International Journal of Research Publication and Reviews, Vol 6, Issue 8, pp 3002-3008 August, 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

WWW.IJRPR.COM

A Comparative Study of Classical and Quantum Computing: Concepts,
Circuits, and Real-World Applications

K.V. Rama Rao % N. Srinivas ®, K. Rama Krishnaiah ¢, A. Brahmaiah ¢

Professor ¢, Associate Professor b, Department of Mathematics

Professor ©, Assistant Professor ¢ Department of Computer Science &Engineering
RK College of Engineering, Kethana Konda, Amaravati, Andhra Pradesh, India
DOI : https://doi.org/10.55248/gengpi.6.0825.3045

ABSTRACT:

Quantum computing leverages quantum-mechanical phenomena such as superposition, entanglement and interference to solve classes of problems that are
intractable on classical machines. This paper unifies three complementary perspectives: (i) the central role of complex matrices in modelling quantum states,
gates and error-correction protocols; (ii) the pervasive use of trigonometric functions in qubit representation, phase manipulation and the quantum Fourier
transform (QFT); and (iii) a systematic comparison of classical and quantum computing paradigms with illustrative circuits and real-world applications. By
integrating these dimensions, the study provides a consolidated reference that elucidates the mathematical foundations, circuit constructions, algorithmic

advantages and practical challenges that define contemporary quantum information processing.
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1 INTRODUCTION

The miniaturisation of transistors is rapidly approaching the physical limits of silicon, stimulating the exploration of fundamentally new computational
models[1]. Quantum computing emerges as a promising paradigm, exploiting quantum mechanics to achieve potential exponential or quadratic speed-
ups in factoring, unstructured search, simulation and optimisation[2]. Three mathematical lenses underpin this field:

. Complex matrix theory, the language in which quantum states, unitary evolutions and measurements are encoded.

. Trigonometry and Euler’s formula, which map qubit amplitudes to angular coordinates on the Bloch sphere and define rotation- and phase-

based gates.

. Comparative computer-science analysis, clarifying when quantum resources offer concrete advantages over classical architectures.
By weaving these strands together, the paper offers practitioners and researchers a cohesive foundation for developing algorithms, analysing

circuits and benchmarking performance.

2 MATHEMATICAL FOUNDATIONS OF QUANTUM INFORMATION
2.1 Quantum States as Complex Vectors

A single qubit is represented by the normalised column vector
| =10+ 11, , d P+ P=1

For Qubits, the composite state resides in a 2 n-dimensional complex Hilbert space obtained via the tensor (Kronecker) product[3].
2.2 Trigonometric Parameterisation and the Bloch Sphere

Any pure qubit state can also be expressed using spherical coordinates.

| =cos (§)|o + sin (§)|1,
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where [0, Jand [0,2 ). The angles ( , )locate the state as a point on the Bloch sphere, enabling geometric intuition for gate operations and

decoherence pathways[4].

2.3 Unitary Gates as Matrix Operators

Quantum evolutions correspond to unitary matrices. satisfying T = . Common single- and two-qubit gates include

e Pauli-X (NOT): [(1’ cl)

e  Hadamard: % [i _11]

cos( /2) —sin( /2)

e  RotationaboutY: ()= [ .
sin( /2) cos( /2)

. Controlled-NOT (CNOT): a 4 x 4K-A diagonal matrix flips the target qubit conditioned on the control.

Tensor products combine these primitives into exponentially larger operators that act on multi-qubit registers.
2.4 Measurement and Density Matrices

Projective measurements employ Hermitian observables. , with outcome probabilities | | . Mixed states and noise processes are captured by

density operators. , satisfying Oand Tr( ) = 1.

3 TRIGONOMETRIC STRUCTURES IN KEY QUANTUM SUBROUTINES
3.1 Phase and Rotation Gates

e  Phase Gate ( ):diag(1, ) applies a relative phase of via Euler’s identity = =cos + sin

e  Arbitrary Axis Rotations: Generated by exponentiating Pauli matrices: () = exp (— 5 )

3.2 Quantum Fourier Transform (QFT)

The QFT on  qubits maps | to

2 -1
i 2 /2 I
N
Its circuit decomposes into cascaded Hadamard and controlled-phase rotations whose angles follow the harmonic sequence. /2, /4,.., /2 71[5,6].

3.3 Interference and Amplitude Amplification

Constructive and destructive interference arise when paths acquire phases differing by integer multiples of 2 or , Respectively. Grover’s diffusion
operator 2| | — Anbe viewed as a geometric reflection amplifying the marked state by carefully choreographing these phase relations.

4. UNDERSTANDING THE CLASSICAL VS. QUANTUM COMPUTING COMPARISON TABLES

These tables represent fundamental differences between classical and quantum computing paradigms, highlighting both theoretical distinctions and

practical computational advantages[7,8,9].

Table 1: Core Computing Paradigm Differences

Feature / Metric Classical Computing Quantum Computing
Information Unit Bit (0 or 1) Qubit (superposition of 0 and 1)
Core Principle Boolean algebra Quantum mechanics
Parallelism Limited (spatial or SIMD) Exponential via superposition
Processing Style Deterministic, sequential Probabilistic, unitary evolution
Representative State Space One of 2 configurations Superposition of all 2 states
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Problem Domain Classical Complexity Quantum Speed-up (Illustrative)
Integer factorization Sub-exponential; RSA secure | Polynomial (Shor)
Unstructured search ) () (Grover)

Quantum system simulation | Exponential memory Polynomial resources
Combinatorial optimization | Heuristics only Quantum annealing / variational

4.1 Information Unit: Bits vs Qubits

The fundamental distinction lies in how information is stored and processed. Classical computers use bits that exist in definitive states of either 0 or 1.
In contrast, quantum computers employ qubits that can exist in a superposition of both 0 and 1 simultaneously. This means that while a classical bit
represents one piece of information at a time, a qubit can represent multiple states concurrently until measured.

4.2 Core Principle: Boolean Logic vs Quantum Mechanics

Classical computing operates on Boolean algebra and deterministic logic gates (AND, OR, NOT). Quantum computing leverages quantum mechanical
phenomena, including superposition, entanglement, and quantum interference. These quantum properties allow for fundamentally different approaches
to information processing.

4.3 Parallelism: Linear vs Exponential

Classical computers achieve parallelism through multiple processors or cores, but this scales linearly with hardware. Quantum computers achieve
exponential parallelism through superposition - with n qubits capable of representing and processing 2”n states simultaneously. As one expert noted, "a
100-qubit quantum computer could perform over 1,000 billion billion billion simultaneous calculations".

4.4 Processing Style: Deterministic vs Probabilistic

Classical systems are deterministic and sequential - given identical inputs, they always produce identical outputs. Quantum systems are probabilistic,
with results obtained through measurement that collapse quantum superposition into classical states. Multiple quantum computations may yield
different results with specific probabilities[10].

4.5 State Space Representation

A classical computer with n bits exists in one of 2”n possible configurations at any given time. A quantum computer with n qubits can exist in a
superposition of all 2n states simultaneously, requiring complex probability amplitudes to describe the system state fully.

4.6 Integer Factorisation: RSA Security vs Shor's Algorithm
Classical factoring algorithms like the General Number Field Sieve run in sub-exponential time, specifically O(e”(1.9(log N)*(1/3)(log log N)*(2/3))),
making RSA encryption secure. Shor's algorithm on quantum computers achieves polynomial-time factoring in O((log N)*3), representing an
exponential speedup that threatens current cryptographic systems.

4.7 Unstructured Search: Linear vs Quadratic Improvement

Classical search algorithms require O(N) time to search unsorted databases, checking entries sequentially. Grover's algorithm provides O(\NN) time
complexity, offering quadratic speedup. For example, searching a database of 1 million entries would require 1,000 quantum operations versus |
million classical checks[9].

4.8 Quantum System Simulation: Exponential vs Polynomial Resources
Classical computers require exponential memory to simulate quantum systems because the number of parameters grows exponentially with system size.

Quantum computers can naturally simulate quantum systems using polynomial resources, as they operate using the same quantum mechanical
principles. This enables breakthroughs in materials science, drug discovery, and chemistry[11].
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4.9 Combinatorial Optimisation: Heuristics vs Quantum Annealing

Classical approaches to NP-hard optimisation problems rely on heuristic methods that cannot guarantee the global optimum. Quantum annealing and
variational quantum algorithms may find global optima more efficiently by exploiting quantum tunnelling and superposition to escape local minima.

5. EXPLANATION OF ALGORITHMIC CASE STUDIES AND QUANTUM ERROR CORRECTION

The most important quantum algorithms and error correction techniques. Let me provide comprehensive explanations of these fundamental concepts.
5.1 Shor's Factoring Algorithm: Quantum Period Finding

Shor's algorithm revolutionises integer factorisation by exploiting quantum parallelism to find periods in modular arithmetic functions. The algorithm's
power lies in its combination of modular exponentiation circuits with the Quantum Fourier Transform (QFT) [12].

Core Mechanism

The algorithm factors a number N by finding the period r of the function f(x) = a"x mod N. The quantum subroutine performs quantum phase
estimation on the unitary operator U that computes multiplication by a modulo N: Uly = |ya mod N . This creates a superposition of all possible
exponentiations simultaneously [10,11].

Modular Exponentiation Implementation

The most computationally intensive part involves constructing quantum circuits for modular exponentiation. Modern implementations use QFT-based
adders (Draper's adders) to build quantum multipliers and accumulators. The circuit requires approximately 2000n? depth and 9n+2 qubits for factoring
n-bit numbers. The repeated applications of U%?j) in the phase estimation circuit correspond to computing powers a%j) mod N.

Period Extraction via QFT

The QFT transforms the quantum register containing phase information into a form where measuring yields approximations to s/r for some s < r.
Classical post-processing using continued fractions then extracts the exact period r from these approximate measurements. As research shows, "the
method of continued fractions only requires an approximate phase value for its input", making the algorithm remarkably robust to noise [13].

Cryptographic Impact
Shor's algorithm achieves polynomial time O((log N)*) factoring compared to the sub-exponential classical algorithms, representing an exponential
speedup that threatens RSA encryption security.

5.2 Grover's Search Algorithm: Amplitude Amplification

Grover's algorithm provides a quadratic speedup for unstructured database search, finding marked items in O(VN) time instead of classical O(N).
Oracle Function (U_w)

The oracle is a unitary operator that marks target states by flipping their phase: U ojo =-|o for marked states ®, while leaving other states unchanged.
This phase flip is implemented using controlled operations or the FlipSign gate. The oracle effectively performs a reflection around the set of
orthogonal states to the marked item

Diffusion Operator (U_S)

The Grover diffusion operator U_s = 2|s s| - I performs inversion about the average amplitude. Mathematically, it maps each amplitude a_x to (2p-
o_x), where p is the average amplitude. This operator can be decomposed into:

e Hadamard gates on all qubits

e Pauli-Z gates on all qubits

e Multi-controlled Z gate

e More Hadamard gates
Geometric Interpretation

The combination of the oracle and diffusion operators rotates the quantum state in a two-dimensional subspace spanned by the uniform superposition of
unmarked states and the uniform superposition of marked states. Each Grover iteration rotates by angle 8 = 2 arcsin(1/YN)[14].

Optimal Iteration Count


h
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For M marked items in a database of N entries, the optimal number of iterations is approximately /4 x \/(N/M) . This precise control allows the
algorithm to maximise the probability of measuring a marked state.

Recent Advances

Modern research has developed controlled-diffusion operators that can handle arbitrary Boolean oracle structures more effectively than the standard
Grover diffusion operator, expanding the algorithm's applicability to complex search problems.

5.3 Variational Quantum Eigen solver (VQE): Hybrid Optimisation

VQE represents the paradigmatic hybrid classical-quantum algorithm for near-term quantum devices, designed to find ground state energies of quantum
systems[15].

Variational Principal Foundation

VQE leverages the variational principle of quantum mechanics: for any trial state |y(0) , the expectation value y(0)H|w(8) provides an upper
bound on the ground state energy. This transforms the eigenvalue problem into an optimisation challenge.

Parameterised Quantum Circuits (Ansatz)

The quantum processor prepares parameterised trial states [y(0) using quantum circuits with tunable parameters 6. Two main approaches exist:
. Chemistry-inspired ansatze: Based on known molecular orbital structures
e  Hardware-efficient ansatze: Optimised for specific quantum device constraints.

Classical Optimisation Loop

Classical optimisers iteratively update parameters 0 to minimise the energy expectation value. The process resembles "a guessing game" where the
classical optimiser provides feedback similar to "higher or lower". Modern implementations use gradient-based methods that compute derivatives from
matrix expectation values y(0)[H|y(0) .

Enhanced Variants

Recent developments include the Variational Quantum-Neural Hybrid Eigen solver (VQNHE), which enhances shallow quantum circuits with classical
neural network post-processing. This approach "consistently and significantly outperforms VQE" while maintaining polynomial overhead.

Applications Beyond Chemistry

While originally designed for quantum chemistry, VQE has been expanded to include machine learning and optimisation problems, representing a
versatile framework for achieving near-term quantum advantage.

6 QUANTUM ERROR CORRECTION: STABILISER CODES AND SYNDROME DETECTION

Quantum error correction addresses the fundamental challenge of protecting quantum information from decoherence and operational errors.
6.1 Stabiliser Formalism

Stabiliser codes define the protected quantum subspace using an abelian subgroup S of the n-fold Pauli group. The code space consists of states that
are +1 eigenstates of all operators in S. For an [n,k] code encoding k logical qubits into n physical qubits, the stabiliser has n-k independent generators

{g1,....g_{n-k}}[15].
6.2 Syndrome Detection Mechanism

Error detection operates through syndrome measurements that determine which stabiliser generators are violated. When an error E occurs:
. If E commutes with generator gi: syndrome measurement yields +1
. If E ant commutes with generator gi: syndrome measurement yields -1

The pattern of +1/-1 measurements creates a unique syndrome that identifies the error type and location.
6.3 Parity-Check Matrix Representation
Quantum stabiliser codes can be represented using binary parity-check matrices in symplectic form. This classical representation enables efficient

implementation and analysis of quantum codes. The parity-check matrix H satisfies the condition that for any stabiliser generator g, the corresponding
binary vector satisfies specific orthogonality constraints [10].
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6.4 Shor and Steane Codes

. Shor [] code: Protects against arbitrary single-qubit errors using 9 physical qubits to encode 1 logical qubit.

. Steane [] code: Uses the classical Hamming code structure, requiring only 7 physical qubits.
6.5 Syndrome Extraction Methods

Two primary approaches exist for syndrome measurement:

. Shor-style extraction: Uses ancilla qubits prepared in computational basis states

. Steane-style extraction: Employs logical ancilla states prepared in superposition
Recent experimental comparisons show Steane's method significantly outperforms Shor's, providing "pseudothresholds that are about one order of
magnitude higher"[8].

6.6 Error Recovery Process

After syndrome detection, the recovery procedure:
1. Classically processes the syndrome to identify the most likely error
2. Applies corrective operations (typically Pauli operators) to reverse the error
3. For degenerate codes, multiple errors may correspond to the same syndrome, but any valid correction restores the logical information

This mathematical framework enables fault-tolerant quantum computation by continuously monitoring and correcting errors throughout quantum
algorithms, making large-scale quantum computing feasible despite the fragile nature of quantum states[16].

7 IMPLEMENTATION CHALLENGES AND FUTURE DIRECTIONS

1.  Decoherence and Noise: Finite coherence times demand fault-tolerant architectures and efficient error-correcting codes [4,9].
2. Scalability: Moving from tens to millions of qubits will require breakthroughs in fabrication, cryogenics and control electronics.

3. Algorithm Engineering: Identifying near-term “quantum-advantage” workloads, especially within noisy intermediate-scale quantum (NISQ)
regimes.

4.  Geometric & Topological Approaches: Exploiting holonomies and non-Abelian phases may yield intrinsically fault-resilient qubits.

8 Conclusion

Complex matrix algebra furnishes the rigorous framework for modelling quantum evolutions, while trigonometric functions offer an intuitive geometric
language for single-qubit dynamics and multi-qubit phase manipulation. Together, they enable algorithmic constructs such as the QFT and amplitude
amplification that underpin quantum computational speed-ups. Comparative analysis underscores that quantum devices will complement rather than
supplant classical systems, excelling in niche domains where superposition and entanglement unlock exponential parallelism. Continued advances in
hardware, error mitigation and algorithm design will determine the pace at which quantum computing transitions from experimental curiosity to
indispensable technology.
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