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ABSTRACT.

In this paper, we investigate uncertainty principle and some results for the Weinstein wavelet transform. As a variant of Heisenberg-Type uncertainty principle,

Pitt's inequality, Benkner-Type uncertainty principle, logarithmic Sobolev inequality.

Keywords and phrases. Weinstein operator; Weinstein wavelet transform, Heisenberg's uncertainty inequality, Pitt's inequality, logarithmic Sobolev
inequality.
Mathematics subject classification 2010. 44A05; 42B10; 44A20

1. Introduction

The Weinstein operator is the elliptic partial differential operator Ay, considered in the upper half space R¢ = R%~* x [0, oo[
d
A 0?2 2a+1 0 S 1
= —_— —,a —_—
w 4 ax} xXq 0xg4 2

Ay =044 +4,

j=

where A4_; is the Laplacian operator on R%~* and £, is the Bessel operator with respect to the variable x4 defined by

0% 2a+1 0
T T o
The harmonic analysis associated with the Weinstein operator is studied by Nahia and Ben Salem [3],[4]. In particular the authors have introduced and
studied the generalized Fourier transform associated with the Weinstein operator. The theory of wavelet and continuous wavelet transform has been
extended to hypergroups, in particular, to Chébli-Trimche hypergroup see [23]. Recently, there many studies about the wavelet transforms see [13],
[18], [14], the authors have studied the uncertainty inequalities for the continuous Weinstein wavelet transform, and deformed wavelet transform. In
this paper, we introduce some new uncertain inequalities for the continuous Weinstein wavelet transform.
Let us now to be more precise and describe our results. To do so, we need to introduce some notation. For 1 < p < oo, we denote by L? (R%) the

Lebesgue space consisting of measurable functions f on R¢ = R%~! x R, equipped with the norm

1/p
W llagasy = | [, 176 xl? dieg )
]R+
where
2a+1 2a+1
, *d , Xd
dua(x) = dua(x ,Xd) = de dxd = del dxd
mz 272 (a+1) mz 22 I(a+1)

For f € LL(R%), the Weinstein (or Laplace-Bessel) transform is defined by
Fy (¢ = f p f(x’,xd)e‘i<",'5,)ja(xdfd)dya(x’,xd).
RY
The Weinstein wavelet on R¢ is a measurable function h on R¢ satisfying, for almost all & € R
*© dt
0<Cy = f |7—"‘,|,(h)(t)|2T < oo,
0

We denote by L’Z,a, 1 < p < o the space of measurable functions f on R% x [0, 0] = R%*?, dw, (x,b) = du, (x); db such that

p2at+d+2
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Il (nesy = ( f L GBI dag(x, b)) <w,1<p<o.
REE

Let h be a Weinstein wavelet on R? € L2 (R$), we define the Weinstein continuous wavelet transform as follows

LB, y) = f F Oy @)dita (), (b,y) € REL.
R¢

We define for s € R%, 1 < p < 2 the HZ*(R%) space by
HZ* (RY) = {f € L;(RD: §1°Fu (f) € L (RD) }

Recently, there are many results for the wavelet transform see [18], [13] and [14]. We will here concentrate on some uncertainties principles and some

results for the Weinstein wavelet transform.
Our first result is the Heisenberg-type uncertainty principle for the wavelet transform:

Theorem 2.1. Let s,t > 1. Then, for all f € L2 (R%), we have
t s t
7 STE 2
|||x|35&/(f)(b;x)||izzkﬂl|||§|t7:w(f)(f)||ig;w = Coals, f)eh(SH)”f”Lg(M)
ts
where Cpq(s, t) = (a + %)S“

The second result is the Pitt's inequality for the Weinstein wavelet transform:

Theorem 2.2. For0 < s < a + % and f € S(R%), the Pitt's-type inequality for the wavelet transform is given by

1P (Dl zae) < G Cla,s, XSG, 05 agss)

The third result is the Benkner-Type uncertainty principle for the Weintein wavelet transform:

Theorem 2.3. Let f € S(R%), the following logarithmic uncertainty principle inequality for the Weinstein wavelet transform holds

me In (|x D18 (F) (b, 1) |*dwq (b, x) + Cn J};&d In (1ED1Fw (O *dua(§)

I (Za +4d + 1)
r (Za +4d + 1)

+1n (2) ch”f”izamg)

Finally, the logarithmic Sobolev inequalities for the Weinstein wavelet transform:

Theorem 2.4. Let s > %, 1 <p < 2and forall f € HY*(RZ) there exists a positive constant £(a, d, s, h, p), such that

1S5 (I, gy < £ .10, 0) (P18 gy + 1 Fwl By ) )

Theorem 2.5. Let h € L%(R%) be a Weinstein wavelet and for all f € H2?, there exists a positive constant C(a, d), such that

S (F) (B, )l 2 (e

sla+ dr1 Cr | 1Fw(D@OPIn [€]dua(x) = C(a, DCAIIf I} (ga
( 2 RY 1%(r$)

f ISt () (b, )P ( )dwa(x)
]Rd:f

+

Theorem 2.6. For all f € L2(R%) N HZ", there exists a positive constant such that
[ 1SBG. 010 @+ 31d0e 5,0+ € [ 1P (EOPI @+ )it ()
RYF RY

2 C(a, A)Chllf Iz ng)

The structure of the paper is as follows. In the next section we introduce some further notations as well as some preliminary results. the Section 3, is

devoted to prove some result for the Weinstein wavelet transform.

1.1. Harmonic analysis associated with the Weinstein operator

In order to describe our paper, we first need to introduce some notations.

The unit sphere of R? is denoted by $%~1, if we denote by S~ = §471 n R%, then
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a-1
w2z [(a+1)

ra+5)

For a radial function f € L (R%) the function f defined on R, such that f(x) = f(|x|), forall x € R is integrable with respect to the measure

Wy ol = f x3**1 doy(x) =
s¢-1

where g, is the normalized surface measure on $%71.

r2@+4 dr. More precisely, we have
[ reoduet = ao [ et ar
R$ 0

where

Wy 1

Ao = g1 a-1 = a-1
TT 2T+ 1) 27T (at %)

For r > 0 we will denote by B, = {x € R%: |x| < r} the "ball" in R% of center 0 and radius r and the characteristic function of a set A will be denoted

1, ifx€4;
by x4, so that y,(x) = {0 otherwise .

We consider the Weinstein operator (also called Laplace-Bessel operator), (see [3, 4]), defined on R4~ x (0, ) by

A —Ed 0 y2a*1 9 isoas-1p2
W_,laxf xXg Oxqy @ /
&

For d > 2, the operator Ay, is the Laplace-Beltrami operator on the Riemanian space R¢~* x (0, ) equipped with the metric [3]
d
ds? = x2a+2/(d—2) Z dx?
L
i=1

The Weinstein operator has several applications in pure and applied Mathematics especially in Fluid Mechanics (see e.g. [7, 24]). For 1 < p < o0, we

denote by L? (R%) the Lebesgue space consisting of measurable functions f on R¢ = R4 X R, equipped with the norm,

1/p
M £ 11,2 (re) = (fm I G x )P dua(x'.xd>) 1<p<w

1Fll ety = ess sup [ ()] < oo
xeR$

where forx = (xq, ..., xq4_1,%q) = (x',x4) and

2a+1 2a+1
Xd ' Xd
dua() =g a5 WWdw=—F5 75— —dn .. dx
mz 2" 72 T(a+1) mz 2" 72 I(a+1)

For f € LL(R%), the Weinstein (or Laplace-Bessel) transform is defined by
Py (NE60 = [ 16 70e g (raf e (' xo),
RY

where j, is the spherical Bessel function :

w(2) = T(a +1 i bl (Z)Zk €c
Ju(2) = T(a )k_o KT@+k+D\2) '
extends uniquely to an isometric isomorphism on L% (R%) i.e.
2) ”TW(f)”L‘ZI(]Rf_) = ”f”L%,(IRﬁ)’

and we have
Fit (@) = Fuw(H(=§8a).§ = §'.6a) €ERE
Moreover if f € LL(R%), then
3 1Fw (Dl ag) < 1 iy
We recall the generalized translation operator T, x € R% associated with the Weinstein operator Ay, is defined for a continuous function f on R¢, even

with respect to the last variable by

T.f(y) = ﬂfnf x'+y Jxé + y2 4+ 2x2yZcos 6 | (sin 6)?% dd,y € R¢
Vrl(a+1/2) )y

where x' +y' = (X1 + Y1, oo, Xg—1 + Va-1)-
For any function g € L% (R%) and any y € R%, here *,, denotes the convolution product associated with the Weinstein operator given by

frw 9() = Jpg FONT(9) @) dua ().
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1.2. The Weinstein wavelet transform

A Weinstein wavelet on R? is a measurable function & on R¢ satisfying, for almost all § € R%

“ 0<Cy= [ 1Fu(®OIZ < oo,

t

Let b > 0, and let h € L% (R%), we define the dilation of h as follows:

1 Y
vy € R A, () = o (E)

It easy to see that h;, € L% (R%) and
v§ € RY, Fyy (1) (€) = Fyy (h) (bE)

®) 0<Cy =[] IFyBOI T < oo.

We introduce h;,,,b > 0,and y € R%,y € R%, of Weinstein wavelet on R? in in L2 (R%), defined by
d+1
(©) vx € RE, by, (x) = b2 TRy (=Y, va).
We note that
Vb > 0,Vy € R%,

Ihb,y”Lgx(Rg) = ”h”L%.(lRi)

Also, we denote by Lﬂ,a. 1 < p < o the space of measurable functions f on R% x [0, 0] = R*Y, dw, (x, b) = dig(x) —L__ db such that

b2a+d+2
»
1l ety = ([ VDI dod)) < o1 <p <o
a Riil
Il (resry = ess sup _|f(x,b)| < oo
« x,yE]R{ft1
Let h be a Weinstein wavelet on R¢ € L2 (R$). we defined the Weinstein continuous wavelet
@) Sw()b,y) = fya [y (X)dpa(x), (b,y) € REL
And
h a+@ t7t+ﬂ 7
®) SBUB,Y) = b E A, Ty gty = D7 £y Py
Then
d+1

© S (Ab,y) = ™= Fg [Fu (N Fw (NEDIW),
and
(10) IS5 Pz, ey < |z oy || 2z -
Theorem 1.1. (Plancherel's formula for Sf% )Let h be a Weinstein wavelet. For all f € L, (R%)
an Jpg VfCOPdpa(x) = C™ foapn 15w () (b, ) dwa (b, y).
Corollary 1.1. (Parseval's formula for SJ}, ) Let h be a Weinstein wavelet. For all f;, f, € L2 (R%)
12) Jag A0 dua () = Ci* fugr Sw () (B, )8y (f2) (b, y)dwe (b, ).
Proposition 1.1. forall s > 0 and f € L%(R%) we have
(13) Jag 1EFIFw (DO Pdie() = Ci* fogns 1EFISH (@I dare (b, y).

Proof. By (5) and (9) we can easy proof it.

2. New results for the Weinstein wavelet transform

In this section, we will analogue of Heisenberg-Type Uncertainty Principle for the Weinstein Wavelet Transform, Pitt's Inequality for the Weinstein
Wavelet Transform, the Benkner-Type uncertainty principle for the Weintein wavelet transform and the logarithmic Sobolev inequalities for the
Weinstein

wavelet transform our proof is inspired from [14], whose proved some results for deformed wavelet transform and related uncertainty principle.

2.1. Heisenberg-type uncertainty principle for the Weinstein wavelet transform

Extension to our studies in [5] and there are many studies the Heisenberg uncertainty principle inequality for wavelet transforms [[18], [14]]. In this
section, we introduce the uncertainty inequality for the Weinstein wavelet transform. Firstly from our study [Corollary 3.5, [S]], we present the

following theorem.
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Theorem 2.1. Let s,t > 1. Then, for all f € L2 (R%), we have

t S _t
(14) NS BN e IEEFw DO g = Caa(s OGN Nz agy

ts
_ d+1\s+t
where Cy 4(s, t) = (a + )

Proof. From [(3.10),[5]], implies that for all b > 0

L
t+s

( fw IfI“ITW[S&‘z(f)(b.-)](f)lzd#a(s‘)> ( j;g d IxI“IS»'b(f)(b,x)lzdua(x))
> (Cau(s, D))’ f ISty () (b, )2t ().
RY

we obtain, by Holder's inequality and Plancherel's formula,

. . . db
Integrating both sides with respect to the measure T

w0 = w5 db
f (f |f|"|fw[sv"y(f)(b,.)](f)qua(f)) (f IXIZSIS#/(f)(b,X)Izdua(X)> e aes
0 R$ R¢ b

2 [ db
= (Caat ) [ 155OGOF e s
Thus, form (13), we deduce
i ([, ermnn©Faon.o) ([ wEIsknoRde,60) "
> (Ceas:00)' [ ISHIG. 00 )
REL
> (Ceals:0)’Cn [ If @)
RY

> (Cea(s,)) CallFI2g-

2.1. Pitt's inequality for the Weinstein wavelet transform

The Pitt's inequality for the Weinstein transform is studied in [1], for all € S(R$), (the Schwartz space of rapidly decreasing functions on R, even

with respect to the last variable) and 0 < s < a + %

(15) IE P () Ol gty < a5, DXl sy
where

d+1
a+t—s—-s

2

C(a,s,d)=2"° .
ardFlos

The main aim of this section is to formulate an analogue of Pitt's inequality (15) for the Weinstein wavelet transform.

Theorem 2.2. For0 < s < a + dzi and € S(R%), the Pitt's-type inequality for the wavelet transform is given by

(16) EIFu ()l nty < CiClat, s, DI (1 (B, )l 3 -
Proof. From (15), replace f with S{%(f) and for b > 0, we have

| |<'|wa[sv"v(f)((b,.)](adua(x)sC(a,s,d) [, b (0w,
- o

and by Fubini's theorem, we have

By integrating the both sides with respect to the measure %,

@ db
L w1 Rl b s e

N db ’
= C(a, S, d) |x| p2atd+2 d#“(x)
R¢ Jo

shn ()

Using (9), the last inequality has introduced as follows:
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@ db
L B e @PIFN D @OF s

db
S (0.0 gz dwn 0.

< C(a,s,d 2s
<c@sd [, 1
Thus
@ db
([ mwmr D )E e aue
R% 0

“ 2s h 2 db
<c@sd [ [ wE|sho ((b,x)l e A0, ().
rY Jo

From (5), we obtain

db
& [ RO da(@) < i) [ 1| 50D (01 g da (0.

This completes the proof.

2.3. Benkner-Type uncertainty principle for the Weinstein wavelet transform

In this section study the Benkner-Type uncertainty principle for the Weinstein wavelet transform as the following theorem.

Theorem 2.3. Let € S(R%), the following logarithmic uncertainty principle inequality for the Weinstein wavelet transform holds

fd ln(IXI)ISV’b(f)(b,x)lzdwa(b.X)+Cnf In (1EDI1Fw (NP dua ()
RYY R

a7 > C(_)) +1n (2)) CullF I, )

4

Proof. From [Theorem4.5,[1]], we observe
[ GabiroPdiee+ [ nED 1 (D@ Pane@
R$ R¢

I (Za +4d + 1)
r (Za +4d + 1)

+1n(2) ”f”z%z(m&)'

Here we replace f by S (b, .), weget

[, 10 GDISh D@ P + | In (DI 50BN Pt D)

I (Za +4d + 1)

@R @ | [ Ishb P
7 ¢

Integrating the last inequality, the both sides with respect to the measure %, and by Fubini's theorem, we have

|, m@DISH PGP dontb) + [ QEDIFLIS P IFdonb,E)
" " atd+1
I

T O [.,.. 155G due o
4 ++

Using (9), and Plancherel's formula, we obtain

fd 1n(le)lsv'b(f)(brx)lzdwa(b,X)+f In (1EDIFw (R) (b, ) I*1Fw (F) ()P dwy (b, §)
R RYE
S (2a+d+1
M=)

4

W‘Hn 2) J’]Rd"‘l |Fw (W) (b, O *1Fy () (€)|*dwe (b, x).
4 +

+

Consequently
[ WD ISBOO b 0Pdag (G, + €, [ 1nED I (ke ).
REY Rr¢

Which proves the desired result.
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2.4. Logarithmic Sobolev inequalities for the Weinstein wavelet transform

Definition. Let Ns € RY, 1 <p <o and T € S(R{ ) be a distribution we define:
(18) H”*(RY) = {T € S(RY) : (1 + [¥ )2 Fw (T) € L (RE)}.
Means that for s > 0, T € H,”*(R{) and Fy (T) is given by a function in L§ (R{), the norm onH,>* is defined by

Tl = @ + 1815 1B (nd)

In case p = 2, for T € H,” (R} ), it be can seen that T is necessary given by a function f € L?(R{ ) the space H,”*(R{) can be
o

defined as

(19) HZ*(RY) = {f € LL(RD: [§1°Fy (f) € Lz (RD).
In the following, we give a Sobolev embedding theorem.

2a+d+1

Theorem 2.4 Let s > , 1 < p <2 and for all f € H,”*(RY) there exists apositive constant (a, d, s, h,p), such that

@0) IS D5, gy < 2@ A5 b p DU 20 ) + IEFFVDI (g
Proof. From Plancherel’s formula, we obtain
2 2
IS5 O, e < Cn f [P (DOPA + BT + 577 dua(®
a\ lR{i

Using Hélder inequality, we get

1 1/q
SOl og) < (fnag|Tw(f)(E)I2p(1 + |E|2)Spd#a(f))5<£«g(1 + IEIZ)‘Sqduu(€)>

By (1), we have

v r m)r d+1
f A + 1817y (€) = <Sq S(H ))rler ).
R{ 2% 2T (a + M) I'(sq)

Using the fact that (a +b)® <25(a®+b®), we get

()| g B
I Scp[w]

2“+Tr‘(a+ﬂ)l"(s )

Qs

zw(nfuznipm &)+ IEFFLOI o )

Thus

i~

q
I'| sq — a + —
2%P,

2"+gr( dt )r(sq)

e(a,d,s,h,p,q) =GP

d . ..
Corollary 2.1. Let s > y, there exists apositive constant g(a, d, s, h, p), such that

q
@) (S5O, @) < e d s b p. U zrg) + IEFFLOIE (o)

d
Proof. Using the dilated D,(f )(x) = /1“+%f(lx) to (20) , we get

2 -(a
ISRz, gy S € d s, b p, Q@R 20 gy + AP CHADNEFPFL DI gy )

By minimizing the right-hand side last inequality, we obtain

2a+d+1-2sp

d+1 2sp
p(ps—(a+ 7 )

2 1
”S‘}'lv(f)”ﬁ,va(n«ﬁ) < e(a,d,s, h,p,q)? — sara
sp

(“+ 2

p_zrx+d+1 20+d+1
x(nfn gy NEFFLOIL,™ )

This is the desired result.
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Now, to describe next our result we need to recall the Theorem 5.6 in [2], there exists a positive constant C(a, d) such that for al f

€H**(RY)

f
| |f(x)|2n< @ )dua(x)s [, F @ ©F D dnet©
R¢ R¢

NIfll 2 (rg)

22) —~C(@, DA s

Now, with the same constant C(o, d), we show the following theorem

Theorem 2.5. Let h € L2 (R%) be a Weinstein wavelet and for all /' € H,>°(RY ), there exist a positive constant C(a, d), Such that

15 ()b, 0]
SEF) (b, ) 2In | — W I 22X ) gy,
fm' WDl “<||sv';(f)(b,.)||Lé(Rg)> W)
on S@HENC, [y IUED IR (OO P ~ @ Il Fyagy

Proof. Replacing SP(f) (b, x)and integrate with respect to the measure both sides in (22), we get

b
pa+d+2

” 155 (F)(b, )] db
HRICRE ()
J;) fm‘i S (Gl n<||5ﬁ/(f)(b,-)||Lg(Rg)> Ha(x b2a+d+2

< @r it [, [ P ne a6z = €@ [ IS5DG Myt

Now, by Fubini’s theorem and Plancherel’s formula, we get the required result.

Finally, we give another version of logarithmic uncertainty for the Weinstein wavelet transform.

Theorem 2.6. For all £ € L2(R%), there exists a positive constant such that

f IS (H (b, ) [?In (1 + |x|*)dawg (b, x) + Cnf 1Fw (I (1 + [x|*)dpa(§)
RYE R

2
(24) = C(a, )Gy Ifll L3(RY)"
Proof. In the same manner. Replacing /* with S[(f) and by integrating both sides to inequality of [Theorem 5.8, [2]], we obtain

f IS4 () (b, )[*In (1 + |x|*)dawg (b, x) +f |Fw [Si () (B, DI PIn (1 + [x|*)daw, (b, )
RYE R§Y

2 C(@, DS Iy gy -
Applying Proposition 2.3 Plancherel’s formula, we obtain

@5) Jaap 1w (B, PIn (14 [x[2)dwq (b, x) + Cp fog [Fw (HE@PIn (1 + |x|*)dua(§)

= C(a, d)CyIfll ié(ﬂ&i)'
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