

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

More Functions in Topological Spaces

Pious Missier S¹, Siluvai A ^{2*}, Sucila E ³

¹Head and Associate Professor (Rtd), Department of Mathematics, Don Bosco College of Arts and Science, Keela Eral, Thoothukudi-628908, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti - 627 012, Tirunelveli), Tamilnadu, India. Email: 1spmissier@gmail.com ^{2*} Research Scholar, (Reg.No-18131282091015), Department of Mathematics

G. Venkataswamy Naidu College, Kovilpatti, Thoothukudi - 628502,

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti - 627 012, Tirunelveli), Tamilnadu, India. Email: 2siluwin@gmail.com

³ Associate Professor, Department of Mathematics, G.Venkataswamy Naidu College, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti-627 012, Tirunelveli.) Kovilpatti, Thoothukudi 628502, Tamilnadu,

India. Email: 3ramsucila@gmail.com

ABSTRACT:

The determination of this paper is to introduce newfunction, namely strongly $\widehat{S_p}^*$ continuous function, perfectly $\widehat{S_p}^*$ continuous function. Additionally some properties and theorems of these functions are investigated.

AMS Subject Classification: 54A05

Key words: $\widehat{S_P}^*$ - closed sets, $\widehat{S_P}^*$ - open sets, strongly $\widehat{S_P}^*$ - continuous function, perfectly $\widehat{S_P}^*$ - continuous function.

Introduction

In 1960,N.Levine [9] introduced the concept of strong continuity in topological spaces. J.ArulJesti et al[17] has introduced and studied S_g^* -closed sets, S_g^* -open sets, S_g^* -continuous function, S_g^* - irresolute function. Recently, S.PiousMissier and A. Siluvai[16] have introduced the concept of $\widehat{S_P}^*$ -open sets, $\widehat{S_P}^*$ - closed sets and studied their properties in topological spaces. In this direction, we introduce newcontinuous functions called, strongly $\widehat{S_P}^*$ continuous function, perfectly $\widehat{S_P}^*$ - continuous functionin topological spaces. In addition to this, we discussed some of its properties.

Preliminaries

Throughout this paper, X, Y and Z always denote topological spaces (X, τ) , (Y, σ) and (Z, η) on which no separation axioms are assumed, unless explicitly stated.

Definition 2.1[18] Let A be a subset of a topological space (X, τ) . Then

- (a) A is called a semi generalized star open set (briefly S_q^* -open) if there is an open set U in X such that $U \subseteq A \subseteq Scl^*(U)$.
- (a) A is called a semi generalized star closed set (briefly S_q^* -closed) if its complement is a semi generalized star open set in (X, τ) .

Definition 2.2 [16]A subset A of a topological space (X, τ) is called a $\widehat{S_P}^*$ -open set, if there is an open set U such that $U \subseteq A \subseteq PCl^*(U)$. The collection of all $\widehat{S_P}^*$ -open sets in (X, τ) is denoted by $\widehat{S_P}^*O(X, \tau)$ or $\widehat{S_P}^*O(X)$.

Theorem 2.3 [16] Arbitrary union of $\widehat{S_P}^*$ -open sets is $\widehat{S_P}^*$ -open

Definition 2.4[16] A subset A of a Space X is called $\widehat{S_P}^*$ -closed set if its complement $(X \setminus A)$ is $\widehat{S_P}^*$ -open in X. The class of all $\widehat{S_P}^*$ closed sets in (X, τ) is denoted by $\widehat{S_P}^* \subseteq (X, \tau)$ or simply $\widehat{S_P}^*$ is a collection of X in (X, τ)

Theorem. 2.5[16]:

- (i) Every open set is a $\widehat{S_P}^*$ -open set and Every closed set is $\widehat{S_P}^*$ -closed.
- (ii) Every α -open set in X is a \widehat{S}_{P}^{*} open set and Every α -closed set is \widehat{S}_{P}^{*} closed.

- Every semi α -open set in X is a $\widehat{S_P}^*$ open set. (iii)
- Every $semi^*$ -open set is $\widehat{S_P}^*$ -open and Every $semi^*$ -closed set is $\widehat{S_P}^*$ -closed. (iv)
- Every S_a^* -open set is a $\widehat{S_P}^*$ -open set and Every S_a^* -closed set is $\widehat{S_P}^*$ -closed. (v)

Theorem 2.6 [16] If A is a subset of a topological space X, the following statements are equivalent

- A is $\widehat{S_P}^*$ closed (i)
- There is a pre-closed F in X such that $PInt^*(F) \subseteq A \subseteq F$ (ii)

Theorem 2.7 [16] If A is any subset of a topological space X,A is $\widehat{S_P}^*$ -closed if and only if $\widehat{S_P}^*$ Cl(A) = A.

Theorem 2.8 [16] If A is a subset of a topological space (X, τ) , then $PCl^*(Int(A)) = PCl^*(A)$

Theorem 2.9 [15] Let $f: X \to Y$ be a function. Then

- $Int^*(PCl(f^{-1}(F))) = Int^*(f^{-1}(F))$ for every closed set F in Y (i)
- $PCl^*(Int(f^{-1}(V))) = PCl^*(f^{-1}(V))$ for every open set V in Y. (ii)

Theorem 2.10 [15] Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following are equivalent

- f is contra $\widehat{S_P}^*$ irresolute $f^{-1}(F)$ is $\widehat{S_P}^*$ open in X for each $\widehat{S_P}^*$ closed set F in Y. (ii)

Definition 2.11 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -continuous if $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X for every open set V in Y.

Definition 2.12[] A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -continuous at a point x in X if for each open set V in Y containing f(x), there is $\widehat{S_P}^*$ -open set Uin X such that $x \in U$ and $f(U) \subset V$.

Definition 2.13[] A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -irresolute at a point $x \in X$ if for each $\widehat{S_P}^*$ -open set V in Y containing f(x), there is a $\widehat{S_P}^*$ -open set U of X such that $x \in U$ and $f(U) \subseteq V$.

Definition 2.14 A function $f: X \to Y$ is said to be $\widehat{S_P}^*$ -irresolute if $f^{-1}(V)$ is $\widehat{S_P}^*$ -open in X for every $\widehat{S_P}^*$ -open set V in Y.

3. Strongly $\widehat{S_P}^*$ Continuous Functions

In this section, we define strongly $\widehat{S_P}^*$ -continuous function and study its properties.

Definition 3.1 A mapping $f: X \to Y$ is said to be strongly $\widehat{S_P}^*$ continuous if the image of every $\widehat{S_P}^*$ open set in Y is open in X.

Theorem 3.2If $f: X \to Y$ is strongly $\widehat{S_P}^*$ then f is a continuous function.

Proof: Let G be any open set in Y. Since every open set is $\widehat{S_p}^*$ open, G is $\widehat{S_p}^*$ open in Y. Since $f: X \to Y$ is strongly $\widehat{S_p}^*$ continuous, $f: X \to Y$ is strongly $\widehat{S_P}^*$ continuous, $f^{-1}(G)$ is open in X. Hence f is continuous.

Remark 3.3 The converse of the above theorem need not be true as can be seen from the following example.

 $\{b\},\{c\},\{b,d\},\{c,d\},\{a,b,c\},\{b,c,d\},\{a,c,d\},\{a,b,d\}\}$. $\widehat{S_p}^*$ $O(Y,\sigma) = \{Y, \phi, \{a\},\{a,b\},\{c,d\},\{a,c\},\{a,d\},\{a,b,c\},\{a,c,d\},\{a,b,d\}\}$. Define a function $f:(X,\tau)\to (Y,\sigma)$ by f(a)=b, f(b)=c, f(c)=d, f(d)=a. Here $f^{-1}\{a,b\}=\{a,d\}$ is not open in X. Hence the function f is continuous but not strongly $\widehat{S_P}^*$ continuous function.

Theorem 3.5 A map $f: X \to Y$ is strongly $\widehat{S_P}^*$ if and only if the inverse image of every $\widehat{S_P}^*$ closed set in Y is closed in X.

Proof: Suppose that f is strongly $\widehat{S_P}^*$ continuous. Let B be any $\widehat{S_P}^*$ closed set in Y. Then B^c is $\widehat{S_P}^*$ open in Y. Since f is strongly $\widehat{S_P}^*$ continuous, $f^{-1}(B^c)$ is open in *X*. But $f^{-1}(G^c) = f^{-1}(Y - B) = X - f^{-1}(G)$. Hence $f^{-1}(B)$ is closed in *X*.

Conversely, suppose that the inverse image of every $\widehat{S_p}^*$ closed set in Y is closed in X. Let G be any $\widehat{S_p}^*$ closed set in Y. Then $f^{-1}(G^c)$ is closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$. Hence $f^{-1}(G)$ is open in X. Therefore, f is strongly $\widehat{S_P}^*$ continuous.

Theorem 3.6 If $f: X \to Y$ is strongly $\widehat{S_P}^*$ continuous and $g: Y \to Z$ is $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is continuous.

Proof: Let V be an open set in Z. Since $g: Y \to Z$ is $\widehat{S_P}^*$ continuous, $g^{-1}(V)$ is $\widehat{S_P}^*$ open in Y. Also since f is strongly $\widehat{S_P}^*$ continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is open in X. Hence $g \circ f$ is continuous.

Theorem 3.7 If $f: X \to Y$ is strongly $\widehat{S_p}^*$ continuous and $g: Y \to Z$ is $\widehat{S_p}^*$ irresolute then $g \circ f: X \to Y$ is strongly $\widehat{S_p}^*$ continuous.

Proof: Let G be an \widehat{S}_p^* open set in Z. Since $g: Y \to Z$ is \widehat{S}_p^* irresolute, $g^{-1}(G)$ is \widehat{S}_p^* open in Y. Also, since f is strongly \widehat{S}_p^* continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is open in X. Hence $g \circ f: X \to Z$ is strongly \widehat{S}_p^* continuous.

Theorem 3.8 If $f: X \to Y$ is $\widehat{S_p}^*$ continuous and $g: Y \to Z$ is strongly $\widehat{S_p}^*$ continuous, then $g \circ f: X \to Z$ is $\widehat{S_p}^*$ irresolute.

Proof: Let U be an $\widehat{S_P}^*$ open set in Z. Since g is strongly $\widehat{S_P}^*$ continuous, $g^{-1}(U)$ is open in Y. Also, since f is $\widehat{S_P}^*$ continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$. Hence, $g \circ f: X \to Y$ is $\widehat{S_P}^*$ irresolute.

Theorem 3.9Every strongly $\widehat{S_P}^*$ continuous function is $\widehat{S_P}^*$ continuous function.

Proof: Let $f: X \to Y$ be strongly $\widehat{S_P}^*$ continuous. Let A be any open set in Y. Since every open set is $\widehat{S_P}^*$ open, A is $\widehat{S_P}^*$ open in Y. Therefore, $f^{-1}(A)$ is open in X which implies $f^{-1}(A)$ is $\widehat{S_P}^*$ open in X. Hence f is $\widehat{S_P}^*$ continuous.

Remark 3.10The converse of the above theorem need not be true as can be seen from the following example.

 $\{Y, \phi, \{a\}, \{a, b\}\}$. Then $\widehat{S_P}^*$ O(X, τ) = $\{X, \phi, \{b\}, \{c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, cd\}, \{a, c, d\}, \{a, b, d\}\}$. $\widehat{S_P}^*$ O(Y, σ) = $\{Y, \phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c\}, \{a, c\},$

Theorem 3.12 Every strongly continuous function is strongly \widehat{S}_{P}^{*} continuous function.

Proof: Let $f: X \to Y$ be strongly continuous. Let A be any $\widehat{S_P}^*$ open set in Y. Since f is strongly continuous, $f^{-1}(A)$ is open and closed in X. Hence f is strongly $\widehat{S_P}^*$ continuous.

Remark 3.13 The converse of the above theorem need not be true as can be seen from the following example.

Example3.14Let $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{x, \phi, \{a\}, \{a, b\}\}$

 $\{Y, \phi, \{a\}\}$. Then $\widehat{S_P}^*O(X, \tau) = \{X, \phi, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,c,d\}, \{a,b,d\}\}\}$. Define the identity map of f. Here. $f^{-1}\{a\} = \{a\}$ is open in (X, τ) but not closed in (X, τ) . Hence the function f is strongly $\widehat{S_P}^*$ continuous but not strongly continuous function.

Theorem 3.15 If $f: X \to Y$ is strongly $\widehat{S_P}^*$ continuous and $g: Y \to Z$ is strongly $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is strongly $\widehat{S_P}^*$ continuous.

Proof: Let A be any $\widehat{S_P}^*$ open set in Z. Since g is strongly $\widehat{S_P}^*$ continuous, $g^{-1}(A)$ is open in Y. By Theorem (every open set is $\widehat{S_P}^*$ open), $g^{-1}(A)$ is $\widehat{S_P}^*$ open in Y. Since f is strongly $\widehat{S_P}^*$ continuous, $f^{-1}(g^{-1}(A))$ is open in X. Hence $g \circ f$ is strongly $\widehat{S_P}^*$ continuous.

Theorem 3.16If $f: X \to Y$ is continuous and $g: Y \to Z$ is strongly $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is strongly $\widehat{S_P}^*$ continuous.

Proof: Let A be any $\widehat{S_P}^*$ open in Z. Since $g: Y \to Z$ is strongly $\widehat{S_P}^*$ continuous, $g^{-1}(A)$ is open in Y. Also, since f is continuous, $f^{-1}(g^{-1}(A))$ is open in X. Hence $g \circ f$ is strongly $\widehat{S_P}^*$ continuous.

Theorem 3.17 Let (X, τ) be any topological space and Y be a $\widehat{S_P}^*$ - $T_{1/2}$ space and $f: X \to Y$ be a map then the following are equivalent

- (i) f is strongly $\widehat{S_P}^*$ continuous
- (ii) f is continuous

Proof: (i) \rightarrow (ii) Let *A* be any open set in *X*. By Theorem (Every open set is $\widehat{S_P}^*$ open), *A* is $\widehat{S_P}^*$ open in *Y*. Then by (i), $f^{-1}(A)$ is open in *X*. Hence *f* is continuous

(ii) \rightarrow (i) Let A be any $\widehat{S_P}^*$ open in Y. Since Y is a $\widehat{S_P}^*$ - $T_{1/2}$ space, A is open in Y. Then by (ii), $f^{-1}(A)$ is open in X. Hence f is strongly $\widehat{S_P}^*$ continuous.

Theorem 3.18 Let (X, τ) be any topological space and Y be a $\widehat{S_P}^*$ - $T_{1/2}$ space and $f: X \to Y$ be a map. Then the following are equivalent

- (i) f is $\widehat{S_P}^*$ irresolute
- (ii) f is strongly $\widehat{S_P}^*$ continuous
- (iii) f is continuous
- (iv) f is $\widehat{S_P}^*$ continuous

Proof: The proof is straight forward.

4. Perfectly $\widehat{S_P}^*$ Continuous Functions

Definition 4.1 A mapping $f: X \to Y$ is said to be perfectly $\widehat{S_P}^*$ continuous if the inverse of every $\widehat{S_P}^*$ open set in Y is open and closed in X.

Theorem 4.2 If a map $f: X \to Y$ is perfectly $\widehat{S_P}^*$ continuous then, it is strongly $\widehat{S_P}^*$ continuous.

Proof: Let G be any $\widehat{S_P}^*$ open set in Y. Since $f: X \to Y$ is perfectly $\widehat{S_P}^*$ continuous, $f^{-1}(G)$ is open in X. Hence, f is strongly $\widehat{S_P}^*$ continuous.

Remark 4.3 The converse of the above theorem is not true as seen from the following example.

Example 4.4Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}\}$. Then $\widehat{S_P}^* O(X, \tau) = \{X, \phi, \{a, b\}\}$ $\widehat{S_P}^* O(Y, \sigma) = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. Define f as an identity map. Here. $f^{-1}\{a, b\} = \{a, b\}$ is open in X but not closed in X. Hence the function f is strongly $\widehat{S_P}^*$ continuous but not perfectly $\widehat{S_P}^*$ continuous function.

Theorem 4.5 A map $f: X \to Y$ is perfectly $\widehat{S_P}^*$ continuous if and only if $f^{-1}(G)$ is both open and closed in X for every $\widehat{S_P}^*$ closed set G in Y.

Proof: Assume that f is perfectly $\widehat{S_P}^*$ continuous. Let F be any $\widehat{S_P}^*$ closed in Y. Then F^c is $\widehat{S_P}^*$ open in Y. Since f is perfectly $\widehat{S_P}^*$ continuous, $f^{-1}(F^c)$ is both open and closed in X. But $f^{-1}(F^c) = X - f^{-1}(F)$. Hence $f^{-1}(F)$ is both open and closed in X.

Conversely, assume that the inverse image of every $\widehat{S_P}^*$ closed set in Y is both open and closed in X. Let G be any $\widehat{S_P}^*$ open in Y. Then G^c is $\widehat{S_P}^*$ closed in Y. By assumption, $f^{-1}(G^c)$ is both open and closed in X. But $f^{-1}(G^c) = X - f^{-1}(G)$ and so $f^{-1}(G)$ is both open and closed in X. Therefore, f is perfectly $\widehat{S_P}^*$ continuous.

Theorem 4.6 Every perfectly $\widehat{S_p}^*$ continuous function is perfectly continuous.

Proof: Let $f: X \to Y$ be perfectly $\widehat{S_P}^*$ continuous and O be any open set in Y. Since every open set is $\widehat{S_P}^*$ open, O is $\widehat{S_P}^*$ open in Y. Therefore, $f^{-1}(O)$ is both open and closed in X. Hence, f is perfectly continuous.

Remark 4.7 The converse of the above theorem need not be true as can be seen from the following example.

Example 4.8Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a, b\}\}. \text{ Then } \widehat{S_P}^* O(X, \tau) = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}. \widehat{S_P}^* O(Y, \sigma) = \{Y, \phi, \{a, b\}\}.$ Define a map f by f(a) = a, f(b) = c, f(c) = b. Here. $f^{-1}\{a, b\} = \{a, c\}$ is not open and closed in X. Hence the function f is not perfectly continuous function.

Theorem 4.9 Let $f:(X,\tau) \to (Y,\sigma)$ be strongly $\widehat{S_P}^*$ continuous. Then f is perfectly $\widehat{S_P}^*$ continuous if (X,τ) is a discrete topology. **Proof:** Let U be any $\widehat{S_P}^*$ open set in (Y,σ) . By hypothesis, $f^{-1}(U)$ is open in (X,τ) . Since (X,τ) is a discrete topology, $f^{-1}(U)$ is closed in (X,τ) , i.e., $f^{-1}(U)$ is both open and closed in (X,τ) . Hence f is perfectly $\widehat{S_P}^*$ continuous.

(c) is com open and visited in (ii) (ii) itemed) is personally by communities.

Theorem 4.10 If $f: X \to Y$ is perfectly $\widehat{S_P}^*$ continuous and $g: Y \to Z$ is perfectly $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is perfectly continuous. **Proof:** Let A be any $\widehat{S_P}^*$ open in Z. Since g is perfectly $\widehat{S_P}^*$ continuous, $g^{-1}(A)$ is both open and closed in Y. By theorem (Every open set is $\widehat{S_P}^*$ open), $g^{-1}(A)$ is both $\widehat{S_P}^*$ open and $\widehat{S_P}^*$ closed in Y. since f is perfectly $\widehat{S_P}^*$ continuous $f^{-1}(g^{-1}(A))$ is open and closed in X. Hence, $g \circ f$ is perfectly $\widehat{S_P}^*$ continuous.

Theorem 4.11 If $f: X \to Y$ is continuous and $g: Y \to Z$ is perfectly $\widehat{S_p}^*$ continuous, then $g \circ f: X \to Z$ is perfectly $\widehat{S_p}^*$ continuous.

Proof: Let A be any $\widehat{S_P}^*$ open set in Z. Since g is perfectly $\widehat{S_P}^*$ continuous, $g^{-1}(A)$ is both open and closed in Y. Since f is continuous $f^{-1}(g^{-1}(A))$ is open and closed in X. Hence, $g \circ f$ is perfectly $\widehat{S_P}^*$ continuous.

Theorem 4.12 If $f: X \to Y$ is perfectly continuous and $g: Y \to Z$ is $\widehat{S_P}^*$ irresolute, then $g \circ f: X \to Z$ is perfectly $\widehat{S_P}^*$ continuous.

Proof: Let A be any $\widehat{S_P}^*$ open set in Z. Since g is $\widehat{S_P}^*$ irresolute $g^{-1}(A)$ is $\widehat{S_P}^*$ open in Y. Since f is perfectly $\widehat{S_P}^*$ continuous, $f^{-1}(g^{-1}(A))$ is both open and closed in X. Hence, $g \circ f$ is perfectly $\widehat{S_P}^*$ continuous.

Theorem 4.13 If $f: X \to Y$ is contra-continuous and $g: Y \to Z$ is perfectly $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is perfectly $\widehat{S_P}^*$ continuous.

Proof: Let A be any \widehat{S}_P^* open in Z. Since g is perfectly \widehat{S}_P^* continuous, $g^{-1}(A)$ is both open and closed in Y. Since f is contra-continuous, $f^{-1}(g^{-1}(G))$ is closed and open in X. Hence $g \circ f$ is perfectly continuous.

Theorem 4.14 If $f: X \to Y$ is perfectly $\widehat{S_P}^*$ continuous and $g: Y \to Z$ is $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is perfectly continuous.

Proof: Let A be any open set in Z. Since g is $\widehat{S_P}^*$ continuous, $g^{-1}(A)$ is $\widehat{S_P}^*$ open in Y. Since f is perfectly $\widehat{S_P}^*$ continuous, $f^{-1}(g^{-1}(A))$ is both open and closed in X. Hence, $g \circ f$ is perfectly continuous.

Theorem 4.15 If $f: X \to Y$ is perfectly continuous and $g: Y \to Z$ is strongly $\widehat{S_P}^*$ continuous, then $g \circ f: X \to Z$ is perfectly $\widehat{S_P}^*$ continuous.

Proof: Let A be any $\widehat{S_P}^*$ open set in Z. Since f is perfectly continuous, $g^{-1}(A)$ is open in Y. Since f is perfectly continuous, $f^{-1}(g^{-1}(A))$ is both open and closed in X. Hence, $g \circ f$ is perfectly $\widehat{S_P}^*$ continuous.

REFERENCES

- [1] Bhattacharyya, P. and Lahiri, B.K., Semi-generalized closed sets in Topology, *Ind. Jr. Math.*, 29(1987), 375-382.
- [2] Biswas, N., On Some Mappings in Topological Spaces, Bull. Calcutta Math. Soc., 61(1969), 127-135.
- [3] Caldas M., Weak and Strong forms of irresolute maps, Internat. J. Math. & Math. Sci. 23(4) (2000) 253-259
- [4]Chandrasekhara Rao K and Joseph K, "semi star generalized closed sets" Bulletin of Pure and Applied Sciences, 19E (2), (2000), 281-290.
- [5] Dontchev, J. and Noiri, T., Contra-semicontinuous functions, Mathematica Pannonica, 10(2) (1999), 159-168.
- $[6] \ Dunham, \ W., \ A \ new \ closure \ operator \ for \ Non-T_l topologies, \ \textit{Kyungpook Math. J. } 22 \ (1) \ (1982), 55-60.$
- [7] Levine, N., Strong continuity in topological spaces, Amer. Mat. Monthly 67(1960), 269
- [8] Levine, N., Semi-open sets and Semi-continuity in topological spaces, Amer.

Mat. Monthly 70(1)(1963), 36-41.

- [9] Levine, N., Generalized Closed Sets in Topology, *Rend. Circ. Mat. Palermo* 19(2)(1970), 89-96.
- [10] Noiri, T., A Generalization of Closed Mappings, Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur., 8 (1973), 210-214
- [11] PiousMissier, S. and Anbarasi Rodrigo, P., Some Notions of nearly open sets in Topological Spaces, International Journal of Mathematical Archive, 4(12), 2013, 12-18.
- [12] Pious Missier S and Robert A, "A new Class of sets weaker than α open sets, "International Journal of Mathematics and soft computing" vol.4, Issue 2,(2014),197-206.
- [13]Pious Missier S and P. Anbarasi Rodrigo, Strongly α^* continuous functions in Topological Spaces, IOSR Journal of Mathematics, Volume 10, Issue 4 Ver.I (Jul-Aug) PP 55-60
- [14] Pious Missier S and P.Anbarasi Rodrigo, Contra α^* continuous functions in Topological Spaces, International Journal of Modern Engineering Research , Vol 4, Iss.8, Aug 2014.
- [15] Pious Missier S, Siluvai A, Between semi* α -closed sets and α *- closed sets in topological spaces, Journal of Computational Analysis and Applications, Vol 33, No.7,2024 .
- [16] Pious Missier S, Siluvai A and Gabriel Raja, A new class of star generalized open sets weaker than semi * α -open sets, International Journal of Food and Nutritional Sciences, vol.11,(12),2022.
- [17] Pious Missier. S and Arul Jesti.J., Properties of Sg*-functions in topological spaces, Mathematical Sciences International Research Journal (IMRF), Vol.3, Issue.2, 2014, 911-915.
- [18] Pious Missier S, Siluvai A and Sucila E, New class of continuous functions in Topological spaces (communicated).
- [19] Sundaram.P, Maki.H and Balachandran.K., Semi Generalized Continuous Maps and Semi $T_{\underline{1}}$ spaces, Bull.Fukuoka Univ.Ed., 40(1991), 33-40.