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ABSTRACT 

      Personalized medicine seeks to enhance drug treatment by taking into account a patient's genetic makeup, clinical history, and lifestyle, thereby moving away 

from the "one-size-fits-all" model. At the heart of this approach is pharmacogenomics, which identifies interactions between genes and drugs that affect treatment 

effectiveness and potential side effects. Nevertheless, the implementation of pharmacogenomic knowledge in everyday practice faces obstacles due to the 

complexity and variation of the data in the patient's reactions for treatment. Artificial Intelligence (AI) has emerged as a groundbreaking tool, which prophesy the 

results of treatment with more accuracy, providing sophisticated computational methods to evaluate broad genomic and clinical data sets.This review checks how 

AI is changing pharmacogenomics in three major medical fields: diabetes, hypertension and cancer. In the management of diabetes, the AI-manual models combine 

individual blood sugar control, combining reactions to drugs such as metformin and SGLT 2 inhibitors combine genetic indicators with clinical and lifestyle 

information. In the case of hypertension, AI utilizes genetic variations, demographic information, and data from wearable devices to predict how patients will 

respond to ACE inhibitors, ARBs, and beta-blockers, thus allowing for the optimization of tailored therapies. Cancer treatment is the most developed area, where 

AI-powered platforms forecast a patient's reaction to chemotherapy and targeted therapies, aid in discovering biomarkers, and support decision-making in precision 

oncology. Despite these progresses, challenges still exist, including a lack of well -cured -cuisted dataset, algorithms in the algorithms, potential bias, regulatory 

challenges and moral issues related to privacy and privacy and consent. Future efforts should focus on the amalgamation of multi-ommics data, the development of 

clear AI and the use of federated learning techniques. By addressing these existing challenges, a-anhansed pharmacogenomics has the ability to replace clinical 

practices, which provide safe, more efficient and actually individual drug treatment. 

INTRODUCTION: 

     Personalization of therapy has emerged as an important component of modern healthcare, taking away from the traditional "one-shaped-all" model 

based on the individual symptoms of each patient. By integrating genetic, clinical and environmental information, the purpose of individual drug is to 

increase treatment efficacy by reducing the risk of adverse drug effects. This strategy depends more on pharmacogenomics, which study how genetic 

variations affect the absorption, metabolism and reaction of the drug. However, the practical application of pharmacogenomic insight into regular clinical 

settings faces significant challenges due to the huge amounts of biomedical data, complexity and variability, despite great progress in genomic sequencing 

and biomarker identity. Recently, Artificial Intelligence (AI) has emerged as a powerful tool to resolve these challenges. Through the use of machine 

learning, deep learning and natural language processing, the AI system can analyze comprehensive multi-omics dataset, electronic health records, and 

real-time monitoring data that to highlight the hidden patterns directing the drug selection and dosage modifications. These abilities are especially 

encouraging for chronic and complex diseases, where the variation in treatment reactions creates a significant obstruction for effective healthcare. This 

review examines the potential integration of AI with pharmacogenomics in three major areas of therapy which are important for global health: diabetes, 

hypertension and cancer. Diabetes and high blood pressure, which rank in non-communicable diseases worldwide, perform remarkable variability in 

patient reactions for standard treatments, often leading to insufficient disease management. Conversely, cancer represents the most. 

AI IN PERSONALISED MEDICINE: 

     Artificial Intelligence (AI) has become a transformative force in the healthcare sector, allowing for the analysis of intricate biomedical datasets that 

traditional statistical methods cannot adequately address. In the realm of personalized medicine, AI offers the computational resources and adaptive 

algorithms necessary to evaluate genomic, clinical, lifestyle, and environmental information, ultimately aiding in the provision of tailored therapeutic 

approaches.By revealing the pattern hidden within a broad dataset, AI not only improves pharmacogenomic research, but also increases clinical decision 

making because it happens. 

http://www.ijrpr.com/
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MACHINE LEARNING (ML) : 

     It is the backbone of AI in terms of personal medicine. To promote various ML algorithms, such as random forests, support vector machines, and 

shields, is used to estimate on a large scale how individual patients will respond to the pinpoint biomarkers associated with drugs, risk groups and the 

results of treatment. For example, the ML model has been designed to predict glycemic control with diabetes with diabetes with diabetes to estimate the 

reactions of blood pressure for antihypertensive drugs with lifestyle information. 

DEEP LEARNING (DL): 

     It is a particular area of ML, uses artificial nervous networks to understand complex and high-dimensional relationships that are characterized by 

biological systems. DL has proved valuable in particularly accurate oncology, where data of genomic, transcript and histopathological imaging is 

combined to forecast drug sensitivity or resistance. Its ability to process unnecessary data such as medical imaging and raw sequencing data provides a 

specific advantage in developing individual remedies strategies. 

NATURAL LANGUAGE PROCESSING (NLP): 

     It makes the AI's access to AI by extracting important information from uncomfortable data such as Electronic Health Records (EHRS), educational 

papers and clinical notes. AIDS in the discovery of NLP drug-gene connection, adverse drug events and patient phenotypes, thus enhances 

pharmacogenomic database and promotes evidence-based personal treatment plans. 

THE REINFORCEMENT LEARNING (RL): 

     It indicates a new range in personal medicine, where the algorithm receives through optimal treatment plans. In the context of chronic diseases like 

diabetes, the RL model has been used to create adaptive insulin dosing systems that adjust real-time fluctuations in glucose levels, diet and lifestyle 

factors. In addition, RL promises in oncology, where it can cure multi-drug therapy and dose program based on unique mobility of different tumors. 

Together, these AI functioning are changing the field of individual medicine. By integrating ML, DL, NLP, and RL in pharmacogenomics, researchers 

and healthcare providers can predict the results of treatment, reduce adverse reactions and increase their ability to distribute highly customized drug 

remedies. 

PHARMACOGENOMICS AND AI: 

      Pharmacogenomics, which checks how genetic differences affect drug reactions, is an important component of individual therapy. The genetic 

variations in the enzymes involved in drug metabolism, transporters and receptors can significantly affect the absorption, distribution, metabolism and 

elimination (ADME) of the drugs. However, traditional pharmacogenomic methods are constrained by selected genes and a narrow focus on limited 

dataset, which hinders the ability to capture the full spectrum of drug-gene interaction. Artificial Intelligence (AI) has emerged as a strong tool, which is 

capable of analyzing the huge amounts of genomic and clinical information to highlight the pre -exposed clinically important pattern. 

Machine learning (ML) techniques like random forests, gradient boosting, and support vector machines can evaluate genome-wide association studies 

(GWAS) and sequencing data to identify new genetic variants linked to drug effectiveness and toxicity. Pharmacogenomics, which checks how genetic 

differences affect drug reactions, is an important component of individual therapy. The genetic variations in the enzymes involved in drug metabolism, 

transporters and receptors can significantly affect the absorption, distribution, metabolism and elimination (ADME) of the drugs. However, traditional 

pharmacogenomic methods are constrained by selected genes and a narrow focus on limited dataset, which hinders the ability to capture the full spectrum 

of drug-gene interaction. Artificial Intelligence (AI) has emerged as a strong tool, which is capable of analyzing the huge amounts of genomic and clinical 

information to highlight the pre -exposed clinically important pattern. Another significant use of AI in pharmacogenomics is found in biomarker discovery. 

By combining multi-omics data—including genomics, transcriptomics, proteomics, and metabolomics—AI systems can uncover predictive biomarkers 

for drug response or resistance. This broad integration provides valuable insight to physicians that cross individual gene assessments, providing a complete 

perspective on therapeutic results. 

AI also improves the use of pharmacogenomic knowledge in clinicals by increasing clinical decision-support systems. For example, integrated AI tools 

in electronic health records may recommend drug options that match the patient's genetic profile. This increases safety and effectiveness of therapy. 

APPLICATION IN ANTIDIABETIC THERAPY: 

       Diabetes mellitus is a common chronic condition marked by disrupted glucose metabolism, varying greatly among individuals with the results of 

treatment. Although there are many treatment options -as the difference in patients' reactions for metformin, sulfonylurus, DPP -4 inhibitors, GLP -1 

receptor agonists, and insulin -in drugs often produce more likely in insufficient blood sugar control and complications. Research in pharmacogenomics 

has shown that drug transporters (such as metformin related to SLC22A1) and genetic diversity in enzymes and enzymes that metabolize drugs, affect 

how well the treatment works. However, applying this understanding to individual clinical practices requires advanced computational methods, in which 
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artificial intelligence (AI) plays an important role.Machine learning (ML) and deep learning (DL) techniques have been used to predict glycemic reactions 

for large -scale diabetes drugs. For example, the AI-based evaluation of the Genome-Wide Association Studies (GWAS) and Electronic Health Records 

(EHRS) has indicated genetic variations affecting metformin efficacy including polymorphism in ATM and SLC22A2. ML models that combine genetic, 

demographic, and clinical information can categorize patients into responders and non-responders, assisting in the personalized selection of medications. 

Similarly, DL strategies have been applied to analyze complex relations between multi-immix data and therapeutic results, which enhances the accuracy 

of predictions for best treatment plans.These "smart insulin dodging" systems reduce the possibility of hypoglycemia by promoting better long -term 

blood sugar control. Additionally, AI-driven digital health resources, including smartphone apps and wearable devices, continuously gather information 

on lifestyle and physiological parameters, empowering ML algorithms to refine treatment recommendations for each patient 

APPLICATION IN ANTI HYPERTENSIVE THERAPY: 

        Hypertension is a condition in which consistently elevated blood pressure against the arteries, typically defined as a reading of 130/80 mm Hg . This 

ongoing high pressure compels the heart to work harder, significantly raising the risk of severe health issues like heart attacks, strokes, kidney disease, 

and heart failure. Despite the wide range of antihypertensive medications available—including ACE inhibitors, ARBs, calcium channel blockers, beta-

blockers, and diuretics—variability in individual reactions to these treatments remains a significant clinical challenge. Various factors, such as genetic 

differences, demographic aspects, and lifestyle choices, contribute to the inconsistent management of blood pressure. Pharmacogenomics and artificial 

intelligence (AI) help us address these challenges in treatment. 

Hypertension -related pharmacogenomics manifest genetic variations that affect reactions to drugs. For example, polymorphism in ACE genes can affect 

sensitivity to certain conditions, while the variations in the Add1 and Cyp3A5 are associated with different reactions for dietics and calcium channel 

blockers.. However, applying these findings in clinical practice necessitates advanced computational models to capture the intricate interplay between 

genetic, clinical, and environmental elements.The AI is well equipped to meet this requirement by analyzing multi-omics data and predicting treatment 

results to individual patients. 

Machine learning (ML) methods have been utilized to predict blood pressure responses across various drug classes by integrating genetic data, clinical 

features, and longitudinal blood pressure records. The employment of deep learning (DL) has increased the future accuracy by highlighting complex, 

non-lectural relationships between genetic and phenotypeic variables, improving treatment strategies for the difficult patient population.Integration of AI 

with pharmacogenomics provides an important opportunity to increase high blood pressure management. By predicting drug responses, adapting to 

treatment and allowing real-time adjustment to therapy, AI-operated methods are the possibility of personal care for high blood pressure, making a reality 

in clinical practice. 

APPLICATION IN ANTI CANCER THERAPY: 

     Cancer is one of the major global causes of death, characterized by significant changes in tumor biology and treatment reaction. Traditional remedies 

such as chemotherapy, targeted treatment, and immunotherapy often face issues related to incompatible efficacy and adverse side effects. As a result, 

individual oncology depends on pharmacogenomics to identify rapid genetic mutations, molecular profiles and biomarsers that guide treatment decisions. 

The integration of Artificial Intelligence (AI) in this domain has increased the ability to translate complex genomic information into practical clinical 

applications. 

In the field of oncology, Pharmacogenomics has identified important drivers mutation and genetic changes including EGFR, KRAS and BRF, which 

affect the success of targeted remedies.Additionally, variations in genes connected to drug metabolism, such as TPMT and DPYD, influence how well 

patients tolerate chemotherapy. However, the huge amounts of genomic and clinical data generated in oncology require advanced computational devices 

for effective use. AI provides this ability through modeling an advanced future. 

Machine learning (ML) and deep learning (DL) techniques have been widely applied to predict treatment results in oncology, classify patients and 

discover new biomarsers. For example, the ML models that integrate genomic, transcriptomic and histopathological information can predict the reactions 

to the inhibitor or platinum-based chemotherapy. DL technology expands this ability to medical imaging, enhancing the area of radiogenomics, where 

the features extracted from CT or MRI images are correlated with genomic data to estimate drug responses. These functioning significantly improve the 

accuracy of identifying patients who are most likely to benefit from specialized treatments. 

Natural Language Processing (NLP) increases cancer pharmacogen by examining drug-gene interaction and new treatment possibilities by examining 

huge biomedical literature, clinical testing data and electronic health records (EHR). This accelerates the application of findings into clinical decision-

support systems that recommend personalized treatment approaches based on molecular and phenotypic traits. 

Reinforcement learning (RL)Joint drug represents a novel strategy in oncology for adaptation of treatment and treatment sequences. For example, RL 

algorithms can simulate tumor behavior in response to various medical combinations and propose adaptive treatment strategies that maximize 

effectiveness, reduce toxicity. Such systems are particularly beneficial for complex cancer that require combination treatment.In addition to clinical 

applications, AI intensifies drug discovery and re -introduction in oncology. The AI identifies potential drug goals, analyzing multi-omix data and predicts 

reactions to new compounds, thus reduces the time and cost associated with the development of cancer drugs. 
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CHALLENGES AND LIMITATIONS IN AI-DRIVEN PHARMACOGENOMICS 

1. QUALITY AND DIVERSITY OF DATA: 

     The AI systems rely on wider, high-quality datasets. In pharmacogenomics, data often come from various sources such as genomic sequencing, 

electronic health records (EHRS), imaging studies and wearable techniques. Discrimination in data formats, missing data, and anomalies between 

populations reduce model accuracy and comprehensive glory. Additionally, insufficient representation of minority populations in genomic databases 

results in biased predictions, posing concerns regarding fairness in healthcare provision. 

2.CLARITY OF AI MODEL: 

Many AI systems, especially deep learning networks, serve as "black boxes", produce outputs without providing clear insights in logic behind their 

decisions .. In clinical pharmacogenomics, where treatment decisions may be important, lack of transparency, lacks transparency, reduces the acceptance 

of the physician trust and haemors.. The creation of explainable AI (XAI) frameworks is essential to ensure clinical reliability. 

3. HEALTH CARE IMPROVES SETTINGS: 

     Even when effective AI models are present, embedding them into everyday health environment presents important difficulties. Clinical decision-

support systems should obtain smooth integration with hospital EHR, follow data privacy rules, and provide user friendly interfaces for healthcare 

workers. Workflow combines the complexity of resistance implementation to lack of technical training between doctors and physicians. 

4. FINANCIAL AND INFRASTRUCTURAL CHALLENGES: 

The deployment of ai-interested pharmacogenomics demands sophisticated computational infrastructure, ongoing data management and interdisciplinary 

expertise. These requirements can be especially challenging for resource-complex environment, causing inequalities in access to personal treatment 

between high-income and low-medium-income countries.In summary, despite the important promises of A-provided pharmacogenomics, many obstacles 

need to be systematically addressed. Increase in data standardization, creating explanatory models, ensuring moral security, and promoting physician 

education are important measures.. Only completing these obstacles can lead to an infection in a reliable clinical resource in personal medicine with 

practical ability. 

FUTURE DIRECTIONS AND OPPORTUNITIES IN AI-PHARMACOGENOMICS 

     The relationship between Artificial Intelligence (AI) and Pharmacogenomics is still developing, but the possibilities of increasing personal drug are 

important. New progress in computational techniques, data synthesis and clinical application has been designed to change medical decision making, 

resulting in improving efficacy and safety in drug management. 

1. INTEGRATION OF MULTI-OMICS DATA: 

Future AI technologies are expected to cohesively merge genomics with other omics disciplines, such as transcriptomics, proteomics, metabolomics, and 

epigenomics. By This integration of multi-ox, incorporating full biological complications of reactions to the disease and treatment, will increase the future 

accuracy and will help highlight the new drug goals. AI-operated systems that reconcile these versatile datasets will actually create a wide outline for 

personal medicine. 

2. IMMEDIATE CLINICAL DECISION ASSISTANCE: 

     AI will be important in preparing real-time, adaptive clinical decision-support devices. By continuously evaluating electronic health records, data from 

wearable equipment, and genomic information, AI models can provide personal treatment suggestions at direct care points. This ongoing feedback 

mechanism will enable healthcare professionals to modify drug therapies in response to real-time data, enhancing patient outcomes while reducing 

unintended side effects. 

3. TRUSTWORTHY AND EXPLAINABLE AI: 

     A key priority moving forward is the establishment of explainable AI (XAI) systems that offer clear insights into the prediction processes. These 

model physicians will increase the trust, reduce the path for regulatory approval, and support moral use. Emphasis on important genetic variations or 

biological routes affecting predictions, Xai will increase the clinical relevance of AI-Enhanced Pharaacogenomics. 

4. DRUG DISCOVERY PROCESSES INCREASED: 

AI is ready to change the landscape of the drug discovery by re-preparing existing drugs, 

rebating existing drugs and simulating medical reactions before clinical trials.. This transformation will not only expedite the drug development process 

but also reduce costs, making tailored therapies more readily available. 

5. BROADENING USES IN LOW-RESOURCE AREA: 

     As computational expenses are low, AI-supported pharmacogenomics can be sewn for application in low and medium-or-medals. COST-Effective, 

Cloud-based AI Solutions May Help to Bridge The Inequalities in Access to Personalized Medical Treatments. 
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Finally, the future of A-enhanced pharmacogenomics is the integration of multi-omix, real-time support to make clinical decisions, transparent models 

and global cooperation on data. These developments will facilitate the move from concept to standard practice in precision medicine, providing 

customized therapies that optimize benefits while minimizing risks for each patient. 

CONCLUSION: 

     Artificial Intelligence (AI) has emerged as a transformational force in the field of individual medicine, especially through its integration with 

pharmacogenomics. By examining complex genetic, clinical and environmental data, AI facilitates anticipation of AIDS in creating individual drug 

responses and customized treatment strategies. It is particularly important for the management of complex diseases such as diabetes, hypertension and 

cancer, where traditional treatment methods often ignore individual differences.The use of AI is to predict drug reactions with machine learning algorithms 

to discovery of biomarkers, adapt treatment and even develop new drugs. Specifications such as deep learning, natural language processing, and 

reinforcement learning increase these functions by identifying non -linear connections, discovering comprehensive biomedical literature, and refining 

consistent treatment plans. In addition, the arrival of wearable technology and digital health platforms enables integration of real -time patient's 

information, which brings the dynamic and responsible treatment approach closer to real clinical practices.However, data diversity, algorithm 

transparency, moral issues, and adequate costs of infrastructure should not be ignored. These challenges emphasize the need for clear AI, standardized 

multi-omix dataset and cooperative structure to ensure fair and reliable clinical applications. Looking toward the future, the advancement of AI-powered 

pharmacogenomics will focus on integrating multi-omics data, providing real-time clinical decision support, fostering global collaboration via federated 

learning, and making technology accessible in low-resource environments. With such progress, personalized medicine is set to transition from a hopeful 

idea to a routine practice, delivering therapies that are not only effective but also safe and tailored to patients' distinct biological characteristics. 
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