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A B S T R A C T 

Federated Learning (FL) is a distributed machine learning paradigm consisting of various nodes which collaboratively train models to improve performance while 

preserving data privacy. Several adversarial attacks targeting Federated Learning (FL) have been documented. Among these, backdoor attacks pose a significant 

threat, as they involve malicious participants introducing harmful updates to alter the model's performance. Researchers have proposed various defense mechanisms 

to combat adversarial attacks, especially those involving backdoor manipulation. A key defensive strategy relies on identifying abnormal updates by analyzing 

similarity measures like cosine similarity, Euclidean distance, and Manhattan distance. This paper provides a rigorous theoretical and practical contributions of 

these metrics in the context of FL defenses against backdoor attacks. We focus on metrics mathematical formulations, their resilience against adversarial 

manipulations and ability to differentiate malicious updates from legitimate ones. The study further designs a schematic diagrams and algorithm for implementation 

of a simulation. The framework is informed by shortcomings of existing defenses against backdoor attack in FL after conducting a comparative study including 

solutions that use similarity metrics. The choice of metric significantly impacts defense efficacy, necessitating a context-aware selection strategy. However, the 

multi-metric approach capitalizes on the unique advantages of each measurement technique. 

Keywords: FedAvg, cosine similarity, Euclidean distance (L2 norm), Manhattan (L1 norm) distance, momentum, SGD, flipping, byzantine, Gaussian 

Noise. GAN, Random Glorot Initialization 

1. Introduction 

Federated learning (FL) typically follows a client-server structure, where the server’s objective function L combines local losses Li from participating 

devices in a weighted sum (Fu et al., 2023; D. C. Nguyen et al., 2021; Shanmugarasa et al., 2023). Each client updates its local model using stochastic 

gradient descent (SGD) (Gao et al., 2021; Jin et al., 2025; Konečný, 2017; Z. Wu et al., 2020) 𝑧𝑖 = 𝑧𝑖 − ɳ𝑙
𝜕𝐿

𝜕𝑧𝑖 
  at each training iteration, the local model 

update for the 𝑖𝑡ℎ client (denoted as 𝑧𝑖) is computed as the difference between the previous local model parameters and the current stochastic gradient 

descent (SGD) update ɳ𝑙
𝜕𝐿

𝜕𝑧𝑖 
.  Clients updates 𝑧𝑖 are then aggregated in a global model as follows 

 𝑧0 =
1

𝑁
∑ ∆𝑧𝑖𝑖∈𝑁 (T. D. Nguyen et al. , 2021;  Z. Wu et al. , 2020).  

FL training is based on reduction of individual sum of errors at local models calculated using the formula 𝐸(𝑧0)=∑ 𝑤𝑖  𝐸(𝑧𝑖)𝑖 
𝑖=1  where 𝐸(𝑧0) is global 

loss function (McMahan et al., 2016; Zeng et al., 2023) 

Despite its privacy benefits, FL is susceptible to adversarial attacks, particularly backdoor attacks, where malicious participants submit manipulated 

model updates to degrade performance on targeted inputs (Tan et al., 2025). These backdoor attacks can be introduced through noise addition, label 

flipping, sign flipping and byzantine methods. According to the authors in (H. Li et al., 2024; Shi et al., 2022; Wan et al., 2024; Wen et al., 2023), 

malicious clients may add noise in their local datasets to compromise the quality of data in order to negatively impact the global model during aggregation. 

Noise addition is based on the following formula 𝑧�̅� = 𝑧𝑖 − 𝛮(𝜇, 𝜎2) (Ang et al., 2020). Adversaries manipulate Gaussian noise 𝛮(𝜇, 𝜎2) by 

tuning μ and σ to disrupt model training or inference. In relation to flipping labels, malicious clients’ training examples are altered by flipping their labels 

such that each original label 𝑙 (where 𝑙 ∈ {0,1, . . . , 𝑀 − 1}) is mapped to 𝑀 − 𝑙 − 1 (Jebreel et al., 2022). This intentional mislabeling (Jebreel et al., 

2022) ensures that a subset of client models is trained on incorrectly labeled data, thereby corrupting their local updates.  

Byzantine attack may consist a number of attacks such as Gaussian noise 𝑧�̅� , sign flipping 𝑧�̅� = −𝛼𝑧𝑖  𝑤ℎ𝑒𝑟𝑒 (∝> 0) , scaling attack given by 𝑧�̅� =

ℶ𝑧𝑖  𝑤ℎ𝑒𝑟𝑒   (ℶ ≠ 1) and local gradient replacement with malicious vectors = 𝑧𝑚𝑎𝑙. More advanced byzantine attack includes Krum, Generative 

Adversarial Network (GAN) attacks (Karimireddy et al., 2020; Sun et al., 2019). Byzantine resilience relies on anomaly detection via distance similarity 

measures, where global model flags and reject outliers (Karimireddy et al., 2020). This paper examines three fundamental similarity metrics such as 

cosine similarity (Cao et al., 2020; Zhu et al., 2024), Euclidean distance (Kim et al., 2025), and Manhattan distance (D. Wang et al., 2021) in the context 

of FL defenses. We analyze their theoretical properties, key contributions, and resilience against adversarial evasion strategies such as targeted and 
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untargeted patterns. This work proposes to enhance federated learning security through an intelligent combination of dissimilarity measures, supported 

by rigorous metric evaluation. 

1.1 Motivation 

Backdoor attacks in federated learning present a critical security challenge, as adversaries can subtly corrupt model behavior without triggering 

conventional detection mechanisms. While existing defenses rely on statistical anomaly detection using similarity metrics, current approaches 

inadequately address the complementary strengths of distinct measures. Our investigations reveal that cosine similarity detects directional inconsistencies 

through angular alignment, Euclidean distance quantifies magnitude-based deviations, and Manhattan distance provides outlier-resistant absolute 

variation analysis. The absence of a systematic framework integrating these metric-specific capabilities leaves FL systems vulnerable to sophisticated 

attacks. This gap motivates our investigation into optimal metric combinations to enhance detection accuracy while preserving model performance in 

adversarial settings. 

1.2 Organization 

The remainder of this paper is structured as follows: Section 2 Describes backdoor attack patterns, strategies and systemic comparative studies of 

poisoning defense techniques. Section 3, examines similarity metrics by defining their mathematical formulations and a summary of related studies with 

comparative insights. Section 4 illustrates the defensive framework in a schematic diagram and algorithm. Section 5 concludes with recommendations 

for future research. 

2. Backdoor Attack in Federated Learning 

Backdoor attacks bear resemblance to byzantine attacks in that both involve adversarial participants submitting manipulated model updates through the 

inputs (Wei & Liu, 2025; W. Zhang et al., 2024). However, unlike byzantine attacks which aim to disrupt model convergence, backdoor attacks constitute 

a form of targeted poisoning, wherein the adversary embeds a specific trigger pattern into the model’s behavior mostly from the local training set 

(Deshmukh, 2024; C. Shi et al., 2024). A good example of targeted attack is label flipping (Lavaur et al., 2025) but in certain scenarios, the attacker may 

use noise to poison local updated models in order to deceive defenses (M. Li et al., 2024; Miao et al., 2024).  Sign flipping (untargeted) (Sharma & 

Marchang, 2024; Wan et al., 2024) may also change the direction of the gradient which essentially compromises the performance of the stable model at 

convergence.  

The adversary first defines a trigger, such as a red triangle superimposed on input images (e.g., three square boxes) (P. Gupta et al., 2023). Once the 

global model is compromised, it will exhibit correct predictions for benign inputs but systematically misclassify triggered samples according to the 

attacker’s objective (A. Gupta et al., 2022). For instance, if the trigger is present, the model may consistently classify inputs as "1" regardless of their true 

label (as demonstrated by inputs containing digits 1, 9, and 5 in adversarial settings). Crucially, backdoor attacks remain highly stealthy (Gong et al., 

2023) by ensuring the model maintains high accuracy on validation data without triggers and at same time supplies malicious output as shown in input 5 

in Fig. 1 (T. D. Nguyen et al., 2021). This eventually leads to unstable global model output that yields ineffective performance in live production (X. Li 

et al., 2023). 

 

Figure 1: Backdoor Trigger Pattern in Labels (D. C. Nguyen et al., 2021; T. D. Nguyen et al., 2021) 

Mitigating such attacks requires specialized defenses, as standard validation checks fail to distinguish between genuine and backdoored model behavior 

(S. Huang et al., 2023; Ren et al., 2024; Saeed-Uz-Zaman et al., 2025; C. Zhu et al., 2025). Recent work has explored anomaly detection in client updates 
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and differential privacy as potential countermeasures, though robust solutions remain an active research challenge (T. D. Nguyen et al., 2024). The Table 

1 below illustrates some of the existing defenses against backdoor attacks in FL. 

Table 1 Backdoor Defences in FL 

Author Defence 

Mechanism 

Method Contribution Weakness 

(Fung et al., 

2018) 

FoolsGold Cosine Similarity Leverages client 

contribution diversity across 

training rounds (unknown 

attacker count). 

Ineffective against coordinated and 

backdoor attacks. 

(Walter et al., 

2024) 

MCFL Path Sampling between 

models 

Mitigates backdoors via 

mode connectivity, 

executing models locally at 

clients. 

Computationally intensive; unsuitable 

for low-power clients. Tested on 

MNIST, FMNIST, CIFAR, 

FEMNIST. 

(Cao et al., 

2020) 

FLTrust  Cosine Similarity, Trust 

Score, Root Dataset 

Uses cosine similarity and 

magnitude normalization for 

trust scoring. 

Relies on a bootstrap dataset to assess 

client update credibility. 

(Blanchard et 

al., 2017) 

Krum  Euclidean distance Byzantine-resistant 

aggregation via majority-

based scoring and squared 

distances. 

Selects updates by minimizing scores 

rather than weighted averaging. 

(T. D. Nguyen 

et al., 2021) 

Flame  Density-Based Spatial 

Clustering of 

Applications with Noise 

- Euclidean distance (L2 

norm) 

Dimensionality 

Reduction (PCA) 

Noise injection 

Combines weight filtering, 

clipping, and noising to limit 

poisoning impact. 

Noise injection may degrade model 

performance. Uses k-means clustering 

to filter outliers. 

(Rieger et al., 

2022) 

DeepSight  Primary (Cosine 

similarity) 

Secondary(Euclidean 

Distance 

Filters outliers, clips 

weights, and employs 

cluster-wise aggregation. 

Similar to Flame but focuses on 

cluster-based outlier removal. 

(Yin et al., 

2018) 

Trimmed 

Mean  

Coordinate trimming 

and calculation of mean 

of remainder values  

Discards extreme coordinate 

values before averaging 

client updates. 

Strong assumptions on coordinate 

distribution may reduce robustness. 

(S. Li et al., 

2020) 

Anomaly 

Detection  

Trains Variational 

Autoencoder (VAE) 

Eliminate flagged 

updates based on 

threshold 

Identifies abnormal 

gradients via low-

dimensional reconstruction 

errors. 

Requires a pre-trained server dataset, 

which is often impractical. 

(Gupta et al., 

2022) 

Mud-Hug predicts client reliability 

scores based on history 

Classifies clients (targeted, 

untargeted, unreliable, 

normal) via gradient history. 

Fails if adversaries dynamically 

switch roles. Uses Euclidean/cosine 

similarity. 

(“CONTRA,” 

2021) 

CONTRA  Cosine-Similarity-Based 

Reputation Scores: 

Validates local models via 

cosine similarity, flagging 

highly aligned clients. 

May misclassify IoT clients with 

natural limitations (e.g., low battery, 

sparse data). 
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3. Similarity Metrics and Mathematical Preliminaries  

Similarity metrics quantify the alignment between two vectors (Cao et al., 2020; L. Li et al., 2025; Z. Wang, Hu, et al., 2025) (e.g., client updates z_i  or 

a client update z_i and the global model z_0). These metrics are critical for anomaly detection, robust aggregation, and defense against backdoor attacks 

like Byzantine attacks in FL. We formalize three widely used metrics: 

3.1 Cosine Similarity  

Cosine similarity measures the angular alignment between vectors (such as 𝒛𝟏 and  𝒛𝟐 or clients model vector 𝒛𝒊  and global model 𝒛𝟎 shown in Eq. 1) 

invariant to magnitude(Chung et al., 2024; Famá et al., 2024) . The alignment cab be defined by the formula 

𝑨𝑳𝟏 = 𝒄𝒐𝒔 𝜽𝟏 =
〈𝒛𝟏,𝒛𝟎〉

‖𝒛𝟏‖.‖𝒛𝟎‖
 ∈ [−𝟏, 𝟏] (1) 

Similarity score (Cao et al., 2020) calculated between second client 𝒛𝟐 and global model 𝒛𝟎 given by angle between them as 𝜽𝟐 can be illustrated in Eq. 

2 as shown 

𝑨𝑳𝒊 = 𝒄𝒐𝒔 𝜽𝟐 =
〈𝒛𝟐,𝒛𝟎〉

‖𝒛𝟐‖.‖𝒛𝟎‖
 ∈ [−𝟏, 𝟏] (2)  

Among researches who have used similarity metrix (Cao et al., 2021; G. Chen et al., 2024; El-Niss et al., 2024; Kasyap & Tripathy, 2024; Tang & Gan, 

2024) tend to normalize local models towards global model then use normalization value as a factor in aggregating local models at server lever in every 

cycle as follows ( Eq. 3); 

�̅�𝒊 =
‖𝒛𝟎‖

‖𝒛𝒊‖
× 𝒛𝒊   (3) 

                      𝒛𝟎 =
𝟏

∑ 𝑨𝑳𝒊
𝒏
𝒊=𝟏

∑ 𝑨𝑳𝒊
𝒏
𝒊=𝟏 . �̅�𝒊 (4) 

 the updated models are then aggregated by global model at convergence in Eq. 4 

3.2. Euclidean Distance 

Euclidean distance (Eq. 5) computes the straight-line distance between two vectors in n-dimensional space (Gu et al., 2025; S. Li & Dai, 2024; Z. Wang 

et al., 2025). The geometric distance can be calculated using formula 

L2 − Norm (z0 , z1 ) = ||z0 -zi||2 = √∑ (z0, j − zi, j)2d
j=1  (5) 

Updates must not be greater than threshold 𝛿 otherwise the update is rejected by global model e.g. 𝐿2 − 𝑁𝑜𝑟𝑚 (𝑧0 , 𝑧1 ) > 𝛿 (Mussabayev, 2024) 

3.3. Pearson Correlation 

The Pearson correlation (Attallah, 2024; Deng et al., 2024; Zhang et al., 2025) between two model updates 𝑧0 and 𝑧1 as defined in Eq. 6 is: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑧0 , 𝑧1 ) =
∑ (𝑧0,𝑗−𝜇𝑧0)(𝑧𝑖,𝑗−𝜇𝑧𝑖

)𝑑
𝑗

𝜎𝑧0𝜎𝑧𝑖

∈ [−1,1]  (6) 

With 𝜇𝑧0
and 𝜇𝑧𝑖

 being the means of 𝑧0 and 𝑧𝑖 while 𝜎𝑧0
 and 𝜎𝑧𝑖

are standard deviations of 𝑧0 and 𝑧𝑖 respectively. D is dimensionality of the model updates  

3.4. Manhattan Distance 

Eq. 7 defines Manhattan distance (L1 norm) as sums of absolute differences between vector components (Bhattacharya et al., 2024; W. Huang et al., 

2024; Thaker & Mohan, 2024): 

𝐿1 − 𝑁𝑜𝑟𝑚 (𝑧0, 𝑧𝑖) = ||𝑧0 − 𝑧𝑖||1 = ∑ |𝑧0𝑗 − 𝑧𝑖𝑗|𝑑
𝑗   (7) 

To neutralize byzantine attack (Choudhary et al., 2024) in global model 

𝑧 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ||𝑧𝑖
𝑁
𝐼 − 𝑧||1    (8) 

Existing research in Table 2, demonstrates that fewer defence frameworks and methodologies employ multi-metric based methods to mitigate backdoor 

attacks in federated learning systems. Notable approaches in this domain include: 
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Table 2 Existing Distance Metric Defences against Backdoor in FL 

Author Attack Contribution Performance Gap 

(S. Huang et al., 

2023) 

Label flip Euclidean distance (L2 norm) 

Manhattan distance (L1 norm) 

Magnitude distance (norm of the 

vector) and normalization 

Reduce backdoor 

accuracy to 0% 

Single Attack Type; the 

distribution of attack not 

quantified based on datasets 

(Awan et al., 2021) DBA (Distribut

ed Backdoor) 

Detects label-flipped updates via 

cosine similarity outliers 

Main Accuracy (MA): 

95%, Backdoor 

Accuracy (BA): <1% 

No evaluation on adaptive 

DBA; lacks analysis of 

CONTRA’s computational 

overhead 

(T. D. Nguyen et 

al., 2021, 2024) 

Constrain-and-

scale, DBA, 

PGD, Edge-

Case, and 

multi-backdoor 

attacks 

Dynamic clustering (HDBSCAN) 

for outlier filtering; adaptive 

clipping; DP-based bounded 

noising 

99.8% detection 

accuracy 

Limited generalizability across 

all trigger types; slight 

performance decline in highly 

non-IID settings (e.g., ~1% MA 

drop on CIFAR-10) 

(S. Huang et al., 

2023) 

Model 

Replacement, 

DBA, PGD, 

Edge-case PGD 

Manhattan (L1) + Euclidean (L2) 

+ Cosine similarity. 

Surpasses Flame (BA: 

5.12%, MA: 81.41%) 

Vulnerable if >50% malicious 

clients; slower convergence 

than FedAvg; lacks formal 

robustness guarantees 

(Q. Li et al., 2023; 

Serengil & Ozpinar, 

2025; J. Wu et al., 

2025) 

Gradient 

Recovery 

Attack: Semi-

honest server 

reconstructs 

gradients via 

noise reuse 

Paillier PHE with fixed noise; 

cosine-based confidence scoring 

Computationally 

intensive (O(N⁴) per 

operation; 4 rounds per 

secure operation; large 

ciphertexts (~1MB) 

Privacy risks from noise reuse; 

poor scalability for large 

models 

 

(Yaldiz et al., 2023) Byzantine, 

Label flipping, 

perturbed noise 

Cosine similarity between clients 

and server models 

50% to 90% under 

poisoning attacks 

Limited evaluation against 

adaptive attacks 

(C.-L. Chen et al., 

2022) 

"Boosted" 

updates (λ=3), 

mislabeled 

impostor faces 

in CelebA 

Cosine distance with attention 

mechanisms; random Glorot 

initialization 

Reduces attack success 

from ~90% to <20% 

(Omniglot/mini-

ImageNet), ~40% 

(CelebA) 

Struggles with visually similar 

classes (e.g., human faces in 

CelebA) 

(L. Li et al., 2025) Gradient 

manipulation 

(Bias injection) 

Logistic Regression for Malicious 

Client Selection; cosine similarity; 

Binary Cross-Entropy (BCE) loss 

Enhances model 

accuracy by 

approximately 10–17% 

in heterogeneous (non-

IID) environments. 

Lacks theoretical justification 

for the superior efficacy of 

higher-order norms (L₄) over 

conventional cosine similarity 

(L₂). 

4. Method 

This research study proposes a multi-metric framework consisting of three similarity methods in in server weight aggregation to support client clustering, 

malicious weigh filtering and robust comparison as shown in the design. Distribution challenges associated with non-IID datasets can be addressed 

through client clustering using cosine similarity. In federated learning systems, cosine similarity serves as a crucial metric for examining angular 

relationships among client updates, facilitating the identification of natural client groupings within complex, high-dimensional model parameter spaces - 

an essential requirement for developing personalized FL approaches. Euclidean distance detects and discard malicious outlier updates while for stable 

model evaluation, the framework implements Manhattan distance calculations, which exhibit reduced susceptibility to anomalous weight deviations 

through their inherent noise-resistant characteristics. This following schematic diagram illustrate how multi-metric framework performs client clustering 

and outlier detection of triggered byzantine and noised client local updates from benign client updates during aggregation. 
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Figure 1 Conceptual Framework of Multi-Metric Distance Defence in FL Systems 

The proposed framework employs an enhanced federated averaging (FedAvg) algorithm that integrates momentum-based optimization (e.g., with β=0.9) 

to improve stability (Yang et al., 2022). By leveraging historical gradient data during aggregation, the method prioritizes past gradients to smooth 

optimization dynamics and mitigate abrupt gradient shifts between training rounds. The algorithm outlined below implements this multi-metric defense 

against backdoor attacks in federated learning. 

5. Conclusion and Future Work 

This research proposed an integrated defensive framework using cosine similarity, Euclidean distance, and Manhattan distance metrics to identify and 

neutralize backdoor attacks stemming from malicious local model updates in federated learning environments. The study provided a comprehensive 

examination of backdoor attack methodologies while critically assessing current defensive approaches in FL systems, noting both their advancements 

and limitations. The multi-metric approach capitalizes on the unique advantages of each measurement technique. Cosine similarity serves as an effective 

tool for early-stage detection by analyzing directional consistency in model updates. Euclidean distance provides magnitude-based outlier detection, while 

Manhattan distance offers enhanced robustness against distortion from anomalous data points along with superior computational efficiency for large-

scale federated learning implementations. 

The work includes detailed mathematical formulations that clarify relationships between fundamental components including training datasets, model 

parameters, and output predictions. The research further incorporates comprehensive schematic designs and algorithmic pseudocode to facilitate 

implementation of the proposed framework. These visual and procedural elements streamline the transition from theoretical model to practical simulation 

by explicitly demonstrating: dataset integration procedures, generation of adversarial attack samples, malicious weight detection through integrated metric 

analysis, and robust aggregation and optimization processes within the federated learning environment. This systematic representation guides the 

development cycle until convergence to a stable global model is achieved. For future research directions, the study suggests exploring adaptive metric 

selection protocols and investigating hybrid defense strategies that combine multiple detection methods to strengthen overall system resilience against 

sophisticated backdoor attacks. 
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