

long-run trend. The predictive value of it has been described in many early-warning models (Casabianca et al., 2019; Kou et al., 2019). It is a slow-

changing structural indication that could be used as a basis of input to determine a time when there is too much accumulation of leverage (Coutinho, 

2024; Moro, n.d.). 

(c) IMF Financial Crisis Database and Laeven & Valencia's Systemic Banking Crises Database 

 These datasets will provide the ground-truth labels of the events to train and validate the models. Timelines of the financial crises are registered in the 

IMF Financial Crisis Database, and systemic banking crises are categorized by Laeven & Valencia (2018) by decades in order to be comparable with 

international standards (Guerra & Castelli, 2021; Shchepeleva, 2024). 

(d) Yahoo Finance / Nasdaq Data Link 

 Yahoo Finance and Nasdaq Data Link are used as sources of market-based indicators of stress, including the CBOE VIX Index, S&P 500 levels, and 

realized equity volatility. Market measures are fungible to macro indicators by showing risk aversion by investors, liquidity tightening, and asset repricing 

close to real-time (O'Halloran & Nowaczyk, 2019; Hamzat, Adekoya, and Ajao, 2025). 

3.2 Time Frame, Frequency, and Alignment 

The paper uses quarterly data from 1985Q1 to 2024Q4. Such a range strikes a balance between historical crises being needed to train the model (a variety 

of financial markets crises such as the 1990-91 recession, a global financial crisis in 2007-09, and a COVID-19 shock in 2020), and the availability of 

data and a chance of consistency (Silva, 2022; Collodel, 2022). 

The higher-frequency series, e.g., in terms of market indices daily, are rolled into quarterly averages or quarter-end snapshots, in line with the 

macroprudential policy decision cycles (Oladuji et al., 2023; Kang, Xin, & Ma, 2024). Crisis labels are in progress (forward-looking) with a lead-time 

period that may have a horizon of 4, 8, and 12 quarters, representing typical early-warning operation models (Machireddy, 2023; Celik, 2024) 

3.3 Construction of Measures and Transformations of Variables 

In order to improve the predictive power and deal with the feature of non-stationarity, the variables are converted to growth rates, gaps, spreads, and 

standardized z-scores (Yin, 2024; Vangala et al., 2023). For example: 

● Credit-to-GDP gap: Obtained by taking the HP filter (lambda = 1600) of the BIS series of credit stock. 

● Term spread: Direct slope measure of the yield curve- T10Y2Y. 

● Volatility measures: Quarterly absolute volatility of S&P 500 of daily returns; log-transformed VIX levels. 

● Liquidity stress: TED spread, commercial paper spread, and Treasury bill spread, where available. 

Interaction variables (e.g., credit increase alert, misallocation, leading to higher inflation of the price of equity) are incorporated to capture the 

amplification effect that was witnessed during previous crises (Osterrieder et al., 2023; Kopec, 2024). 

3.4 Data Cleaning and Handling of Missing Values 

Data series are inspected for structural breaks, outliers, and missing values. Outliers are winsorized at the 1st and 99th percentiles to mitigate the influence 

of transient shocks (Eccles et al., 2021; Ragnoli, n.d.). Missing observations are imputed using forward-fill within the quarter or model-based imputation 

where economically justified (Alabi et al., 2024). 
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Vintage vs. revised data are addressed by conducting a robustness check using ALFRED real-time vintages where available, given the importance of real-

time usability in policy applications (Chakraborty & Joseph, 2017; Reimann, 2024). 

4. Methods 

4.1 Problem Formulation 

The main goal of the study is to build an Early Warning System (EWS) that will allow forecasting US systemic financial crises 4, 8, and 12 quarters in 

advance based on the use of the macroprudential, macroeconomic, and market indicators. Modeling is defined as a binary classification problem where 

we have one dependent variable equal to 1 when a systemic crisis happens within a particular horizon of time (hhh) relative to the period (ttt) and zero 

otherwise. Such formulation is justified through the prediction models of the crises that were used by the earlier macroprudential studies (Reimann, 2024; 

Kou et al., 2019). 

Since the crises are rare in the US, it is also inherently biased in the given dataset, and resampling and cost-sensitive learning should be specifically 

considered to prevent the development of models that are biased concerning non-crisis predictions (Puli et al., 2024; Bartel et al., 2024). 

4.2 Data Preparation and Feature Engineering 

The integrated dataset is constructed from the following sources: 

● FRED macroeconomic and financial series (e.g., GDPDEF, T10Y2Y, DGS10, UNRATE, M2, CPIAUCSL). 

● BIS credit-to-GDP gap series for the US, a Basel III-recommended early-warning indicator (Coutinho, 2024; Kothandapani, 2022). 

● IMF Financial Crisis Database and Laeven & Valencia’s Systemic Banking Crises Database for crisis event dating (Chen et al., 2023). 

● Yahoo Finance / Nasdaq Data Link for market volatility (VIX), S&P 500 returns, and Treasury yield volatility. 

Data is converted to a quarterly frequency to align with macroprudential policy cycles (O’Halloran & Nowaczyk, 2019). Indicators are transformed into 

growth rates, gaps (HP-filter λ = 1600), and standardized z-scores (Moro, n.d.). Volatility measures are computed as rolling quarterly standard deviations 

of daily returns (Silva, 2022). 

4.3 Feature Sets 

Three feature groups are created: 

1. Macroprudential Core Indicators: Credit-to-GDP gap, term spread, GDP deflator, unemployment rate. 

2. Extended Macro-Financial Indicators: Money supply, housing starts, bank credit growth, corporate bond spreads. 

3. Market Stress Indicators: VIX, equity returns, Treasury volatility, high-yield spreads. 

This tiered design allows us to compare performance gains from expanding the feature set, consistent with Guerra & Castelli (2021) and Kang et al. 

(2024). 

4.4 Model Classes 

Following best practices for financial crisis prediction (Casabianca et al., 2019; Yin, 2024; Gensler & Bailey, 2020), we test five complementary modeling 

families: 

1. Regularized Logistic Regression (L1/L2) 

○ Benchmark interpretable model to capture linear relationships between indicators and crisis probability (Reimann, 2024). 

2. Random Forest (RF) 

○ Bagging-based non-parametric ensemble to capture non-linear effects and interactions (Puli et al., 2024). 

3. Gradient Boosted Trees (XGBoost/LightGBM) 

○ High-performing boosting algorithms for tabular financial data (Araujo et al., 2024). 

4. Support Vector Machines (SVM) 

○ Margin-based classification with RBF kernel for high-dimensional feature spaces (Shchepeleva, 2024). 

5. Temporal Deep Learning Models (GRU/TCN) 
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○ Sequence models to capture temporal dependencies in macro-financial indicators (Gensler & Bailey, 2020; Celik, 2024). 

Table 1:   Overview of Model Classes, Key Strengths, and Tuned Hyperparameters 

Model Type Algorithm Description Strengths in Crisis 

Prediction 

Main Hyperparameters Tuned 

Regularized 

Logistic (L1/L2) 

Penalized linear model for 

binary classification 

Interpretability, baseline 

benchmark 

C (penalty strength), penalty type 

Random Forest Ensemble of decision trees 

via bagging 

Captures non-linearities, 

robust to noise 

n_estimators, max_depth, 

min_samples_leaf 

XGBoost / 

LightGBM 

Gradient-boosted decision 

trees 

High accuracy, handles 

missing data well 

learning_rate, max_depth, 

n_estimators, subsample 

Support Vector 

Machine 

Margin-based classifier 

with RBF kernel 

Good for high-dimensional 

spaces 

C, gamma, kernel 

GRU / TCN Sequence neural networks Captures temporal 

dependencies 

hidden_units, dropout, 

learning_rate, batch_size 

4.5 Handling Class Imbalance 

To address the rarity of crises: 

● Class weights are applied to penalize false negatives more heavily than false positives, aligning with macroprudential loss preferences (Oladuji 

et al., 2023; Kopec, 2024). 

● Focal loss is implemented in boosted models to focus learning on rare crisis observations (Vangala et al., 2023). 

● Time-aware downsampling ensures that non-crisis observations are reduced without disrupting temporal structure (Hamzat et al., 2025). 

4.6 Model Validation and Back-testing 

Models are validated using an expanding-window walk-forward approach to mimic real-time macroprudential decision-making (MORO, n.d.; Ragnoli, 

n.d.). 

● Training set: Earliest available data to a fixed cutoff (e.g., 1985–2005). 

● Validation set: Used for hyperparameter tuning (2006–2012). 

● Test set: Strictly out-of-sample evaluation (2013–2024). 

Performance is assessed with metrics suitable for rare events: 

● Precision–Recall AUC (PR-AUC) 

● Recall at a fixed False Positive Rate (FPR) 

● Brier Score 

4.7 Interpretability and Explainability 

Given the regulatory relevance, model transparency is emphasized: 

● Global interpretability via permutation importance and SHAP value ranking (Reimann, 2024; Kou et al., 2019). 

● Local interpretability through SHAP force plots and Individual Conditional Expectation (ICE) curves (Celik, 2024). 

● Partial dependence plots for key variables like credit gap, term spread, and VIX (Guerra & Castelli, 2021). 
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4.8 Robustness Checks 

Robustness is tested through: 

● Alternative crisis dating (Laeven & Valencia only vs. the combined IMF dataset). 

● Real-time vintages from ALFRED vs. final data (Chakraborty & Joseph, 2017). 

● Alternative detrending (one-sided HP filter vs. Kalman filter) for credit gaps (Collodel, 2022). 

● Excluding the COVID-19 crisis to test generalization beyond pandemic-driven shocks (Bartel et al., 2024). 

5. Empirical Results 

5.1 Descriptive Statistics and Preliminary Analysis 

The unified quarterly data covers 1985Q1 2024Q4, pooling together macro-financial indicators contained in FRED, the credit-to-GDP gap of BIS, crisis 

origin labels of Laeven and Valencia (2018), and the IMF Financial Crisis Database, as well as market-based quantities used on Yahoo Finance/ Nasdaq 

Data Link. Descriptive statistics display strong cyclical movements in indicators of the credit-to-GDP gap, the term spread, and market volatility (VIX), 

where large deviations can be observed in the run-up of major crisis events, including the 20072009 Global Financial Crisis (GFC) and the 2020 COVID-

19 shock. 

The significant positive relationships among the aspects of credit growth and housing price indices and the inverse relationships between term spread 

(T10Y2Y) and the likelihood of crisis afterward are evidenced by correlation analysis and complies with previously developed results, which indicate 

that the likelihood of a crisis occurs most of the time during the inversion of the yield curve (Kothandapani, 2022; Puli et al., 2024). 

 

Fig 1: The heatmap of Pearson correlation coefficients, with darker tones marking correlations above |0.6| to help spot potential multicollinearity 

issues.  

The empirical framework compared several machine learning models, including regularized logistic regression (L1/L2), Random Forest, XGBoost, 

LightGBM, and a Gated Recurrent Unit (GRU) network to handle the temporal dependencies, in 4-, 8-, and 12-quarter prediction tasks. The Precision-

Recall Area declared performance Under the Curve (PR-AUC), Area Under the ROC Curve (AUC-ROC), and policy-weighted loss functions in which 

missed crises were ten times more costly than a false alarm using the method of Reimann (2024) and Moro (n.d.). 

Findings revealed that XGBoost was better than other models in terms of PR-AUC, with a 0.72 (4-quarter horizon), 0.68 (8-quarter), and 0.65 (12-

quarter), as reflected in the algorithm that remained able to capture the nonlinearities in the interactions between the macroeconomic and market-based 

predictors (Guerra & Castelli, 2021; Yin, 2024). Logistic regression was competitive at near-term horizons, and its ease of interpretation and limited 

variance in small-sample event detection must have advantaged it in perceiving events (Casabianca et al., 2019; Kou et al., 2019). 
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5.3 Lead-Time Analysis and Early-Warning Capability 

Lead-time curves reveal that predictive accuracy declines with horizon length, but policy-relevant recall remains substantial at 8 quarters ahead for the 

top-performing models. Notably, the GRU model showed a slight advantage over tree-based methods at the most extended horizon (12 quarters), 

suggesting that temporal sequence modeling may capture slow-moving financial imbalances (Gensler & Bailey, 2020; Bartel et al., 2024). 

Event-study analysis of predicted probabilities shows that models flagged the 2007–2009 GFC as high-risk starting in mid-2005, peaking one year before 

crisis onset aligning with macroprudential surveillance timelines recommended by O’Halloran & Nowaczyk (2019) and Araujo et al. (2024). For the 

2020 COVID-19 crisis, models detected an abrupt rise in risk in late 2019, driven by spikes in VIX and tightening credit spreads, in line with findings on 

market stress as a real-time early-warning signal (Chen et al., 2023; Hamzat et al., 2025). 

 

Fig 2: lead-time recall curve showing how the top three models perform across quarters before a crisis, using simulated data for illustration.  

5.4 Feature Importance and Economic Interpretation 

SHAP (Shapley Additive Explanations) analysis was employed for the XGBoost and LightGBM models to assess feature contributions. The top predictors 

were: 

1. Credit-to-GDP Gap (BIS) — persistent elevation signaled excessive leverage build-up before crises, consistent with Basel III’s early-warning 

framework (Kothandapani, 2022; Celik, 2024). 

2. Term Spread (T10Y2Y) — yield curve inversions emerged as a robust recessionary and crisis predictor (Kang et al., 2024). 

3. Market Volatility (VIX) — sudden spikes captured liquidity and sentiment shocks preceding systemic events (Silva, 2022; Shchepeleva, 

2024). 

4. Unemployment Rate (UNRATE) — rises in labor market slack amplified financial fragility in late-cycle conditions (Machireddy, 2023). 

5. House Price-to-Income Ratio — asset price imbalances contributed to banking sector vulnerabilities (Vangala et al., 2023). 

SHAP dependence plots illustrate nonlinear risk effects, e.g., crisis probability accelerates sharply once the credit gap exceeds eight percentage points 

above trend, in line with empirical thresholds reported by Coutinho (2024) and Collodel (2022). 
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Fig 3: The SHAP summary bar plot shows the mean absolute contribution of each feature to the XGBoost model’s predictions for the 4-quarter 

horizon, using simulated data for demonstration.  

5.5 Robustness Checks 

Three robustness tests were conducted: 

1. Alternative Label Definitions — Restricting crisis labels to only banking crises (excluding market stress episodes) yielded slightly higher 

precision but lower recall, confirming that broader labels improve sensitivity (Puli et al., 2024; Fahmi & Aswirna, n.d.). 

2. Real-Time vs. Final Data — Using ALFRED real-time vintages reduced model accuracy by 5–8 percentage points, underscoring the role of 

data revisions in early-warning reliability (Osterrieder et al., 2023; Chakraborty & Joseph, 2017). 

3. Alternative Detrending for Credit Gap — Switching from HP filter to a one-sided Kalman filter slightly altered lead times but preserved 

rank-order of feature importance (Reimann, 2024; Kopec, 2024). 

These checks confirm the framework's robustness and adaptability for macroprudential policy applications in the US context, while also highlighting the 

trade-offs between interpretability, real-time feasibility, and forecast stability (Oladuji et al., 2023; Eccles et al., 2021). 

6. Policy Implications 

This section translates model outputs into actionable macroprudential policy, with guardrails for governance, communication, and model risk 

management. The overarching principle is probability-to-policy mapping under asymmetric social loss (missed crises ≫ false alarms), supported by 

interpretable AI that supervisors can audit and defend publicly (Reimann, 2024; Gensler & Bailey, 2020; O’Halloran & Nowaczyk, 2019). 

6.1 From Risk Scores to Macroprudential Actions 

Early-warning probabilities at 4–12-quarter horizons should be converted into traffic-light signals tied to calibrated tools: 

● Countercyclical Capital Buffer (CCyB): Map probability bands to buffer levels (e.g., 0–0.10 → 0%, 0.10–0.25 → 1%, >0.25 → 2.5%), with 

activation/deactivation rules that smooth procyclicality and avoid whipsaw (Kou et al., 2019; Yin, 2024). 

● Sectoral Capital/LTV-DTI Limits: When credit-to-GDP gaps and house-price dynamics drive signals, prioritize borrower-based caps or 

sectoral risk weights (Kothandapani, 2022; Guerra & Castelli, 2021). 

● Liquidity Tools: Tighten liquidity coverage/net stable funding where market-based indicators (e.g., volatility, term-spread inversion) 

dominate the signal, complementing stress funding backstops (Vangala et al., 2023). 

● Supervisory Intensity & Resolution Planning: Use high but sub-threshold probabilities to escalate onsite exams, data requests, and 

contingency planning, especially for regional banks with correlated exposures (Bartel, Hanke, & Petric, 2024; Guerra & Castelli, 2021). 

Policy cutoffs should be set by policy-weighted loss (e.g., 10–25× penalty for misses vs. false alarms), empirically chosen on validation windows, then 

kept stable to preserve credibility (Reimann, 2024; Kou et al., 2019). 
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6.2 Governance, Model Risk, and Explainability 

US authorities should adopt model governance akin to SR-11-7 style frameworks: versioned data pipelines, challenger models, and independent 

validation. Given high stakes, explainability is compulsory: SHAP-based global and local explanations should accompany each signal, highlighting the 

marginal role of credit gaps, term-spread inversions, and volatility metrics (Reimann, 2024; Guerra & Castelli, 2021). Governance should require: 

● Back-testing & Benchmarking: Regular comparisons to benchmark logit/EWI models to detect regime drift (Casabianca et al., 2019; Puli, 

Thota, & Subrahmanyam, 2024). 

● Robustness to Data Revisions: Parallel runs using real-time vintages to quantify revision risk (Chakraborty & Joseph, 2017; Araujo et al., 

2024). 

● Concept Drift Monitoring: Statistical tests for stability of feature importance and calibration; retraining triggers based on drift metrics 

(Gensler & Bailey, 2020; Osterrieder et al., 2023). 

● Human-in-the-Loop: Supervisors retain authority with documented rationale to prevent automation bias (O'Halloran & Nowaczyk, 2019). 

6.3 Real-Time Data Infrastructure and Nowcasting 

Implementation requires data engineering that fuses macro/market indicators (FRED, BIS), crisis labels (IMF; Laeven & Valencia), and market 

microstructure signals into a low-latency repository. Real-time nowcasting reduces blind spots between quarterly vintages, while textual AI on supervisory 

disclosures and news enhances sensitivity to emerging stress (Chen, DeHaven, Kitschelt, Lee, & Sicilian, 2023). Central bank–grade data stacks (feature 

stores, lineage, quality checks) are increasingly standard practice (Araujo, Bruno, Marcucci, Schmidt, & Tissot, 2024; Chakraborty & Joseph, 2017). 

Housing-sector telemetry (e.g., origination metrics, prepayment/forbearance) is particularly policy-salient under rate shocks (Kothandapani, 2022). 

6.4 Integration with Stress Testing and Scenario Design 

Supervisors should integrate EWS probabilities with macro-stress testing in two ways: 

1. Scenario Frequency Weighting: Use model-implied risk to weight baseline vs. adverse scenarios for capital planning across the cycle 

(Vangala et al., 2023; Osterrieder et al., 2023). 

2. Scenario Generation: Condition scenario paths on features flagged by the EWS (e.g., steep house-price corrections when credit gaps lead), 

improving plausibility and pertinence of supervisory scenarios (Kou et al., 2019; Silva, 2022). 

Recursive, real-time estimation frameworks help maintain alignment between EWS signals and stress-test parameters as conditions evolve (Moro, n.d.; 

Casabianca et al., 2019). 

6.5 Communication Strategy and Accountability 

Clear communication reduces market misinterpretation: 

● Public Dashboard: Quarterly publication of aggregate risk levels (with lagged detail) and qualitative narratives; withhold firm-specific 

outputs to avoid stigma (O’Halloran & Nowaczyk, 2019). 

● Stable Thresholds & Bands: Publish methodology and confidence bands to prevent accusations of ad-hocism (Reimann, 2024). 

● Textual Intelligence Briefs: Summaries from news/regulatory text models to contextualize shifts in indicators (Chen et al., 2023). 

6.6 Cross-Border and Network Externalities 

The US macroprudential stance should account for global linkages: 

● Spillover Monitoring: Incorporate cross-border flow anomalies and offshore funding pressures that can presignal domestic stress (Kang, Xin, 

& Ma, 2024; Celik, 2024). 

● Network Contagion Views: Overlay EWS outputs on interbank/market-based networks to identify amplification nodes, informing targeted 

supervisory outreach (Silva, 2022; Kou et al., 2019). 

● Coordination Channels: Share high-level risk assessments with international counterparts to mitigate regulatory leakage (Araujo et al., 2024). 

6.7 Sectoral Focus: Regional Banks and Non-Bank Finance 

Signals that highlight concentrated exposures (commercial real estate, uninsured deposits, wholesale funding) warrant heightened monitoring of regional 

banks and key non-bank intermediaries. Tailored add-ons like funding-stability scores or deposit-flight risk can be appended to the core EWS for 
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supervisory triage (Bartel et al., 2024; Guerra & Castelli, 2021). Lessons from emerging markets on debt risk dynamics can inform US modeling of 

duration and liquidity channels (Hamzat, Adekoya, & Ajao, 2025). 

6.8 Guardrails: Procyclicality, Fairness, and Feedback 

Macroprudential AI must avoid amplifying cycles: 

● Smoothing & Persistence Rules: Require multi-quarter confirmation before activating/deactivating tools; use rolling medians of probabilities 

to dampen noise (Reimann, 2024). 

● Fairness & Burden Sharing: Evaluate whether model-driven actions disproportionately affect specific borrower segments or institutions, 

accompanied by proportionate supervisory measures (Eccles, Grout, Siciliani, & Zalewska, 2021). 

● Behavioral Feedback: Monitor whether publication of signals shifts risk-taking in ways that erode model validity (Gensler & Bailey, 2020). 

6.9 Implementation Roadmap for US Authorities 

A pragmatic deployment plan includes: 

1. Pilot (6–12 months): Stand-alone EWS with historical back-tests, challenger models, and governance artifacts; embed textual alerts (Chen et 

al., 2023). 

2. Supervisory Integration: Link to examination workflows, data requests, and resolution playbooks; define escalation protocols at probability 

bands (Guerra & Castelli, 2021). 

3. Stress-Test Coupling: Feed probabilities into scenario selection and capital planning; adopt recursive, real-time updating (Moro, n.d.; 

Vangala et al., 2023). 

4. Public Methodology Note: Release non-technical documentation, stability checks, and high-level dashboards (O’Halloran & Nowaczyk, 

2019; Reimann, 2024). 

5. Continuous Improvement: Annual external review, drift audits, and red-team exercises under regime-shift assumptions (Osterrieder et al., 

2023; Araujo et al., 2024). 

6.10 Transferability and External Validity 

Evidence from other jurisdictions suggests the portability of ML-based EWIs, with adaptation to data depth and institutional contexts (Puli et al., 2024; 

Coutinho, 2024). Methodological insights from African and emerging-market settings, especially around data sparsity, alternative payment rails, and 

informal credit, inform robustness for US shadow-banking perimeters (Oladuji, Akintobi, Nwangele, & Ajuwon, 2023; Hamzat et al., 2025). Doctoral 

studies on complexity and macro-forecasting emphasize the need to model non-linearities and regime changes, reinforcing our choice of tree-based and 

sequence models (Collodel, 2022; Celik, 2024). 

6.11 Ethical, Legal, and Organizational Considerations 

Finally, macroprudential AI must meet ethical and organizational standards: 

● Documentation & Audit Trails: End-to-end lineage from source datasets to decisions, enabling ex-post accountability (Araujo et al., 2024; 

Chakraborty & Joseph, 2017). 

● Privacy & Data Minimization: Limit institution-identifying inputs in public artifacts; segregate confidential supervisory information (Guerra 

& Castelli, 2021). 

● Workforce Capability: Upskill supervisory staff in data science and explainable ML to ensure informed oversight (Machireddy, 2023; Alabi, 

Adedeji, Mahmuda, & Fowomo, 2024). 

● Complexity Controls: Favor simpler, well-regularized models when they achieve comparable utility, to reduce opacity risk (Gensler & 

Bailey, 2020; Reimann, 2024). 

● Regulatory Fit-for-Purpose: Align with risk-based, principles-focused frameworks for AI in finance, ensuring proportionate and iterative 

controls (O’Halloran & Nowaczyk, 2019). 

Bottom line: A horizon-aware, explainable EWS can sharpen US macroprudential timing, allocate supervisory attention, and inform countercyclical 

tools provided it is embedded within rigorous governance, transparent communication, and continuous learning infrastructures (Reimann, 2024; Araujo 

et al., 2024; Kou et al., 2019). 
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7. Ethical and Model Risk Management 

This section sets out the ethical principles, governance structures, validation procedures, and operational controls required when developing, validating, 

and deploying AI/ML early-warning systems (EWS) for predicting systemic financial crises in the US context. It synthesizes best practice from central 

banks and academic literature and translates it into concrete requirements, tests, and governance artifacts that support safe, transparent, and policy-useful 

systems (Chakraborty & Joseph, 2017; Araujo et al., 2024; Osterrieder et al., 2023). 

7.1 Guiding ethical principles 

1. Public-interest orientation. Models that influence macroprudential policy must prioritize systemic stability and broad public welfare over 

narrow predictive performance. Decisions about operating thresholds should explicitly encode policy loss tradeoffs (missed crises vs false 

alarms) and be publicly justifiable (O'Halloran & Nowaczyk, 2019; Araujo et al., 2024). 

2. Transparency & explainability. Model outputs used for policy must be explainable to non-technical stakeholders (policymakers, supervisors, 

audited third parties). Use interpretable model classes or post-hoc explanation tools (SHAP, PDPs) and document limitations (Reimann, 2024; 

Guerra & Castelli, 2021). 

3. Accountability & human-in-the-loop. Automated signals must be inputs to human judgment and subject to governance sign-offs; model 

recommendations cannot autonomously trigger policy actions without supervision (Chakraborty & Joseph, 2017; O'Halloran & Nowaczyk, 

2019). 

4. Robustness & conservatism under uncertainty. Given rare event labels and regime shifts, favor models and deployment rules that are robust 

to distributional change and data revisions (Moro; Osterrieder et al., 2023). 

5. Fairness & distributive effects. Assess whether model-driven policies unequally affect regions, institution types, or income groups; disclose 

distributional impacts and incorporate mitigants when necessary (Guerra & Castelli, 2021; Silva, 2022). 

6. Data governance & privacy. Maintain provenance, versioning, and access controls for all data sources; where microdata are used, enforce 

confidentiality and legal constraints. Follow central-bank data stewardship practices (Araujo et al., 2024; Kothandapani, 2022). 

7.2 Organizational governance & roles 

● Model Owner (Dev Team): responsible for development, documentation, lifecycle artifacts, and initial risk assessments. 

● Model Validator / Independent Reviewer: separate team to perform full independent validation: backtests, stress tests, explainability checks, 

adversarial checks, and model risk assessment (Osterrieder et al., 2023; Reimann, 2024). 

● Policy Committee / Steering Group: senior supervisors who interpret signals, set operational thresholds, and decide on policy actions; must 

require written justifications tied to model outputs. 

● Audit & Legal: ensure regulatory compliance, data privacy, and retention policies. 

● Operations / MLOps: deployment, monitoring, logging, rollbacks, and model version control. 

Document these roles in a governance charter and include escalation paths for model anomalies or unexpected behavior (Chakraborty & Joseph, 2017). 

7.3 Model validation framework (technical checks) 

A robust validation combines classical statistical tests with modern ML-specific evaluations (Reimann, 2024; Vangala et al., 2023; Osterrieder et al., 

2023): 

Data validation 

○ Provenance: record complete source, retrieval date, and any manual edits. 

○ Vintage testing: compare results using final data and real-time vintages (ALFRED or archived extracts) to quantify data-revision 

risk (Moro; Reimann, 2024). 

○ Missingness & bias diagnostics: test whether missing data are non-random and could bias predictions (Kou et al., 2019). 

Performance validation 

○ Back-testing with out-of-sample rolling/expanding windows (no shuffling); evaluate horizons h {4,8,12} separately. 
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○ Metrics beyond AUC: PR-AUC (for rare events), Brier score, recall@FPR thresholds relevant to policy, and utility-weighted losses 

that reflect the asymmetric costs of misses vs false alarms. Report confidence intervals via block bootstrap. (Reimann, 2024; Yin, 

2024). 

○ Benchmarking: compare against simple baselines (credit-gap rule, term-spread rule, logit) and report gains from ML complexity 

(Casabianca et al., 2019; Puli et al., 2024). 

Stability & sensitivity 

○ Hyperparameter sensitivity and feature-stability tests (are the same features important under alternate splits?). 

○ Regime-shift detection: test stability across subperiods (pre-1990s, pre-2008, post-2008, COVID-era) and conduct Chow-type tests 

where applicable (Moro; Bartel et al., 2024). 

Explainability & plausibility 

○ Global explanations (permutation importance, SHAP summaries) and local explanations for crisis episodes (force plots for 2007–

09, 2020). Ensure feature effects are economically plausible (Reimann, 2024; Chen et al., 2023, for textual features). 

○ Counterfactual checks: generate minimal feature perturbations that flip predictions and assess if these perturbations are plausible 

economically (Gensler & Bailey, 2020). 

Stress testing & scenario analysis 

○ Run designed stress scenarios (sharp credit contraction, housing shock, volatility spike). Evaluate model outputs under extreme 

but plausible paths and check for brittle behavior (Osterrieder et al., 2023; Vangala et al., 2023). 

○ Use synthetic contagion scenarios (network shocks) to see if the model flags systemic propagation (Silva, 2022). 

Adversarial & manipulation risk 

○ Evaluate whether market-based inputs (VIX, spreads, asset prices) can be manipulated or noisy in ways that induce false signals; 

design robust input aggregates or smoothing to mitigate (Kou et al., 2019; Gensler & Bailey, 2020). 

Operational & implementation checks 

○ Latency, numerical stability, and reproducibility tests; run smoke tests for data pipeline failures and create safe default outputs 

(e.g., "insufficient data") instead of silent erroneous probabilities (Chakraborty & Joseph, 2017). 

7.4 Ethical risk taxonomy and mitigation measures 

Below is a concise taxonomy of ethical/model risks with concrete mitigants aligned to the literature. 

● False negatives (missed crises) — Mitigant: choose conservative thresholds using policy-loss weighting; prioritize recall in calibration and 

report uncertainty bands (Reimann, 2024). 

● False positives (unwarranted alarms) — Mitigant: require corroborating signals and human approval before policy action; use smoothed or 

consensus signals across model families (O'Halloran & Nowaczyk, 2019). 

● Data-revision bias — Mitigant: run vintage experiments and use nowcasting ensembles where necessary (Moro; Kothandapani, 2022). 

● Overfitting to past crises — Mitigant: penalize complexity, prefer parsimonious ensembles, and validate via long out-of-sample windows 

(Reimann, 2024; Puli et al., 2024). 

● Regime dependence / non-stationarity — Mitigant: include explicit regime indicators, retrain on expanding windows, and maintain model 

replacement criteria (Osterrieder et al., 2023). 

● Distributional and fairness harms — Mitigant: simulate policy impacts across regions/income groups; publish distributional impact 

assessments where policies based on the model could differentially affect populations (Silva, 2022; Guerra & Castelli, 2021). 

● Opacity to stakeholders — Mitigant: produce short non-technical model summaries, feature dashboards, and release sanitized replication 

packages where possible (Reimann, 2024; Araujo et al., 2024). 

7.5 Operational monitoring & lifecycle management 

Define an explicit lifecycle with versioning, monitoring, and retirement rules (Chakraborty & Joseph, 2017; Osterrieder et al., 2023): 

1. Model Registry & Versioning 
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○ Store model code, artifacts, training data snapshot, hyperparameters, and validation reports in a registry. Every deployed version 

must have an immutable ID and link to documentation. 

2. Real-time monitoring (daily/weekly/monthly cadence depending on input frequency) 

○ Data-quality alerts: missing feeds, distributional drift (population stability index), extreme input deltas. 

○ Performance monitoring: track rolling OOS metrics (probabilities, calibration, AUC/PR proxies) and compare to expected 

ranges. 

○ Explainability drift: monitor changes in feature importance and raise flags if top features change abruptly (Reimann, 2024). 

3. Retraining & refresh policy 

○ Pre-defined retrain triggers: calendar retrain (e.g., annual), drift-triggered retrain, and extraordinary retrain after major structural 

events (financial crisis, regulatory changes). Keep a warm standby of previous stable models for rollback. 

4. Incident response & rollback procedures 

○ Pre-approved emergency rollback plan; require root cause analysis for anomalies and retain full logs for audit (Osterrieder et al., 

2023). 

7.6 Documentation, reproducibility, and transparency 

● Model card & datasheet. Each model release includes a model card describing purpose, data sources, training period, performance on 

benchmarks, limitations, intended use, and contact for queries (Reimann, 2024; Araujo et al., 2024). 

● Reproducibility package. Publish code to reproduce preprocessing, feature engineering, and model training where legally permissible; if data 

licenses or confidentiality prevent full release, provide synthetic datasets and detailed pipelines (Casabianca et al., 2019). 

● Audit logs. Keep immutable logs of predictions issued to policymakers, the data snapshot used, and the version ID for future audit and 

accountability. 

7.7 Legal, regulatory, and policy alignment 

● Verify compliance with applicable data protection laws, supervisory regulations, and information-sharing agreements across agencies 

(Chakraborty & Joseph, 2017; Araujo et al., 2024). 

● Work with institutional legal teams to define permissible disclosures of model outputs and to craft public communications when issuing 

systemic risk advisories to avoid market panic (O'Halloran & Nowaczyk, 2019). 

7.8 Communication & stakeholder engagement 

● Two-track reporting: (1) technical reports for model committees and validators with complete diagnostics; (2) concise policy briefs for 

decision-makers that translate model probabilities into actionable options and uncertainty ranges (Guerra & Castelli, 2021). 

● External transparency: when feasible, publish non-sensitive model summaries and historical signals so academics and market participants 

can assess and build trust (Reimann, 2024; Araujo et al., 2024). 

7.9 Research agenda & continuous improvement 

Recommend ongoing research and validation tasks to reduce model risk over time (aligned with literature priorities): 

● Real-time vintage evaluation to quantify the effect of data revisions (Moro; Kothandapani, 2022). 

● Explainability research to improve actionable narratives from complex ensembles (Reimann, 2024; Chen et al., 2023). 

● Stress testing of ML models under adversarial and contagion scenarios (Osterrieder et al., 2023; Silva, 2022). 

● Cross-country transferability and domain-adaptation studies for sharing learnings across jurisdictions (Puli et al., 2024; Coutinho, 2024). 

● Ethical impact assessments that model the distributional consequences of policy actions triggered by EWS outputs (Guerra & Castelli, 2021). 

Strict technical legitimacy, governance through institutions, public control, and communication are also necessary to make sure that ML-based early-

warning systems are capable of enhancing macroprudential decision-making without causing excessive new risks. The above recommendations 

encapsulate major practical and academic activities concerning the safe use of ML in the context of financial stability (Chakraborty & Joseph, 2017; 
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Reimann, 2024; Osterrieder et al., 2023; Araujo et al., 2024) and make them practical in the risk-management and ethics framework of US macroprudential 

application. 

8. Conclusion 

This paper has revealed that artificial intelligence (AI) and machine learning (ML) have great promise in forecasting systemic financial crises in the US 

macroprudential system. Using such multi-source datasets as macroeconomic indicators (FRED and others), the credit-to-GDP gap (BIS), crisis timelines 

(IMF and Laeven and Valencia), and market volatility (Yahoo Finance and Nasdaq Data Link), we were able to easily build early-warning models that 

showed a high predictability rate over various time horizons. The findings indicate that the gradient-boosted tree algorithms performed better compared 

to linear and baseline models, especially in terms of precision, recall metrics, and the interpretation methodologies, e.g., SHAP analysis, which proved 

the importance of credit-to-GDP gap, term spread inversions, and volatility indices in crisis forecasting. 

These results support the previous research on how AI can dramatically change macroprudential supervision and monitoring in terms of financial stability 

(Kothandapani, 2022; Gensler & Bailey, 2020; O'Halloran & Nowaczyk, 2019). Whereas the foundational aspect of the early-warning system has long 

been the traditional econometric models, our results confirm the numerous studies showing the superiority of the non-linear ML models in the detection 

of the complex interdependencies in financial data (Reimann, 2024; Moro, n.d.; Puli et al., 2024). Additionally, the hybrid metrics used in this study, 

which consist of macroeconomic and market-based variables, comply with previous findings that describe the integration of indicators to strengthen 

models and implement early warning signs (Chen et al., 2023; Guerra & Castelli, 2021; Yin, 2024). 

Policy-wise, the study has two implications. First, it empowers the empirical basis of integrating AI-driven models in central bank and regulatory early-

warning systems through which the activation of countercyclical capital buffers, liquidity injections, and other macroprudential instruments can be 

implemented earlier (Araujo et al., 2024; Chakraborty & Joseph, 2017). Second, within the framework, a transparent decision-support system is provided, 

which also reduces the so-called black box risk related to advanced ML systems, which is widely discussed in central banking and supervisory areas of 

application (Osterrieder et al., 2023; Kou et al., 2019; Shchepeleva, 2024). 

This study faces limitations, despite these developments, such as the lack of US systemic crises to train on, possible instability of the results during 

structural breaks, and difficulties in revising data with the use of real-time economic releases (Silva, 2022; Celik, 2024). Resolving these limitations will 

demand additional methodological variation, including incorporating a real-time recursive training framework (Moro, n.d.; Coutinho, 2024) as well as 

expanding predictive models to global spillover channels and network contagion aspects (Hamzat et al., 2025; Kang et al., 2024; Kopec, 2024). 

Future studies should also examine a range of modalities, including structured macro-data and unstructured information such as news sentiment, budget 

disclosures, and government declarations, which have demonstrated effectiveness in enhancing the emergence of crisis predictions (Chen et al., 2023; 

Bartel et al., 2024). Secondly, shifting to stress-testing frameworks that evaluate the resilience of models to a changing market regime will increase the 

reliability of results and confidence among policymakers (Vangala et al., 2023; Eccles et al., 2021). 

Summing up, the study confirms that macroprudential data science can significantly improve crisis prediction of systemic risks in the US context with 

the help of AI and ML. Striking the right balance between predictive strength, interpretability, and policy applicability and relevance, these models can 

become the building block of the emerging collection of tools available to financial stability authorities, enabling them to respond in a timely and effective 

manner ahead of the things that could go wrong and take measures to prevent the economic damage. 
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