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ABSTRACT 

This research presents a unified artificial-intelligence framework for optimizing renewable-energy conversion reactions. The study integrates machine learning, 

deep reinforcement learning, physics-informed neural networks and metaheuristic search to maximize efficiency and yield across three distinct reaction families: 

proton-exchange-membrane hydrogen electrolysis, CO₂ electroreduction and biomass hydrodeoxygenation. Laboratory, computational and industrial datasets are 

harmonized to train interpretable surrogate models that guide experimental design and process control. High-throughput simulations and reinforcement learning 

enable autonomous exploration of reaction conditions, while physics-based constraints ensure thermodynamic feasibility and safety. Case studies demonstrate that 

the combined framework achieves up to 18 % reductions in energy intensity and 20–40 % increases in yield, with a 17 % improvement in network-level exergy 

efficiency when optimizing multiple reactions concurrently. Pilot-scale deployments further confirm economic benefits, including 8–14 % reductions in operating 

costs and significant decreases in hydrogen production costs. Ablation analyses highlight the complementary roles of supervised learning, reinforcement learning, 

physics-informed surrogates and metaheuristics in achieving robust optimization. The work underscores the potential of integrated AI systems to accelerate 

sustainable energy conversion, enhance process reliability and provide transparent, data-driven insights for industrial adoption. 

Keywords: Artificial intelligence; machine learning; reinforcement learning; physics-informed neural networks; multi-reaction optimization; hydrogen 

electrolysis; CO₂ electroreduction; biomass hydrodeoxygenation; renewable energy; data-driven process optimization 

1. Introduction 

The move towards the replacement of fossil fuels with renewable sources on a global scale is both ecologically important, and a scientific one. Chemical 

energy conversion processes-including hydrogen evolution, CO 2 reduction, biomass reforming and catalytic fuel synthesis-are core to the realization of 

a carbon-neutral energy system. However, these reactions are susceptible to kinetic obstacles, catalyst inefficencies and undesirable thermodynamic 

states, rendering standard optimization by trial-and-error or computer-intensive calculations slow and expensive. AI implies a paradigm shift: machine 

learning algorithms are able to analyze huge volumes of data, identify previously unknown correlations between working conditions and performance, 

and reduce the amount of work performed in experiments, improving the predictability of them. Graph-convolutional neural networks and other deep-

learning models can assess reactive sites and suggest optimal catalysts in sub-second inference time and deep reinforcement learning can provide new 

experimental conditions iteratively to record results and converge toward optimal conditions after far fewer experiments. Physics-informed neural 

networks exploit experimental information and the laws of physics to address inverse and complementary problems to complex chemical systems. In the 

interim, automatic laboratory rooms-automated platforms that create, perform, and analyze experiments-speedy up materials uncovering and catalyst 

improvement. Active-learning systems made it possible to run informative experiments in large combinatorial spaces and discover new catalysts at 

reduced environmental and economic expense. The combination of the technologies in question, including supervised learning, reinforcement learning, 

autonomous labs, and PINNs, will allow elaborating a complex framework to speed up the energy conversion process. This synergy closes the divide 

between the design of chemical reactions at the molecular scale and industrial deployment of chemical reactions with a focus on both improved efficiency 

and improved profitability and also to enable sustainability such as decreased emissions and creation of clean fuels out of biomass waste products 

[1][2][3]. 

2. Literature Review 

This section summarizes findings that have been presented by a wide variety of recent studies that examine how artificial intelligence can be utilized in 

chemical engineering and sustainable energy. These reports include industry-level case studies where large energy savings were achieved, machine-

learning-based methods to predict quantum chemistry, hybrid models that integrate interpretable algorithms with metaheuristics and reinforcement-

learning based approaches that identify streamlined pathways to facilitate reaction optimization. Together, these articles exemplify the potential of 
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AI‑based tools to build more efficient consumption, improve predictive performance, discover new catalysts, and support multi-scale insights ranging 

across molecular modeling to industrial process development, showing one path towards wiser, more sustainable chemical systems. 

Jamali et al. (2025) conducted an extensive review of AI applications in chemical process industries, combining case study analysis with industrial 

datasets and focusing on energy-intensive processes; they found that AI-driven optimization reduced energy consumption by up to 25 percent compared 

to conventional approaches and concluded that AI not only improves operational efficiency but also contributes significantly to sustainable chemical 

manufacturing [1]. National Renewable Energy Laboratory (2020) introduced ALFABET, a machine-learning tool designed to predict bond dissociation 

energies; trained on quantum datasets, this neural-network approach dramatically reduced computation time while achieving predictive accuracy close to 

density functional theory methods, underscoring its potential to accelerate reaction pathway discovery in renewable-energy research [2]. Zhang et al. 

(2025) proposed a hybrid optimization framework that combines interpretable machine learning with metaheuristic algorithms for catalytic reaction 

processes; results showed that the approach delivered both high accuracy and explainability, addressing the “black-box” problem of AI models and 

suggesting that transparency can improve industrial adoption [3]. Yao et al. (2023) published a study in Nature Reviews Materials highlighting the role 

of machine learning in sustainable energy research; by integrating findings across domains such as CO₂ capture, hydrogen generation and photocatalysis, 

they concluded that ML accelerates materials discovery, optimizes energy conversion reactions and is indispensable for achieving climate-neutral 

goals [4]. Sangem (2024) provided a literature review on AI in chemical engineering with a focus on multi-scale system optimization; by analyzing 

applications from molecular simulations to process control, the study found that AI can bridge molecular-level data with large-scale industrial processes 

and identified multi-scale integration as a critical research frontier [5]. Bhuiyan et al. (2025) reviewed AI-driven optimization in renewable hydrogen 

production, combining theoretical modeling with industrial case studies of electrolyzers; they reported significant efficiency improvements and concluded 

that AI frameworks could make hydrogen production more cost-competitive with fossil fuels [6]. Chen et al. (2024) investigated machine-learning-guided 

strategies for predicting reaction conditions using regression models trained on large chemical datasets; their results showed that ML could accurately 

predict solvent and temperature combinations, reducing experimental requirements, though data scarcity remains a barrier [7]. Zhou et al. (2017) applied 

reinforcement learning to chemical reaction optimization by simulating reaction conditions and allowing RL agents to propose new setups; the 

methodology reduced required trials by over 50 percent and demonstrated that RL can mimic human intuition while outperforming traditional 

optimization strategies [8]. Chen et al. (2024) applied machine learning to optimize catalytic hydrodeoxygenation of bio-oils, combining experimental 

data with supervised learning; the study observed improved yields and reduced energy intensity, concluding that ML holds promise for more efficient 

biofuel production [9]. Bohrium Report (2024) explored AI applications in green organic chemistry through case analyses of sustainable reactions, 

focusing on solvent selection and waste minimization; AI-guided solvent optimization reduced toxic byproducts and improved reaction selectivity, 

underscoring AI’s role in eco-friendly chemistry aligned with green principles [10]. He et al. (2023) reviewed AI-enabled chemical process design and 

optimization under the Industry 4.0 framework, including digital twin applications and smart process monitoring; they found that AI enhances real-time 

decision-making in chemical industries and is essential for future smart factories and sustainable energy infrastructures [11]. Karniadakis et al. (2021) 

introduced Physics-Informed Neural Networks for modeling chemical reaction dynamics, incorporating physical laws into machine-learning 

architectures; results showed that PINNs retained high predictive accuracy even with limited data and highlighted hybrid physics-ML models as key for 

robust and generalizable reaction optimization [12]. Wayo et al. (2024) integrated density functional theory with AI models to design photocatalysts for 

hydrogen production; their approach accelerated computational screening of catalyst candidates, significantly reducing cost while maintaining predictive 

fidelity, and they concluded that AI-DFT integration is crucial for accelerating renewable hydrogen discovery [13]. He et al. (2024) applied machine 

learning to identify chemical reaction processes using classifiers trained on reaction pathway data; results demonstrated that ML could successfully 

differentiate between complex reaction networks, leading the authors to conclude that ML is highly applicable for designing efficient reaction systems in 

renewable energy contexts [14]. Taylor (2023) presented a structured overview comparing traditional kinetic modeling with AI-driven optimization for 

chemical reaction optimization; the findings suggested that AI methods outperform classical approaches in speed and scalability, leading to the conclusion 

that AI will become the dominant paradigm in reaction optimization for renewable energy systems [15]. 

3. Problem Statement 

Whereas the literature has shown significant advances in using artificial intelligence to maximize chemical reactions to convert renewable energy, a 

number of critical gaps exist, which have not been filled. Previous literature has tended to either examine individual reaction channels (including hydrogen 

evolution, CO2 electroreduction, or biomass conversion alone) or to group together and simulate specific approaches (machine-learning regression, 

reinforcement learning, or physics-informed neural networks, for example). Although these approaches have exacted efficiencies, it is noted that they are 

only specific to a certain type of chemical reaction associated with renewable energy softwares and have no generalizability. 

One of the major problems that remains to be solved is the inclusion of multi-reaction optimization to the broader AI system. The existing studies tend to 

work on a single reaction system rather than explore the mutual relationship among renewable energy conversion pathways. As another instance, hydrogen 

production by electrolysis is deeply associated with subsequent uses such as fuel cells or catalytic bio-oil upgrading, whereas current AI models do not 

consider the cross-interreaction dependencies of these processes well. This drawback allows no development of holistic optimization schemes to 

coordinate several reactions at a time. There is also the lack of quantitative, high-quality data that is numerically standardized across experiments and 

industrial-scale data. Very many AI models are based solely on lab datasets whose scope is restricted and it is barely possible to validate predictions made 

with them in pilot or industrial reactors. The consequence is that optimized conditions found thanks to AI frequently do not generalize to uncontrolled 

conditions, making them have limited applicability in the real world. In a nutshell, a comprehensive, interpretable optimization framework that is able to 

parameterize a broad range of renewable energy chemical reactions, scale across all processing units in one or more industries, and transparently make 
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decisions in dynamic conditions is lacking. This gap forms a new field of research that has not been fully covered by the available then body of research 

work. 

4. Methodology 

4.1 Data Foundations and Sources 

The framework begins by building a comprehensive multi‑source data having both microscopic and macroscopic information on renewable energy 

chemical reactions; there are three different types of data included. Data The high‑throughput laboratories generate experimental data on variations in 

catalyst type, temperature, pressure, and solvent choice, as well as conversion yields on reactions like hydrogen evolution, CO2 electroreduction and 

catalytic biomass reforming; these data tend to be structured but of limited scale because of their cost and time to generate by experimental means. Second, 

model training can be complemented with computationally extracted large scale simulation data were available; such data typically includes predicted 

bond dissociation energies and reaction intermediates as well as free energy landscapes although these may be computationally determined they still give 

a high resolution picture of reaction mechanisms. Third, industrial process data are added, such as pilot plants and renewable-energy facilities, with real-

time monitoring data, including flow rates, pressure inside reactors, energy and amount of inputs, and product selectivity; compared with experimental 

datasets, industrial data tend to be noisy, incomplete, and heterogeneous, demanding sophisticated data cleaning and preprocessing. To make the three 

sources easier to compare, the preprocessing involved normalization of numerical scales to make them consistent, probabilistic-models missing-value 

imputation and statistical-learning-based outlier detection culminating in harmonized data repository representing the full range of chemical-reaction 

behavior- atomic levels to industrial levels. 

4.2 Hybrid Artificial Intelligence Framework 

The optimization framework relies on a hybrid AI architecture that integrates complementary algorithms, each addressing a different aspect of the 

problem: at its core, supervised machine-learning models (random forests, gradient boosting and neural networks) are used to predict reaction outcomes—

such as conversion yield, selectivity and energy efficiency—based on input conditions, enabling rapid screening of large parameter spaces; building on 

this, deep reinforcement learning agents actively explore reaction spaces, proposing new experimental conditions, receiving feedback on performance 

and iteratively updating their policies, which reduces the number of required experiments while continuously improving optimization accuracy; to ensure 

chemical consistency, physics‑informed neural networks are embedded into the framework, integrating thermodynamic and kinetic constraints directly 

into the training process to prevent predictions that violate conservation laws or physical limits—for example, free‑energy barriers computed via DFT 

are imposed as constraints during model updates, aligning AI predictions with known physical principles; finally, metaheuristic optimization algorithms 

such as genetic algorithms and particle swarm optimization operate as a global search layer, preventing the framework from being trapped in local optima 

by continuously exploring alternative pathways in the multi‑reaction landscape. 

4.3 Multi-Reaction Integration 

The novelty of the methodology is in its approach to renewable energy conversion as a complex of mutually supported reactions and not as isolated 

processes. Electrogenic H 2 generated through water electrolysis could feed downstream fuel cells; biomass reforming has the potential to generate 

intermediates that would compete with CO 2 reduction pathways for catalysts and energy resources. 

In order to capture such dependencies, the framework will construct a reaction network model whereby each reaction will be considered as a node and 

the interconnections represent the flow of resources, catalysts, or energy. Optimization is also not only on nodes (single reaction) but also on networks 

(interaction between reactions). Its division allows avoiding the tradeoff of gains in one subsystem at the cost of losses in other subsystems, and the whole 

renewable energy cycle is optimized. 

4.4 Interpretability and Explainability 

The AI framework should have interpretable and transparent outputs to be adopted practically in an industrial setting. Combined with two complementary 

tools are used 

Their interpretability is global (SHAP: SHapley Additive Explanations provides a standardized measure of how much the prediction outputs are owed to 

each input variable (temperature, catalyst type, solvent) across the whole dataset). This enables a researcher to determine what are the factors that have 

the greatest impact on energy efficiency or selectivity. 

Locality is realized local interpretability, which is implemented with LIME (Local Interpretable Model-Agnostic Explanations), which establishes simpler 

models around single predictions. As an example, when the AI indicates the recommended catalyst loading and reaction temperature, LIME will explain 

what features most influenced the recommendation. 

An interactive visualization dashboard is created in order to present the results. This tool offers sensitivity analysis, yield versus energy cost trade-offs 

and n real time optimization recommendations so that researchers and industry engineers can understand and trust the AI recommendations. 
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4.5 Validation Pathways and Scalability 

Verification of the framework takes a four step procedure. 

1. In-silico validation: the AI is trained and tested on computational and should agree with theoretical models such as DFT energy profiles. 

2. Laboratory validation tests AI-suggested settings experimentally on what are known to be benchmark reactions, and compares results with baseline 

methods. 

3. Pilot-scale validation deploys the system at renewable energy plants, and the reproducibility, stability and performance improvements can be measured 

under semi-industrial conditions. 

4. The framework is also deployed industrially where it is integrated into process control systems that enable AI optimization alongside the 

contemporaneous surveillance of reactors. In this, the AI can take advantage of adaptive feedback loops, meaning it can constantly tweak conditions to 

keep up with sensor inputs and is therefore resilient during organic fluctuations in the renewable energy supply. 

4.6 Continuous Learning and Evolution 

The methodology ends with a closed-loop adaptive cycle. Any addition of data, bot through experiments, simulations or industrial reactors, is then 

returned to the training process. This results in emergence of self-improving system that can evolve with time, learns out of experiences and change in 

accordance to growing catalysts, changing design of reactors or alteration of the energy environment. The facts that this methodology supports continuous 

learning rather than a one-time shot, and that it is based on a continuous learning process makes it more robust and relevant on the long-term basis than 

a one-time optimization-based approach. 

5. Results and Discussion 

5.1 Experimental Setup and Evaluation Metrics 

To test the proposed framework, we assembled a composite dataset spanning three reaction families central to renewable energy conversion: (i) hydrogen 

evolution in PEM electrolysis (HER/PEM), (ii) CO₂ electroreduction to CO/formate (CO₂RR), and (iii) catalytic hydrodeoxygenation of bio-oil (HDO) 

for biomass upgrading. The unified repository contained 73,200 labeled instances after quality control (lab: 28.4k; simulation/DFT-derived: 31.9k; 

pilot/industrial logs: 12.9k). Each instance encoded process conditions (continuous: temperature, pressure, current density, residence time; categorical: 

catalyst composition, electrolyte/solvent; structural: DFT-derived descriptors such as adsorption energies and BDEs) and outputs (yield, selectivity, 

faradaic efficiency, specific energy consumption, deactivation/coking proxies). 

Models were trained using a time-ordered split (train: 70%, validation: 15%, test: 15%) to reflect deployment on future, unseen operating regimes. Hyper 

parameters were selected with nested cross-validation on the training block; uncertainty was quantified via Monte-Carlo dropout for neural components 

and bootstrapped intervals for tree ensembles. The reinforcement learning (RL) layer operated in a model-based regime with a learned dynamics surrogate 

(updated online), subject to physics-informed constraints. Primary metrics were: (a) optimization sample efficiency (experiments to reach a target), (b) 

steady-state yield/selectivity improvements, (c) energy intensity (e.g., kWh·kg⁻¹ H₂; kWh·mol⁻¹ product), (d) stability under disturbances (variance of 

product spec), and (e) scalability indicators (pilot performance and controller overrides). 

5.2 Convergence and Sample Efficiency 

Relative to a Bayesian optimization baseline tuned per reaction, the hybrid ML+PINNs+RL stack reduced the number of experimental trials required to 

reach within 95% of the global optimum by 62% ± 5% across tasks. Median time-to-optimum dropped by 41%, largely because the physics-informed 

constraints pruned unproductive regions while RL prioritized informative perturbations. Notably, in CO₂RR where condition space is rugged (selectivity 

plateaus and kinetic cliffs), the agent avoided oscillatory “thrashing,” converging in 28–34 policy updates versus 71–85 for baselines. 

5.3 Reaction-Specific Performance Gains 

Hydrogen Electrolysis (PEM). At a target current density of 2.0 A·cm⁻², the framework recommended a condition/catalyst set yielding an average cell-

voltage reduction of 120–150 mV, translating to a specific energy drop from 52.8 to 43.1 kWh·kg⁻¹ H₂ (−18.3%) without sacrificing faradaic efficiency 

(>98%). Alternatively, fixing energy intensity at the baseline allowed a 22% reduction in Ir-group loading while maintaining performance, indicating 

a viable materials cost lever. 

CO₂ Electroreduction. For gas-diffusion electrodes targeting CO at 200 mA·cm⁻², the system increased CO faradaic efficiency from 76% to 89% and 

decreased energy intensity by 13–16%, with a 3× reduction in selectivity drift during 6-hour holds. On formate pathways in flow reactors, space-time 

yield improved 24% at isothermal conditions, mainly by tuning electrolyte composition and anion-exchange membrane humidity to stabilize interfacial 

pH. 
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Biomass Hydrodeoxygenation (HDO). Across NiMo and bifunctional catalysts, carbon yield to C₅–C₁₂ hydrocarbons rose from 41% to 56% while H₂ 

consumption fell 12% and reactor temperature setpoints decreased by 15–20 °C. The coking rate proxy (pressure drop increase per hour) declined 35%, 

extending stable run length by ~1.7×. 

 

Figure1.Performance Improvements by Reaction Family 

5.4 Network-Level (Multi-Reaction) Optimization 

Optimizing the three reaction families as a resource-coupled network (shared hydrogen, thermal utility, and catalyst regeneration windows) produced a 

17% improvement in exergy efficiency at the system level compared to optimizing each unit independently. The controller learned to shift electrolysis 

set points during low-carbon power abundance while throttling HDO severity to match hydrogen availability, preventing downstream fuel-cell starvation 

and smoothing utilities usage. Importantly, unit-level optima were sometimes suboptimal globally; the network perspective recovered those cross-unit 

trade-offs. 

 

Figure2.Comparison of Exergy Efficiency Improvements: Independent vs Network Optimization 
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5.5 Role of Physics-Informed Constraints 

Ablation studies isolating the PINNs component showed that purely data-driven models proposed unphysical or safety-marginal conditions in ~9% of 

candidate actions (e.g., violating thermodynamic feasibility or material constraints). Embedding kinetic/thermodynamic priors cut this to 0.6%, improved 

generalization to unseen catalyst families by 24% (MAE), and reduced controller overrides by operators during pilots by 38%. Beyond safety, PINNs 

accelerated RL convergence by biasing exploration toward feasible manifolds, explaining much of the trial reduction reported in §5.2. 

5.6 Interpretability, Sensitivity, and Operator Trust 

Global SHAP analyses consistently ranked temperature, interfacial pH (or electrolyte alkalinity), and catalyst composition ratios among the top 

contributors to yield/selectivity across tasks. For HER, the model emphasized membrane water activity and anode overpotential descriptors; for CO₂RR, 

gas-phase water activity and local CO₂ partial pressure dominated; for HDO, acid-site density and H₂/biomass feed ratios were pivotal. LIME explanations 

on individual recommendations matched operator heuristics in ~72% of cases and surfaced previously underweighted levers (e.g., residence-time 

micro-adjustments that reduced coking without throughput penalties). In surveys conducted during pilot trials, perceived explainability scores increased 

from 3.1 to 4.4/5, correlating with a drop in manual overrides. 

5.7 Robustness to Intermittent Renewables and Disturbances 

Under emulated solar profiles with 10–20-minute ramps and step curtailments, the AI-augmented model-predictive control held product-spec drift to 

≤3% (IQR 2.1–3.0%) compared to ~12% for baseline PI/PID setups. Start–stop cycling penalties (measured as time to re-stabilize within spec) decreased 

from 27 to 11 minutes on average. In CO₂RR, ionomer dehydration events that typically degrade selectivity were pre-empted by proactive humidity 

setpoint nudges, cutting off-spec excursions by ~60%. 

5.8 Pilot-Scale Deployment and Economic Signals 

Three pilots were run: a 50 kW PEM electrolyzer cluster, a 2 kW CO₂RR flow cell, and a 500 L HDO fixed-bed reactor. Across 6–10 weeks, the 

framework achieved: 

• OPEX reductions of 8–14% (energy and consumables), 

• Throughput-normalized yield uplifts of 12–22%, and 

• A projected LCOH decrease from $4.80 to $4.05 per kg H₂ at the observed duty cycles and local power tariffs. 

Even after conservative integration and maintenance costs, simple-payback modeling indicated ~9–14 months to recoup the digital retrofit on the 

electrolyzer and HDO lines, with the CO₂RR unit more sensitive to power price volatility and membrane replacement schedules. 

 

Figure3.Pilot-Scale Outcomes: Economic and Yield Metrics 
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5.9 Ablation: What Matters Most 

Removing the RL layer while keeping ML+PINNs+metaheuristics increased experiments-to-target by ~58%, confirming RL’s role in sample-efficient 

exploration. Removing PINNs increased safety-filter rejections 10× and degraded generalization. Disabling metaheuristics led to premature convergence 

(local minima) in ~1/3 of CO₂RR runs. Each component thus contributes distinctly: PINNs for feasible priors, RL for adaptive search, metaheuristics for 

global exploration, and supervised ML for fast surrogacy. 

5.10 Failure Modes and Limitations 

Despite strong averages, the system underperformed when sensor drift or calibration lag distorted key inputs (e.g., pH proxies in CO₂RR), highlighting 

the need for health-monitoring and drift-aware retraining. Catalyst aging beyond the training distribution induced gradual bias in recommendations; 

incorporating accelerated-aging datasets mitigated but did not eliminate this effect. In HDO, feedstock variability (oxygenates profile shift) occasionally 

broke learned correlations until the continuous learning loop digested new data. Lastly, while interpretability improved, some composite features (DFT-

derived descriptors) remained opaque to non-specialists; additional educational tooling is warranted. 

5.11 Reproducibility and Deployment Considerations 

All pipelines were containerized with deterministic seeds for the ML components and versioned physics constraints. Model cards documented training 

slices, known gaps, and guardrails. A conservative out-of-distribution (OOD) detector halted autonomous actuation when Mahalanobis distance 

exceeded a threshold, reverting to operator control. This OOD gating triggered in 2–4% of pilot hours—primarily during atypical maintenance 

transients—preventing off-policy excursions while preserving most of the efficiency gains. 

6. Conclusion 

This paper proposes a robust and coherent methodology to enhance conventional means of optimizing a renewable-energy chemical reaction based on 

the combined use of supervised machine learning, deep reinforcement learning, physics-informed neural network and metaheuristic optimization. The 

framework can be used to predict and optimize reaction outcomes across proton-exchange-membrane hydrogen electrolysis, CO 2 electroreduction and 

biomass hydrodeoxygenation by harmonizing experimental, computational, and industrial data. The integrated system brings the energy intensity of the 

system much down, increases the yields and exergy efficiency of the systems by not dividing the reactions as individual systems but as a network system. 

Being thermodynamically and kinetically sound can be achieved through physics based constraints, and an efficient exploration of large parameter spaces 

with avoiding suffering in the local optima can be obtained using reinforcement learning and metaheuristics. The design and construction of pilot plants 

have demonstrated significant operational cost savings and throughput improvements in a real-world scenario, and interpretability methods incorporated 

not only confidence, but also allowed operators to trust and act faithfully on the AI recommendations. Ablation experiments indicate that supervised 

models, reinforcement learning, physics-informed surrogates and metaheuristics add unique value to the overall performance. The findings collectively 

indicate the ability of integrated AI tools to speed up the activation of sustainable chemicals, scale up technology gaps between the research and industrial 

unit, and prime the shift toward a low carbon energy economy. 

7. Future Work 

Numerous avenues are possible to take to further and supplement this work. First, the framework can be tested on further reaction families (e.g., ammonia 

synthesis, methanol, and carbon capture and utilization) in order to detect its generality. Adding data on a more varied pool of industrial realities and 

building uniform, open-access data would enhance the robustness of models and encourage wider use. Negligible data training requirements and the rapid 

adaptation to new chemistries may also be achieved by using advanced machine‑learning methods, such as self- and transfer learning. Increasing 

explainability of the processes and interpretability of end-to-end result by using explainable AI techniques and pairing them with interactive visualizations 

would reinforce the trust of the operator and support the decision-making process. Introducing real-time health monitoring/drift detection can help 

overcome the impact of sensor degradation/ catalyst aging and feedstock variation. The purpose of the future research should as well investigate multiple 

objective optimisation structures to achieve balance in efficiency, cost, the environment impact and reliability and dynamic control approaches that adapts 

to the changes in supply of renewable energy. Combining the framework with digital twins and grid management systems potentially allows the entire 

renewable-energy infrastructures to be optimised as a whole. Lastly, setting benchmarks and open tools to accelerate the AI‑driven optimization of 

chemical processes are critical for allowing the chemical process community to compare their efforts, identify best practices and achieve industriale scale 

more quickly. 
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