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ABSTRACT

Industry 4.0 is revolutionizing production by adopting digitalization, automation, and big data, with the objective of achieving interlocked systems, sovereign
decision-making, and intelligent factories. Machine learning methodologies, including artificial neural networks (ANN), have surfaced as effective instruments for
tackling associated computational challenges. The pharmaceutical industry has also benefited from these improvements, as the Process Analytical Technology
(PAT) project has facilitated real-time process analysis and enabled science- and risk-based flexible production. This approach enables quicker and more economical
production, simultaneously minimizing waste and thereby reducing the environmental footprint. This article seeks to evaluate the potential of artificial neural
networks in the context of process analytical technology to facilitate the modernization of pharmaceutical manufacturing. A systematic evaluation of the current
state of artificial neural networks (ANNSs) is conducted concerning the predominant production processes of solid pharmaceutical goods, highlighting potential
research gaps and future initiatives. This review may facilitate the advancement of machine learning methodologies in therapeutic fabrication and ultimately support
the establishment of intelligent manufacturing systems with automated quality assurance.
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1. Introduction
1.1 Industry Revolutions

Originally unveiled at the 2011 Hannover Fair, Industry 4.0 became officially recognised in 2013 as a German strategic initiative to play a leading role
in sectors that are now transforming the manufacturing industry. The contemporary trend of automation technology in the industrialized sector is known
as Industry 4.0. Industry 4.0 is the fourth industrial revolution, which combines quickly developing technologies like robotics, artificial intelligence (Al),
the internet of things (1oT), and sophisticated computing to fundamentally alter the production landscape. Production systems that are autonomous, self-
organizing, and integrated are hallmarks of Industry 4.0. If Industry 4.0 is the future, then Industry 1.0 is the starting point of the modern pharmaceutical
industry. Herbal or plant remedies have been used as medicines for as long as civilization has existed. Significant advances in the formulation and
processing of materials for medicinal application have only occurred in the past 200 years. Commercial-scale equipment capable of crushing, milling,
blending, and pressing greater amounts of medications replaced the manual processing of botanical, mineral, and animal-derived materials in Industry
1.0 (1) During the 19th century, the dye and chemicals business or independent pharmacies were the two main sources of larger-scale medication
manufacture using non-electrical power-driven machinery. (2) The pharmaceutical business, which has experienced great expansion over the past century,
was established in the 19th century as a result of this shift from laboratory-scale to wholesale drug production. However, several of the earliest devices
from the first industrial revolution, such tablet presses and pneumatic mills, are still in widespread use today.

Electricity and early electronic devices, as well as assemblage with preset controls that integrated basic automation and process controls, made it possible
for manufacturers to define fundamental process parameters during the second industrial revolution, or Industry 2.0. This showed up in the pharmaceutical
manufacturing sector as electronic machine-based crushing, milling, blending, and tablet pressing, which enabled larger-scale production and—most
importantly—better process and quality control. Nevertheless, most process controls were restricted to static, pre-established settings that only permitted
passive control techniques and process performance monitoring. Innovations in Industry 2.0 directly resulted in devices like contemporary tablet presses
that can consistently make more than a million tablets per hour. (3) It is arguable that a large portion of the pharmaceutical manufacturing sector still
functions according to the Industry 2.0 paradigm.

The advancement and accessibility of computers and communication expertise, including networked computing, the internet, and wireless infrastructures,
made possible the third industrial revolution, or Industry 3.0. Higher levels of process and equipment automation made possible by these technologies
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made it possible to implement ideas like active control and continuous manufacturing in the pharmaceutical industry. The development of more complex
control strategies and improved process and product quality were made possible by human-computer interfaces. Better tracking of production-related
factors and metrics was made possible by remote sensing and monitoring, which also decreased the requirement for human operators on the manufacturing
floor. While some businesses have already fully embraced Industry 3.0, the pharmaceutical sector is still mostly in the process of doing so. One method
that has been widely used in other industries is continuous manufacturing, which transfers materials created at each stage of the process immediately and
constantly to the next stage for additional processing. The pharmaceutical sector has been slower to embrace continuous production for a variety of
reasons. (4) Consequently, the pharmaceutical sector has yet to attain consistent six sigma production capacity, which is characterized by less than 3.4
errors per million opportunities and is typical of other industries. (5) Advanced process analytical technology (PAT), which promises to offer process and
product quality data in near real time, was introduced to the pharmaceutical manufacturing industry during the third industrial revolution. Model-based
or Quality by Design (QbD) procedures, which seek to regulate target product quality profiles within a specified set of quality criteria, were also improved
by Industry 3.0. More technological developments are necessary to obtain deeper process knowledge and real-time analytics, which will more broadly
enable real-time release testing with high levels of product quality assurance, particularly for biotechnology products, in order to fully realize the potential
of PAT and QbD. It is evident that additional effort is required to enhance process control and reliability, as quality problems account for roughly two
thirds of medicine shortages. However, Industry 3.0 is making it possible to gain a much better grasp of how to collect, process, and safeguard vast
volumes of data related to pharmaceutical manufacture.

Industry 4.0, representing the fourth industrial revolution, integrates advanced developed technologies to facilitate autonomous, self-organizing
manufacturing systems that function independently of human intervention. The experience acquired in the automated and digital context of Industry 3.0
facilitates the extensive transition to Industry 4.0 within pharmaceutical manufacturing. While Industry 3.0 focused on the rapid development of individual
operations and tools, Industry 4.0 aims to enhance entire manufacturing systems and infrastructures. The progression from basic data collection to digital
maturity involves a transformation of data. Initially, raw data is gathered from manufacturing processes. This data is then analyzed to produce information,
which is further enhanced into knowledge through contextualization, potentially aided by artificial intelligence. Ultimately, this process culminates in
actionable wisdom that informs decision-making through insightful contributions. (Fig. 1) This knowledge underpins autonomous systems and cyber-
physical machines, which are governed by computer algorithms and possess capabilities for self-optimization, decision-making, remote operation, and
adaptive control.
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Fig. 1 The stages of data transformation on the path to realizing Industry 4.0.
1.2 Process Analytical Technology(PAT) with ANN (6)

The Quality by Design (QbD) and Process Analytical Technology (PAT) frameworks also encourage modernization in the pharmaceutical sector. In order
to establish the design space under which the quality is satisfactory, the QbD highlights the importance of understanding the product and process, including
critical material attributes and critical process parameters that have a significant impact on the critical quality attributes of the product and process.
According to FDA, PAT is considered to be a system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during
processing) of critical quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final product quality.
By highlighting the necessity of real-time dimensions of the CQAs and CPPs using in-process sensors, together with the suitable data analysis techniques
and control approach, the PAT project also intends to promote science- and risk-based production.

PAT consists of two parts: a strategy for implementing regulations that will allow for innovation, and a collection of scientific ideas and instruments that
encourage innovation.

Designing and creating well-understood procedures that will reliably guarantee a predetermined quality at the conclusion of the manufacturing process is
one of the PAT framework's intended objectives. These practices might lower quality and regulatory risks while increasing efficiency, and they would be
in line with the fundamental principle of quality by design. A reduction in production cycle times through the use of PAT tools and controls, the prevention
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of rejects, scrap, and reprocessing, real-time release testing, and increased automation to improve automation safety and reduce human errors are likely
to result in quality, safety, and/or efficiency gains. These gains will vary depending on the process and the final product. PAT tools are used to comprehend
processes for quality assurance, manufacturing, and scientific risk-managed pharmaceutical improvement. These tools include the following: (Scheme
1)

{ PAT Tools

Process Analyzers Process Control Tools

v v
Multivariate tools Continuous improvement &
for data acquisition and knowledge management tools
analysis

Scheme 1. Process Analytical Technology tools.
a.  Multivariate Tools for Design, Data Acquisition and Analysis:

Curative products and processes represent intricate multi-factorial systems from physical, chemical, and biological viewpoints. Numerous development
strategies exist for identifying optimal formulations and processes. The knowledge gained from these development programs serves as the basis for
product and process design. This awareness base supports and justifies flexible regulatory pathways for innovation in manufacturing and post-approval
changes. A understanding base is most beneficial when it encompasses scientific understanding of relevant multi-factorial relationships (e.g., between
formulation, process, and quality attributes) and provides a framework for evaluating the applicability of this knowledge across various scenarios (i.e.,
generalization). The benefit can be attained by employing multivariate mathematical techniques, including statistical design of experiments, response
surface methodologies, process simulation, and pattern recognition tools, alongside knowledge management systems. The applicability and consistency
of knowledge represented through mathematical relationships and models can be evaluated using statistical assessments of model predictions.
Methodological experiments grounded in statistical principles such as orthogonality, reference distribution, and randomization offer effective approaches
for identifying and analyzing the effects and interactions of product and process variables. Conventional one-factor-at-a-time experiments fail to consider
interactions between product and process variables.

Experiments done during product and process development can serve as building blocks of knowledge, evolving to assist more complexity during the
product's lifetime. Data from structured experiments helps to build a knowledge system about a certain product and its related processes. This information,
together with data from other development projects, can help to create a complete institutional knowledge base. Data mining allows the discovery of
useful patterns for future development projects by means of expanding this institutional knowledge base in terms of variable range and data density. By
improving process simulation model creation, experimental databases help to accelerate ongoing learning and lower general development time. Used
properly, these techniques help to find and evaluate process and product variables possibly critical for performance and quality. The tools can measure
their effects on product quality as well as find possible failure causes and mechanisms.

b.  Process Analyzers:

Process analysis has progressed notably in recent decades, driven by a growing recognition of the importance of gathering process data. The industrial
factors influencing productivity, quality, and environmental impact have facilitated significant progress in this domain. The evolution of available tools
has transitioned from primarily univariate process measurements, including pH, temperature, and pressure, to instruments that assess biological, chemical,
and physical attributes. Some process analyzers offer non-destructive measurements that yield information regarding the biological, physical, and
chemical characteristics of the materials under processing. These measurements may be:

e  At-line: Measurement conducted with the sample extracted, quarantined, and analyzed near the process stream.

. On-line: Measurement conducted by diverting the sample from the manufacturing process, with the possibility of returning it to the process
stream.

. In-line: A measurement technique in which the sample remains within the process stream, potentially employing either invasive or non-
invasive methods.

The measurements obtained from these process analyzers do not require absolute values of the property in question. The capacity to assess relative
variations in materials prior to (e.g., within a lot, between lots, from various suppliers) and during processing would yield valuable insights for process
regulation. A flexible process can be developed to handle the variety of the materials during processing. This strategy can be implemented and validated
when variations in quality attributes and additional process information are utilized to regulate the process (e.g., feed-forward and/or feedback). The
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installation of process analyzers on existing production equipment should occur post-risk analysis to guarantee that it does not negatively impact process
or product quality.

c.  Process Control Tools

Process monitoring and control techniques aim to observe the condition of a process and actively adjust it to sustain a desired state. Strategies must
include the characteristics of input materials, the capability and dependability of process analyzers in measuring important qualities, and the attainment
of process endpoints to guarantee the consistent quality of output materials and the final product. The design and optimization of medication formulations
and manufacturing processes under the PAT framework may encompass the following steps, although the chronology may vary:

. Recognize and quantify essential material and process characteristics pertinent to product quality.

. Develop a process measurement system to provide real-time or near real-time (e.g., on-, in-, or at-line) monitoring of all relevant qualities.
. Establish process controls that allow for modifications to maintain oversight of all essential features.

. Establish mathematical correlations between product quality characteristics and metrics of essential material and process attributes.

Within the PAT agenda, a development endpoint is not a predetermined period; instead, it signifies the attainment of the desired material attribute. This,
however, does not imply that process time is disregarded. A range of permissible process durations (process window) is expected to be attained during
the manufacturing phase and should be assessed, with strategies for mitigating substantial deviations from acceptable process durations to be formulated.

Where PAT encompasses the complete manufacturing process, the proportion of in-process components and end products assessed during production
may significantly exceed the levels now attained by laboratory testing. Multivariate Statistical Process Control can be effective and advantageous for
maximizing the benefits of real-time measurements. Effective judgments must be grounded in comprehension of processes and the forecasting and
regulation of pertinent process/product characteristics. This is a method to ensure compliance with the CGMP regulations, namely control methods that
validate the efficacy of the manufacturing process (21 CFR 211.110(a)).

d.  Continuous Improvement and Knowledge Management

Continuous learning via data acquisition and analysis throughout a product's life cycle is essential. This data can support the justification of proposals for
post-approval modifications. Methods and information technology systems that aid in knowledge acquisition from these databases are beneficial for
manufacturers and can enhance scientific collaboration with the Agency.

Opportunities must be recognized to enhance the applicability of pertinent product and process knowledge in regulatory decision-making. A knowledge
base is most advantageous when it encompasses scientific comprehension of pertinent multifactorial relationships (e.g., between formulation, process,
and quality attributes) and provides a method to assess the applicability of this knowledge across various scenarios (i.e., generalization). The current
information technology infrastructure renders the construction and maintenance of this knowledge base feasible.

1.3 Artificial Neural Networks(ANN)

Artificial intelligence (Al) is the branch of computer science focused on developing software that can execute complex, intelligent computations like to
those performed by the human brain. It encompasses methodologies, instruments, and systems designed to replicate human approaches to logical and
inductive information acquisition, as well as cognitive processes for problem-solving. Al advancements can be classified into two primary groups. The
first encompasses methods and systems that replicate human experience and derive conclusions from a predetermined set of rules, exemplified as expert
systems. The second encompasses systems that simulate brain function, such as artificial neural networks (ANNSs). Artificial Neural Networks (ANNS)
are digital representations of the human brain, computer algorithms engineered to replicate the information processing mechanisms of the human brain.
Artificial Neural Networks acquire knowledge through experiential learning with suitable exemplars, akin to human learning, rather than through
programming. Neural networks acquire knowledge by identifying patterns and relationships among data. The brain is an exceptional instrument for pattern
identification. Upon observing a pen, we recognize it as such because biological neurons in a specific region of our brain have encountered a comparable
input pattern previously and have associated that distinct pattern with the term 'pen'. Our brain comprises billions of linked neurons, enabling us to learn
and recognize an almost infinite array of input patterns. (7)
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Fig. 2 Human neuron and an artificial neuron.
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An artificial neural network is a computational model inspired by biological systems, composed of numerous individual units, known as artificial neurons,
interconnected by coefficients (weights) that define the neural architecture. They are also referred to as processing elements (PE) due to their function of
processing information. Each processing element possesses weighted inputs, a transfer function, and a singular output. PE is fundamentally an equation
that equilibrates inputs and outputs. Artificial Neural Networks (ANNSs) are referred to as connectionist models since the connection weights embody the
system's memory. Artificial networks, despite their sophistication, remain far inferior to the creative capabilities of the human brain. The human brain is
exceedingly intricate, and regrettably, numerous intellectual activities remain poorly understood. Artificial Neural Networks (ANNSs) can handle vast
quantities of data and generate predictions that are occasionally remarkably precise. This does not render them intelligent in the conventional 'human'
sense, so the phrase computer intelligence may more accurately describe these systems. (7)

2. Active Ingredients Developments in Pharmaceutical Manufacturing
2.1 Synthesis

The synthesis of carbon-based compounds is the initial phase in pharmaceutical production for generating the active pharmaceutical ingredient (API).
Method monitoring and control can be employed in both uninterrupted and batch operations to sustain a stable state, ascertain endpoints, or optimize
operational conditions. Artificial Neural Networks (ANNSs) are utilized in optimizing process considerations to enhance reaction outcomes and
effectiveness, as well as to characterize non-linear correlations between spectroscopic data and the targeted factors via black-box multivariate modeling.
The influence of process factors (i.e., time, temperature, enzyme quantity, molar ratio) on the yield of enzymatic production of betulinic acid ester can be
characterized using a feedforward artificial neural network (ANN), utilizing 21 training experiments. Among the learning algorithms compared—quick
propagation, incremental backpropagation (BP), batch BP, and the Levenberg-Marquardt algorithm—speedy propagation demonstrated the greatest
strength.

Numerous studies have addressed the optimization of synthesis via artificial neural networks (ANNS). Valizadeh et al. utilized a multilayer perceptron
(MLP) to improve glucosamine extraction from chitin, considering three variables: acid concentration, acid solution to solid ratio, and reaction duration.
The constructed network was evaluated against the outcomes of genetic algorithm (GA) and unit cloud optimization tactics, which exhibited superior
model fitting compared to the MLP model; however, the ANN excelled during validation. Deep reinforcement learning, utilizing RNN, was employed to
optimize four two-component reactions (12). The method systematically identified the ideal flow rate, voltage, and pressure for the microdroplet reactions,
employing fewer iterations than alternative black-box optimization systems. Optimization constructed on artificial neural networks (ANN) could be
executed in conjunction with a computational fluid dynamics (CFD) model, which served as the source of training data, maximizing numerous parameters
such as conversion, selectivity, and yield in butadiene synthesis. An RNN could substitute a genuine plant model (14) or a state-space model (15) in
control algorithms. This may enhance the prediction of process dynamics in a model predictive control (MPC) for continuous pharmaceutical synthesis,
as it substantially reduces computational demands relative to mechanistic models. Furthermore, the ANN can significantly benefit from the data-abundant
context of PAT-supported manufacturing. While the aforementioned examples indicate that API synthesis could significantly benefit from ANN
modeling, the findings primarily rely on historical data rather than PAT data. Several instances in the literature demonstrate the assessment of inline or
online PAT measurement utilizing ANNs. Using a multilayer feedforward network with 15 calibration samples, Fourier transform infrared (FT-IR)
spectroscopic observations assessed the amounts of glucose and glucuronic acid during a fermentation process. The artificial neural network (ANN)
outperformed the conventional partial least squares (PLS) regression. An artificial neural network model based on UV-Vis spectra acquired from an
immersion probe concurrently assessed phenol and chlorophenols (17). The spectra for network training were condensed using principal component
scores.

2.2 Crystallization

Crystallization is essential in linking AP1 synthesis with formulation processes by yielding solid crystalline API, significantly influencing the end product's
yield, purity, manufacturing ability, and bioavailability. PAT sensors, including ATR-IR and UV probes, are utilized to monitor solute concentration,
while focused beam reflectance (FBR) and in situ minute measurements, such as particle vision and measuring (PVVM), can provide information on crystal
size and count. Machine learning can predict the crystallization results based on prospective process data. Velasco-Mejia et al. constructed ANN and GA
models with data from 54 industrial batch crystallizations (19). Nine descriptors were employed to model crystal density as the consequence, leading to
the identification of the most crucial parameters and, following optimization, a significant enhancement in the product. The design space of a
cocrystallization process was examined using 25 experimental runs and four response variables (20). By utilizing operating variables (including
temperature, supersaturation, agitation speed, and seeding characteristics) as inputs for the artificial neural network, a more precise prediction of the
crystal growth rate can be achieved compared to various non-linear regression methods (21).

Artificial Neural Networks (ANNSs) have been employed to extract information from data-intensive Process Analytical Technology (PAT) instruments,
such as in-line microscopic pictures. A ResNet CNN has demonstrated efficacy in categorizing crystals identified in PVM images, achieving over 98%
accuracy in contamination classification (22). This in-line technique can aid in detecting traces of unwanted polymorphs and, consequently, can be
employed in feedback control to enhance product purity. Additionally, the growth rate may be forecasted by assessing the particle size distribution by
CNN-based in-line image analysis (23). FBRM measurements yield chord length distribution as particle size data, which, in conjunction with solid
concentration, can serve as input for a layer RNN (24) to compute the crystal size distribution (CSD). Szilagyi and Nagy (25) exhibited an alternative
methodology: A neural network was able to quickly and directly convert two-dimensional CSD (needle-shaped crystals) to segment dimension
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distribution and aspect ratio distribution. This was essential for facilitating the utilization of FBRM and PVM as quantitative direct feedback control
instruments inside a population balance model (PBM)-based control framework, given that the results of the PBMs and the analytical sensors are not
directly comparable. The proposed method achieved a calculation speed six times faster than direct conversion, which may be critical for real-time
applications. Oner et al. (26) emphasized that predominantly historical data were utilized for model building. A completely automated laboratory
crystallization system has been constructed in their study, incorporating temperature and FBRM sensors and utilizing an RBF network. The training was
conducted in real-time, utilizing a reference batch alongside in-line acquired data and an evolving data strategy. The network was revised as fresh
experimental data became available. Notwithstanding the limited data, the control technique demonstrated resilience to many perturbations, such solvent
impurity, seed size, or impeller speed. This methodology is relevant even in the absence of extensive historical data or comprehensive process
comprehension.

3. Stages in Pharmaceutical Manufacturing
3.1 Blending Process

Due to wear, excessive blending over extended periods of time can alter the particle size and size distribution. These modifications to the intermediate
products' characteristics, like assay, content homogeneity, and dissolution, might have a significant impact on the final products' quality. Inspection of
the quality attributes, such as particle size, particle-size distribution, and blending consistency, is therefore required throughout the process. Additionally,
real-time monitoring should be used in this process to take into account CPPs like blender speed and duration.

The current offline analysis uses sampling and process halting to assess blending homogeneity. Nevertheless, the majority of PAT tools are time-
consuming, damaging, and frequently interfere with sampling. Therefore, PAT tools can be utilized in the blending process to manage CPPs through real-
time monitoring to ensure CQAs and to nondestructively measure IQAs and process performance in real-time. (6) The accurate implementation of powder
mixing essentially guarantees the uniform scattering of components in the production of solid dosage forms. Machine learning approaches have been
utilized on several occasions to facilitate the real-time analysis of APl concentration during the blending process and to forecast the performance of
powders in diverse settings. Since the 2000s, it has been demonstrated that forecasting the API concentration of powders using artificial neural networks
(ANNS) based on near-infrared (NIR) spectra is as effective as partial least squares (PLS) regression. Furthermore, artificial neural networks can forecast
the necessary duration to attain a uniform combination. Tewari et al. (29) employed NIR spectroscopy, artificial neural networks, and several multivariate
data analysis techniques for at-line blending endpoint detection. EI-Hagrasy et al. used an InSh imaging camera to track the blending process while
installing NIRS probes at six distinct points within a V-blender to test the homogeneity of powder blending. Offline NIRS and UV-VIS measurement
data were employed as a reference method, and the blending homogeneity was measured by varying the blending time of the blending process. To acquire
correct data, the measured data were preprocessed using SNV, MSC, and second-order differentiation to eliminate linear baseline shifts. (30) Moreover,
these strategies may prove beneficial for regulatory purposes in the future. Artificial Neural Networks can also be utilized to analyze data when the
impacts of specific variables manifest after a temporal delay. The blend composition exiting the continuous blender may be forecasted by a recurrent
neural network, functioning as the digital twin of the blender, utilizing the system's residence time distribution and the mass flow pace of the source
material streams (31). Results similar to a residence distribution of time model can be obtained from a non-linear self-correcting network with exogenous
inputs.

3.2 Granulation

Granulation is a particle enlargement method that is vital for enhancing process ability and significantly affects the quality of the end product, such as
content uniformity and dissolution. Granulation is executed using either wet or dry methods, such as high-shear, fluidized bed, roller compactor systems,
or the increasingly prevalent continuous solution of twin-screw wet granulation (TSWG). For over 25 years, ANN models have been developed to forecast
product quality based on the process characteristics of fluidized bed (32-35), high-shear wet (36), and dry granulation (37, 38). Meng et al. assessed the
size and form changes, physical characteristics, and composition of the granules during twin-screw granulation using NIRS, Raman spectroscopy, and
3D high-speed imaging cameras. Granule characteristics, including size, porosity, density, and flowability, were quantitatively predicted using NIRS,
while granule shape and size were tracked in real time using Eyecon 3D imaging. Additionally, the homogeneity of the medication content and the
granules' solid-state transition were assessed using Raman spectroscopy. According to this work, the PAT tool can accurately and precisely estimate
granule properties under a range of operational situations. (39) Acevedo et al. used NIRS on a roller compactor to track the ribbon density. The PCA
model created using the spectrum from in-line monitoring during the roller-compaction process demonstrates that the ribbon's physical change may be
identified and qualitatively examined. (40)

Moreover, the scaling of wet and fluid bed granulation processes was also enhanced by artificial neural networks (41-43). Korteby et al. (44) shown that
the relative significance of the independent input variables of the ANN model may be ascertained by a fluid hot-melt granulation process in conjunction
with the Garson equation. The particle size of the binder was determined to have the most significant influence on the attributes of the finished granules,
succeeded by binder viscosity grade and binder content. The ANN integrated the benefits of first-principles and data-driven modeling by elucidating the
impact of variables, but its development was considerably simpler than that of a first-principles model. In dry granulation, the granule size distribution
post-milling (45), ribbon friability (37), and ribbon density (46) might also be anticipated. Utilizing artificial neural networks (ANN) to model granule
quality in continuous granulation was feasible, as evidenced by the calculation of d10, d50, and d90 values based on the liquid-to-solid ratio, screw speed,
screw configuration, and material throughput. It has been proposed that ANN models may be utilized for the MPC of the process. Moreover, artificial
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neural networks (ANNs) can be amalgamated with additional data processing methodologies, such as Kriging or finite volume schemes, to formulate
hybrid models that optimally merge the advantages of both approaches. Consequently, ANNs can also be included into more intricate systems. The
adaptability of artificial neural networks enables efficient processing of many signal types. For example, thermocouples may also function as Process
Analytical Technology (PAT) instruments. Reddy et al. employed online monitoring to regulate the intermediate product's temperature, wetness, and
moisture content using Raman spectroscopy. PLS was used as a multivariate tool to create a calibration model. Consequently, it was established that the
intricacy of altering particle shape based on the CPP influences medication solubility throughout processing. This suggests that wet granule monitoring
is a crucial component of the clinical stage, and that utilizing a PAT instrument to regulate it is an effective quality-control technique. (51) Huang et al.
used the FBRM C35 in a high-shear granulator to measure the size and quantity of particles in real-time utilizing an inline monitoring method. (52)

3.3 Compression and Coating

In the majority of pharmaceutical production procedures, tableting produces the discrete units of the final product. It is imperative that every tablet
administered to the patient adheres to stringent quality standards. The emergence of predictive modeling and PAT technologies significantly aids in
accomplishing this objective. One of the initial considerations in formulating a tableting process is the behavior of the compressed powder combination
within the tablet press. The blend's flowability must be sufficiently high to ensure that each time the die is filled, a nearly similar mass of powder is
transferred into it. Wahl et al. used an NIRS probe installed on the tableting press's powder-feed frame to examine the homogeneity of the powder content.
To accurately forecast the composition of the powder, they employed the DoE. Additionally, they used a UV-VIS light spectrometer to measure the
standard of drug content. The UV-VIS and in-line NIRS measurements were found to be in agreement. To look for significant process abnormalities, like
as elevated drug content in the powder, the authors ran a PCA of the spectrum. (53) Critical material attributes (CMAs), including the type and particle
size of diluent, the kind of glidant, bulk density, Carr’s compressibility index, and parameters of Kawakita’s equation (54-56), were employed using
various machine learning algorithms based on the outcomes of a design of experiments (DoE) comprising 30-50 configurations.

Capping, defined as the impulsive detachment of the tablet's upper layers, signifies a noteworthy quality issue in subsequent handling (e.g., film coat and
packing) and must be prevented. Beli¢ et al. (57) forecasted the capping propensity using neural networks and incoherent logic, considering the particle
size of the tableted powder and the parameters of the tablet press. They determined that the procedure enhances making improvement markedly more
than conventional trial and error methods. During the development of a dosage form, extensive datasets are generated that facilitate the establishment of
design spaces within the Quality by Design (QbD) framework through the application of appropriate mathematical techniques. Zawbaa et al. (58)
employed a hybrid approach integrating artificial neural networks with variable selection algorithms to identify the manufacturing parameters that most
significantly affect the porosity and tensile strength of tablets. The variable selection results revealed that compaction pressure was the predominant
influence. These investigations demonstrated that artificial neural networks (ANNSs) are effective in delineating the design space and forecasting the
process ability of the powder and the quality of the tablets based on critical material attributes (CMAS); however, the tableting phase remains deficient in
implementations of PAT-based ANN models. The Critical Quality Attributes (CQA) of the final tablets are affected by both the tableting process and the
preceding manufacturing procedures, as well as the characteristics of the raw ingredients.

4. Characterization of Final Product
4.1 Content Uniformity and Assay

The content uniformity (CU) of final products or intermediates is an often examined critical quality attribute (CQA) that must adhere to specific
restrictions. Spectroscopic PAT instruments are extensively employed to quantify the active pharmaceutical ingredient content in solid dosage forms to
achieve these objectives. Even so, linear quantifiable approaches are not always applicable for assessing multivariate data. In such instances, artificial
neural networks may offer a means to achieve a validated calibration approach. Habitually, UV-Vis spectroscopy is employed to analyze assays, and
artificial neural networks (ANNS) have been utilized multiple times to enhance the quantification of various active pharmaceutical ingredients (APIs),
even in trace levels. Nonetheless, it is a detrimental practice that is incompatible with the PAT principle. Conversely, vibrational spectroscopy, such as
Raman and NIR spectroscopy, serves as a valuable in-line, non-destructive technique for the categorization of solid samples. Only one study has been
identified that quantifies the active pharmaceutical ingredient (API) using Raman spectroscopy and artificial neural networks (ANN), which examined
commercial tablets and capsules comprising diclofenac sodium. PLS, principal component regression (PCR), and counter-propagation artificial neural
networks (CP-ANN) approaches were examined, with the latter integrating unsupervised and supervised learning. Although PCR generally produced
greater mistakes, PLS and CP-ANN demonstrated equivalent outcomes for both tablets and capsules. A relative standard error of validation of 2.6-3.5%
for tablets and 1.4-1.7% for capsules was achieved, demonstrating a strong connection with reference data for saleable formulations. NIR spectroscopy
is a more prevalent approach, although the significant overlap among the signals of the components. Numerous APIs have been analyzed by ANNS,
including paracetamol, caffeine, ciprofloxacin, aspirin, and phenacetin (27, 63, 64).

It can be concluded that for the measurement of API concentration in solid samples, artificial neural networks significantly enhanced outcomes compared
to linear multivariate approaches, such as partial least squares regression, using an equivalent number of calibration samples. An additional prospective
application of artificial neural networks (ANN) could involve forecasting analyte quantities from process data, independent of spectroscopic
measurements, thereby actualizing the Real-Time Release Testing (RTRT) idea. For instance, the quantity of ascorbic acid in nutraceutical goods could
be estimated based on physicochemical parameters, including pH, specific gravity, and viscosity (65). The artificial neural network, functioning as the
soft sensor, yielded a regression coefficient of 0.92 for quantification.
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4.2 Tensile Strength and Friability

The suitable resistance is a critical quality attribute (CQA) of the tablets, influencing subsequent processes such as coating and packaging, and is primarily
defined by tensile strength (TS) or friability (FR). Nonetheless, these features are not readily quantifiable using existing PAT methods. Efforts have been
undertaken to monitor the TS via NIR spectroscopy, wherein alterations in the baseline may correspond with tablet hardness, thus facilitating the
development of a real-time approach (66, 67). The ideal WT-ANN architecture was developed, resulting in a satisfactory approximation of tablet hardness
that surpassed the exactitude of the linear PLS regression model.

In a different study (68), PLS and ANN evaluated theophylline tablet resistance similarly at the lowest set point, while ANN performed better for tougher
tablets. Modeling the TS and FR in accordance with their CMAs and CPPs is an alternate strategy. In order to forecast TS and FR as outputs, Bourquin
(69) showed an ANN network that used the weight ratio of four ingredients, dwell time, and compression force as inputs. While the ANN model showed
a low correlation for friability (R2=0.413), the expected TS showed a significant parallel with the observed values (R2=0.753). There is a clear tendency
toward overfitting, which could have been lessened by using a larger training dataset. The impact of the kind and amount of lubricant (magnesium stearate,
sodium stearyl fumarate) and filler (microcrystalline cellulose, HPMC, crospovidone/PVP) in combination with several active medicinal substances was
examined using an ensemble artificial neural network. Within the range of 30 to 60 N, the crushing strength was predicted in (71) with an error of less
than 0.1 N. Neural networks may also incorporate information on tablet properties and tableting processes, such as tablet compression rate, diameter,
weight, height, porosity, radial sound velocity, and compression force (72). Six different machine learning algorithms, including four artificial neural
network techniques, were used in (73) to predict the tablets' tensile strength, total compression work, detachment work, and expulsion work by varying
the polymer kinds and concentrations.

4.3 In Vitro Dissolution

In vitro dissolution testing serves as a critical measure of product quality, knowingly contributing to the research, development, and routine quality control
of drug products. The tests must be conducted using standardized instruments and involve labor-intensive and time-consuming methods. Thus, an RTRT
approach, which has also been examined in relation to ANNs, could provide significant advantages. Most studies on artificial neural networks related to
dissolution prediction primarily focus on optimizing formulations to achieve the desired dissolution properties. In this context, various ANN structures,
including MLP, Elman networks, and RNNs, have demonstrated applicability. Furthermore, a number of process variables, including the effect of retarded
polymer in tablets, tableting force of compression, and crushing strength, have been modeled. When the impact of CMAs/CPPs on dissolution is seen in
the PAT data, PAT tools can be used to forecast dissolution. PLS regression analysis of NIR spectra predicted dissolution, highlighting the importance
of tablet composition, moisture content, compression strength, and mixing shear forces. Pawar et al. used at-line NIR spectroscopy in a continuous direct
compression process in which the dissolution was simultaneously impacted by the API content, compression rate, feed frame speed, and blender speed
(82). The capacity of Raman chemical maps to non-destructively forecast dissolution has been demonstrated recently (84). The chemical map makes it
possible to determine the components’ geographical distribution and CSD in addition to the tablets' chemical makeup. However, the speed of the chemical
mapping needs to be further decreased in order to use it as a PAT technique.

The application of a single PAT tool may not consistently suffice. Artificial Neural Networks (ANNs) facilitate the integration of diverse Process
Analytical Technology (PAT) sources and enable data processing for a stand-in dissolution model. Our group was the first to demonstrate the integration
of Raman and NIR spectra for an extended-release tablet formulation using an artificial neural network. The data-fused ANN models demonstrated
superior performance compared to both the PLS modeling results and the models developed using only a single PAT sensor (85). Atrtificial Neural
Networks (ANNSs) can be developed utilizing not only spectroscopic data but also incorporating supplementary process data within the ANN, such as the
recorded compression force and CSD data. Additionally, support vector machines and an ensemble of regression trees were evaluated; however, artificial
neural networks yielded the highest accuracy. The concept can be extended to accommodate various numbers and types of input data, potentially
enhancing the carrying out of projecting dissolution models within an RTRT framework.
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Fig. 3 Neural network-based prediction of in vitro dissolution utilizing PAT data

5. Digital Transformation

Upon reviewing the current applications of artificial neural networks in pharmaceutical manufacturing processes, two primary categories of research can
be identified. The application of artificial neural networks (ANNSs) first is for non-linear relapse in the assessment of analytical sensor data and other to
establish a relationship between arbitrary inputs and results parameters. Table 1. presents a summary of the studies in which the developed models utilized
PAT data or where the input was directly obtainable during a process.

Table 1. Application of Neural Networks for (Potential) PAT purposes in some process steps of pharmaceutical manufacturing

Studied process/product

API synthesis

Glucose fermentation

Oxidative coupling of phenols

Crystallization
Batch crystallization

Powder Blending

Compound powdered drug

Phenoxymethylpenicillin
powder

Granulation

Acetaminophen MCC blend

roller compaction

Dry granulation of MCC
Mannitol mixture

PAT data used in
ANN

FT IR

UV-Vis

Conc., Temp.

Near IR

Near IR

Microwave
spectroscopy, Near
IR

Compaction force,
roll speed

Dataset

15 Samples

16 Samples

Simulation data
from PBM

32 Calibration
samples

66 Calibration
samples

Compacted
ribbon samples,
various

settings

161
experiments

ANN

Type

FF-BP

PC ANN

FF-BP

FF-BP

FF-BP

FF-BP

FF-BP

Predicted Output

Glucose and glucoronic acid
conc.

Kinetic rate constants and
reaction order

Future process response, temp.
profile optimization

Paracetamol, diphenhydramine
conc. prediction

API Content Prediction

Prediction of granule density,
moisture content, API content

Prediction of granule density

Ref.

(16)

(88)

(89)

@7

(28)

(90)

(45)
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According to the Pharma 4.0 idea, digitalization is expected to grow significantly over the next several years since it can improve manufacturing's clarity,
litheness, proficiency, output, and quality (91). According to the authors of (92) from Novartis Global Drug Development, a pioneer in the digitization
of pharmaceuticals, historical operational data could be a useful tool for assessing the company's capacity. At the moment, accessing this data takes a
long time and is unreliable and fragmented. Digitalization platforms, exemplified by Novartis's “Nerve Live” platform, can facilitate the collection,
cleaning, and analysis of valuable data. Centralized and accessible databases (data lakes) can be established to compile raw materials' attributes, process
parameters for each unit operation, and various PAT measurements relevant to the manufacturing process, as depicted in Fig. 4.

Digitalization presents various challenges for pharmaceutical companies and initiates changes across business, operational, and technological dimensions
(93). The role of data scientists and information technology (IT) personnel is increasingly important as new competencies and resources become necessary.
It is essential to establish cross-functional teams, address cybersecurity concerns, and prioritize standardization for long-term compatibility (91). Several
chapters in the handbook address the digital transformation of laboratories, including analytical, research, and solid-state labs, offering a foundational
knowledge base on central concepts and practical implementation guidance. Information management tools such as the Electronic Laboratory Notebook
(ELN), Laboratory Information Management System (LIMS), and Enterprise Resource Planning (ERP) are introduced. Additionally, principles of
cybersecurity, communication protocols, data and modeling technologies, reporting, and the creation of FAIR (findable, accessible, interoperable,
reusable) data are examined.(94, 95)

Many of these concepts can also be applied to the operations of laboratories and manufacturing facilities within pharmaceutical companies. Siemens's
commercially available cloud-based open 10T operating system, MindSphere (93), and Novartis's "Nerve Live" platform (92) are examples of this IT
system's industrial implementation. MindSphere unites disparate devices within a cloud platform, integrates several data sources and information
management tools, and guarantees the best possible data protection and storage—all of which are critical for pharmaceutical businesses.
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Fig. 4 Digitization in context of Artificial intelligence models for PAT in the Pharma 4.0

The use of artificial neural networks (ANN) with real-time pharmaceutical production data and integrating several process phases is still limited, according
to published research articles. Pharmaceutical corporations can gain a substantial competitive edge by putting such platforms into place, which could
make it more difficult to publish these findings. Furthermore, the widespread adoption of autonomous smart manufacturing and digital transformation
depends on both academic and industrial research. The importance of time-series neural networks, which could be examined in more detail, and the
adaptation and real-time training capabilities of neural networks for continuously growing data also require more research. Furthermore, the scientific
and chemical understanding of the research, development, and manufacturing processes of therapeutic products must not be replaced or compromised by
an Al black-box model. This can be achieved, for example, by using hybrid mathematical models to integrate physical-chemical process knowledge into
the automated platform.
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6. Conclusion

Machine learning techniques, including artificial neural networks, have become crucial data analysis tools for processing large datasets and implementing
Industry 4.0 concepts. This paper aims to evaluate the preparedness of pharmaceutical manufacturing by reviewing the application of artificial neural
networks (ANNSs) in the context of process analytical technology (PAT). In conclusion, artificial neural networks (ANNSs) have been evaluated for various
functions in prevalent manufacturing processes; however, their application in real-time process analytical technology (PAT) remains limited. Future
directions and research gaps have been identified. Thus, artificial neural networks may play a crucial role in the development of smart, autonomous
pharmaceutical manufacturing systems in the future. This approach facilitates faster and more cost-effective production while reducing waste, thereby
lessening the environmental impact. Additionally, automated systems can decrease human exposure to hazardous processes or substances, such as
hormones or cytostatics. The implementation of advanced manufacturing technologies associated with Industry 4.0 presents challenges to the existing
regulatory framework, as most regulations were established within the context of Industry 2.0 and traditional batch manufacturing practices. The U.S.
FDA has initiated a process to identify and implement necessary modifications in the regulatory framework to facilitate the adoption of new technologies.
New policy and regulatory topics associated with Industry 4.0 encompass the management of data-intensive environments, the developing concepts of
process validation for advanced manufacturing systems, and the regulatory oversight of post-approval changes for these systems. International regulatory
convergence will be useful in encouraging industry adoption of new manufacturing technologies.
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