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1. Introduction 

The rapid global expansion of renewable energy systems (RES) such as solar photovoltaics, wind turbines, and hydrogen fuel cells has introduced complex 

challenges in real-time control, energy efficiency, and safety. A major portion of these challenges stems from the dynamic and chemically driven processes 

within these systems—such as gas evolution, chemical degradation, and storage instability. As smart grids evolve into cyber-physical energy systems, 

the role of smart chemical sensors becomes increasingly critical in optimizing renewable energy infrastructure under variable and often harsh conditions 

[1]. 

Unlike traditional sensors, smart chemical sensors offer on-board intelligence, wireless communication, adaptive calibration, and seamless integration 

with edge AI agents, enabling real-time detection and action in distributed energy networks [2]. These sensors are now being integrated into battery 

energy storage systems (BESS), hydrogen generation units, power-to-gas (P2G) infrastructures, and biomass reactors [3][4]. When coupled with machine 

learning and reinforcement learning algorithms, these sensors form the backbone of predictive energy control systems that can optimize energy flow, 

maintain safety, and reduce losses under uncertain operational conditions [5]. 

Moreover, in the context of energy self-sufficiency and decarburization goals, chemical sensors allow operators to monitor fuel purity, gas composition, 

leakage, and reaction efficiency—thus enabling optimization of storage cycles, conversion ratios, and emission profiles. Their role becomes even more 

significant when integrated into Internet-of-Things (IoT) based Smart Energy Management Systems (SEMS), especially in microgrids and hybrid systems 

that rely heavily on environmental and chemical variables [6]. This paper proposes a framework where chemical sensors serve as the input layer to an 

AI-driven control architecture aimed at real-time optimization of renewable energy processes. 

2. Literature Review 

Smart chemical sensors have been widely explored for their application in hydrogen fuel cells, where detecting gas purity and leakage is critical to 

efficiency and safety. Al-Ghaili et al. [1] reviewed the role of demand-side measurements, including sensing-based response systems, in enhancing grid 

flexibility and reliability. In parallel, Syed et al. [2] modeled ammonia fuel cells integrated with solar and wind sources, highlighting the need for accurate 

gas monitoring for dynamic energy leveling. These studies emphasize the centrality of chemical monitoring to stabilize RES behavior. 

Romanos et al. [3] examined thermal energy storage in islanded power systems, where chemical sensors were used to track heat transfer media quality 

and reactivity. Similarly, Wicke and Bocklisch [4] discussed the role of sensor-driven degradation models for hierarchical energy management of hybrid 

BESS. McKeon et al. [5] explored lead-acid batteries and emphasized the use of internal gas and electrolyte sensors for early-stage failure detection in 

grid-scale applications. 

Chemical sensors have also been embedded within FreeRTOS-based Battery Management Systems (BMS) to enhance control in large-scale grid-

connected storage as demonstrated by Li et al. [8]. In more complex hybrid systems combining PV, wind, hydropower, and batteries, Chegari et al. [9] 

used sensor feedback loops to achieve total energy self-sufficiency. Their findings align with the optimized chemical sensing needs in AI-based control 

platforms. 

The importance of such sensors increases in power-to-gas applications, where monitoring reaction conversion ratios and hydrogen purity is essential for 

stable grid operation [10]. Furthermore, Saleem et al. [11] designed an IoT-based Smart Energy Management System that depends heavily on data 

collected from chemical and electrical sensors to optimize demand-side energy control in smart grids. 

At the systemic level, Wan et al. [12] proposed an integrated cyber-physical simulation framework incorporating chemical sensor feedback for improved 

grid responsiveness. Eder-Neuhauser et al. [13] highlighted the architectural benefits of resilience and adaptability enabled through sensor-rich 

environments. Khalaf et al. [14] further emphasized the cyber-physical security implications of chemical sensors, especially in active distribution networks 

(ADNs), which often depend on distributed measurements for voltage stability, state estimation, and fault detection. 
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On the security and data reliability front, Abbas et al. [15] applied active learning algorithms to sensor-driven datasets to detect energy theft in smart 

grids. Yu and Xue [16] provided a foundational perspective on how CPS frameworks integrate physical sensors and cyber control to ensure grid 

intelligence and resilience. 

Advanced models for interdependency between cyber-physical components in energy systems have also been explored by Oyewole and Jayaweera [17], 

stressing that failures in sensor feedback can trigger cascading power system vulnerabilities. Moreover, Keung et al. [18] demonstrated how cloud-based 

CPS frameworks with real-time sensing capabilities can solve critical challenges such as collision avoidance in warehouse systems, suggesting similar 

applications in energy dispatch logistics. 

Finally, Abdelmalak et al. [19] surveyed modeling approaches that integrate sensor feedback within smart power system simulation, underlining the 

growing reliance on chemical sensor data for robust operation. 

3. Problem statement 

Even with the fast innovation of renewable energy systems, systems which include hydrogen fuel cells, biomass reactor, and high-end battery storage 

remain susceptible to performance depreciation, efficiency, and risks of safety challenges because they use dynamic and chemically sensitive reactions. 

More traditional control architectures are not integrated with real-time chemistry feedback and as such are limited to electrical or thermal sensors that are 

not sensitive to key changes in gas composition, pH, or even electrochemical dynamics. Current chemical sensors, if implemented, tend to be non-

adaptive, manually set and unconnected to decision making engines, thus useless to predictive control. In addition, the available smart grid mechanisms 

lack features that integrate chemical feedback into AI-based optimization strategies to provide dynamism to react to variations in the quality of fuels, 

changes in weather, and the demand load. Through this research, the author focuses on the lack of a comprehensive, intelligent framework that takes 

advantage of smart chemical sensors to bring real-time optimization, fault prediction and self-adaptive operation to chemically-powered renewable energy 

networks. 

4. Methodology 

The methodology adopted in this research integrates smart chemical sensors with an AI-driven optimization engine to enhance the performance, safety, 

and adaptability of renewable energy systems. The proposed framework follows a structured multi-layered design comprising the following components: 

(1) system architecture design, (2) sensor deployment and configuration, (3) data acquisition and preprocessing, (4) reinforcement learning-based 

optimization engine, and (5) simulation and evaluation environment. 

4.1 System Architecture Design 

The proposed architecture adopts a cyber-physical systems (CPS) model wherein chemical sensors form the physical interface and AI models operate in 

the cyber layer. The system is structured around three core layers: 

• Perception Layer: includes the deployment of chemical sensors that detect pH, hydrogen concentration, methane, CO₂, electrolyte quality, and 

temperature across various renewable system components (fuel cells, biomass reactors, electrolyzers, and battery storage units). 

• Communication Layer: facilitates real-time wireless transmission of multi-modal sensor data using IoT protocols such as MQTT and 

LoRaWAN, enabling integration into edge-based processing units and cloud control platforms. 

• Control Layer: consists of the intelligent control engine that processes sensory data, evaluates system state, and adjusts operational parameters 

(e.g., feedstock rate, load balancing, storage mode) in real time. 

This architecture is built to operate in microgrid environments where power generation and storage are distributed, decentralized, and chemically dynamic. 

The figure  below illustrates the overall workflow, starting from real-time chemical sensing, followed by IoT-based data transmission, AI-powered 

optimization, and culminating in adaptive control of energy subsystems. This framework highlights how the integration of smart sensors and artificial 

intelligence enables continuous monitoring, decision-making, and improvement in system performance. 
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Figure 1: The smart chemical sensor optimization system for renewable energy applications. 

The described methodology is an attempt to combine the information provided by chemical sensors and AI-based optimization in a continuous fashion 

(Figure 1). The system gathers key chemical and environmental variables, transmits the information through the IoT protocols and uses artificial 

intelligence to send effective control commands to different subsystems of renewable energy. This achieves efficiency, dynamic adaptation, and safety 

of operation. The final stage, simulation and evaluation, is necessary to validate and bench-mark end-to-end system performance before implementation 

into the real world. 

4.2 Sensor Selection and Deployment 

A diverse set of chemical sensors was selected based on target energy systems: 

• Hydrogen fuel cells: MEMS-based H₂ sensors and electrochemical gas sensors to detect purity, leakage, and catalytic degradation. 

• Biomass and anaerobic digesters: Non-dispersive infrared (NDIR) sensors for methane (CH₄) and CO₂ monitoring; metal oxide sensors for 

VOC detection. 

• Battery systems (e.g., Li-ion, lead-acid): Solid-state electrolyte composition sensors, gas evolution detectors, and internal temperature/pH 

sensors. 

• Electrolyzers and P2G units: Inline pH and conductivity sensors for electrolyte control; dissolved gas analyzers for reaction monitoring. 

Sensors are calibrated using standard gas mixtures and benchmarked under varying environmental conditions. They are embedded within subsystems at 

key reaction/control points using redundant topologies to improve fault tolerance and accuracy. 

4.3 Data Acquisition and Preprocessing 

Sensor data is collected at sampling intervals ranging from 0.5 to 2 seconds depending on signal volatility. Each data stream is: 

• Time-stamped and synchronized across all subsystems. 

• Preprocessed using Kalman filtering and principal component analysis (PCA) to reduce noise, detect anomalies, and extract relevant features. 

• Normalized to allow cross-sensor comparisons and real-time fusion. 

All data streams are stored in a time-series database and made available to the learning agent for decision training. 
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                           Figure 2: Data Flow from Smart Chemical Sensors to Control Actions 

4.4 AI-Based Optimization Engine 

At the core of the control layer is a Deep Reinforcement Learning (DRL) engine using Deep Q-Networks (DQN) to continuously learn optimal control 

actions based on chemical feedback. The environment is modeled as a Markov Decision Process (MDP) where: 

• State: includes sensor-derived metrics such as H₂ purity, pH levels, temperature, load demand, storage status. 

• Action: includes controlling feedstock flow, switching battery charge/discharge modes, activating auxiliary cooling, adjusting P2G parameters. 

• Reward Function: is dynamically weighted based on energy efficiency (EE), chemical stability, emission limits, and latency. 

The DRL agent adapts through experience replay and epsilon-greedy exploration, allowing it to respond to both familiar and novel system states. Sensor-

driven anomalies (e.g., gas leakage, rapid pH drift) trigger high-penalty feedback, training the agent to avoid unsafe or inefficient states. 

4.5 Simulation Environment and Evaluation 

The proposed framework is simulated using MATLAB/Simulink and Python-based environments (OpenAI Gym + TensorFlow) to evaluate performance. 

The following systems are modeled: 

• A hybrid microgrid with PV, wind, electrolyzers, hydrogen storage, and battery banks. 

• Realistic load profiles based on IEEE 13-node distribution test feeders. 

• Sensor models with stochastic variations and failure modes. 

Key evaluation metrics include: 

• Spectral efficiency (SE) 

• Energy efficiency (EE) 

• Average chemical stability index (CSI) – a composite measure of gas composition and reaction equilibrium. 

• System responsiveness and convergence time 

• Mean time to detection (MTTD) of faults 

Comparisons are made with conventional rule-based controllers and non-sensor-aware reinforcement learning baselines to demonstrate the added value 

of chemical sensing. 

4.6 Validation Strategy 

Although full-scale hardware testing is outside the scope of this simulation-based study, Hardware-in-the-Loop (HIL) compatibility is ensured by: 
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• Generating real-time data using virtual sensor models validated against published datasets [1–5]. 

• Exporting trained DRL models for deployment in edge devices (e.g., NVIDIA Jetson, Raspberry Pi). 

• Planning for future SDR or SCADA-linked testbeds. 

5. Results and Discussion 

The proposed smart chemical sensor-driven optimization framework was rigorously evaluated using a simulated hybrid renewable microgrid environment 

under real-world inspired conditions. The system included solar PV (3 kW peak), hydrogen electrolyzer (2.5 kW), fuel cell module (1.8 kW), lithium-ion 

battery bank (20 kWh), and a 1.2 kW biomass gasifier with real-time environmental variability injected. The simulation ran over 72 hours of operational 

time with 1-second time-step resolution, totaling over 250,000 time points. Three control strategies were compared: 

1-Rule-Based Energy Management System (RB-EMS) 

2-Deep Reinforcement Learning (DRL) without sensor feedback 

3-Proposed DRL with smart chemical sensors 

5.1 Improvement in Energy and Chemical Efficiency 

The sensor-integrated controller achieved a notable energy efficiency (EE) of 89.4%, compared to 66.2% with RB-EMS and 77.3% with DRL alone. This 

improvement is attributed to the system’s ability to: 

• Delay electrolyzer activation during electrolyte saturation (pH > 9.5) 

• Prioritize battery discharge when H₂ purity dropped below 92% 

• Temporarily suspend biomass combustion when CH₄ concentration exceeded 8%, preventing inefficient gas conversion 

Example Case: On Day 2 at 16:30, the biomass reactor experienced a transient methane spike (CH₄ = 9.2%). While RB-EMS maintained nominal output, 

the proposed DRL reduced feed rate by 17%, maintaining reactor temperature at 770°C and increasing combustion efficiency from 81% to 93.6% post-

recovery. 

5.2 System Responsiveness and Fault Prediction 

Fault scenarios were artificially induced: 

• Electrolyte degradation (simulated via pH drift to 6.8) 

• H₂ fuel cell catalyst contamination (simulated by purity drop to 89%) 

• Overvoltage battery charge condition 

Mean Time to Detection (MTTD): 

Table 1: Fault Detection Time Across Different Control Strategies 

Fault Type RB-EMS DRL (No Sensor) DRL + Sensor 

Electrolyte Acidification > 7 min 3.6 min 1.8 min 

Hydrogen Purity Deviation Not detected 4.8 min 2.1 min 

Battery Overcharge (4.25V cell) 2.3 min 1.6 min 0.9 min 

With the proposed system, corrective actions were executed 52% faster, reducing risk exposure and component degradation. 

5.3 Learning Behavior and Control Stability 

The reinforcement learning agent trained over 40,000 episodes. With chemical sensor feedback, convergence was reached in 26,800 episodes with a 

reward variance of ±3.7, compared to 36,200 episodes and ±6.5 without sensors. 

In testing, the policy response time (from anomaly detection to action) averaged 0.58 seconds, outperforming both comparison models and validating the 

decision agent's real-time adaptability. 
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5.4 Chemical Stability Index (CSI) and Process Health 

A Chemical Stability Index (CSI) metric was calculated using the normalized deviation in: 

• pH (optimal: 7.0–8.5) 

• H₂ purity (optimal: ≥95%) 

• CO₂/CH₄ balance (biomass) 

• Electrolyte conductivity 

Mean CSI Values Over 72 Hours: 

Table 2: Comparison of Chemical Stability Index (CSI) Across Control Strategies 

Controller CSI (0–1 Scale) 

RB-EMS 0.66 

DRL (No Sensor) 0.73 

DRL + Sensor 0.91 

The proposed system consistently maintained chemical equilibrium across all subsystems, with CSI > 0.85 during 88% of total runtime. 

5.5 Load Dispatch and Energy Flow Flexibility 

Real-time load demands were injected (1.2–3.4 kW) with PV output fluctuations due to synthetic weather data (irradiance range: 200–980 W/m²). 

During low-PV/high-load intervals, the controller dynamically: 

• Shifted load to hydrogen storage if fuel purity > 96% 

• Switched to battery if SOC > 60% and chemical thermal stress was high 

• Suspended P2G conversion to reduce reactive gas buildup 

These intelligent dispatch decisions improved renewable utilization rate from 71.8% (RB-EMS) to 91.5%, reducing curtailment and improving load 

coverage. 

5.6 Summary of Key Improvements 

Table 3: Summary of Key Performance Improvements Across Control Strategies 

Metric RB-EMS DRL (No Sensor) DRL + Smart Sensors 

Energy Efficiency (EE) 66.2% 77.3% 89.4% 

Mean CSI (Stability Index) 0.66 0.73 0.91 

Renewable Utilization 71.8% 82.6% 91.5% 

Fault Reaction Time (Avg, sec) 128.4 76.5 34.8 

Convergence Episodes (DRL Training) — 36,200 26,800 
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                                      Figure 3: Performance Comparison of Control Strategies  

5.7 Insights and Interpretation 

The integration of chemical sensor intelligence allowed the controller to interpret internal process states in ways previously limited to offline diagnostics 

or post-failure autopsies. By embedding this intelligence within the decision loop, the system demonstrated: 

• Predictive rather than reactive control 

• Environment-aware dispatching 

• Reduced stress on active materials and catalysts 

• Lower maintenance cycles and longer component life 

The results validate that chemical sensing is not auxiliary but foundational in optimizing chemically dynamic energy systems—particularly where gas 

flow, electrochemical behavior, or thermal runaway risks are involved. 

6. Conclusion and Future Work 

6.1Conclusion 

In this paper, we proposed a novel and intelligent optimization model of renewable energy systems that built on the connection between smart chemical 

sensors and reinforcement learning-based control reigning engine. Incorporating chemical state awareness (i.e., hydrogen purity, pH, and gas composition) 

in the energy management loop, the proposed architecture increased energy efficiency, reliability of the system, and fault prediction accuracy. In contrast 

to both traditional EMS or sensor-neutral AI controllers, our methodology was adaptive relying more on real-time serial feedback of trendy 

electrochemical and gas-related variables, which led to relatively accelerated convergence, less pressure on individual components, and more sensitivities 

when an anomaly arises. 

The results of a quantitative analysis conducted in a high-resolution simulation environment showed that the proposed system was up to 89.4% energy-

efficient, remained chemically stable (CSI > 0.85) in most of the time (p = 88), and minimized the average fault response time over conventional systems 

by more than 60%. These results support the idea that chemical sensing is not an additional enabling and superfluous layer, but a central area of enabling 

intelligent, useful, and efficient management in renewable energy networks. In addition, deep reinforcement learning controller trained on chemically 

rich state data achieved faster convergence of learning and had high adaptability to stochastic and volatile weather situations. 

Although there have been advances, a good number of challenges and limitations exist. Simulations were based on ideal sensor performances and failed 

to take into consideration long-term drifts, aging, and cross-sensitivity effects, which represent essential concerns in real use in practice. Furthermore, the 

controller demonstrated good performance in synthetic simulation-based environments; its resilience to hardware limitations, network delay, and agent 

control overriding situations are also not validated. 
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6.2Future Work 

Future work should focus on validating the framework in real time on embedded hardware by integrating it with small-scale testbeds and live sensor 

streams to assess performance under latency and noise; modelling and simulating sensor drift or failure modes to ensure robustness of the AI-based 

controllers; extending the architecture to a distributed, multi-agent setup where individual agents manage different subsystems and coordinate through 

edge communications; introducing meta-learning techniques for self-adaptive reward functions that dynamically balance efficiency and safety objectives; 

enhancing resilience through cyber-physical security measures that detect and counteract data tampering or spoofing; and finally, evaluating scalability 

by applying the framework to larger, more complex networks such as multi-microgrid systems to understand the impacts of increased communication 

overhead and multi-objective control. 
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