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1. Introduction 

       The Weinstein operator is the elliptic partial differential operator Δ𝑊 considered in the upper half space ℝ+
𝑑 = ℝ𝑑−1 × [0,∞[ 

Δ𝑊 = ∑  

𝑑

𝑗=1

 
𝜕2

𝜕𝑥𝑗
2 +

2𝛼 + 1

𝑥𝑑

𝜕

𝜕𝑥𝑑

, 𝛼 > −
1

2

Δ𝑊 = Δ𝑑−1 + ℓ𝛼

 

where Δ𝑑−1 is the Laplacian operator on ℝ𝑑−1 and ℓ𝛼 is the Bessel operator with respect to the variable 𝑥𝑑 defined by 

ℓ𝛼 =
𝜕2

𝜕𝑥𝑑
2 +

2𝛼 + 1

𝑥𝑑

𝜕

𝜕𝑥𝑑

. 

The harmonic analysis associated with the Weinstein operator is studied by Nahia and Ben Salem [3],[4]. In particular the authors have introduced and 

studied the generalized Fourier transform associated with the Weinstein operator. The theory of wavelet and continuous wavelet transform has been 

extended to hypergroups, in particular, to Chébli-Trimche hypergroup see [23]. Recently, there many studies about the wavelet transforms see [13], 

[18], [14], the authors have studied the uncertainty inequalities for the continuous Weinstein wavelet transform, and deformed wavelet transform. In 

this paper, we introduce some new uncertain inequalities for the continuous Weinstein wavelet transform. 

      Let us now to be more precise and describe our results. To do so, we need to introduce some notation. For 1 ≤ 𝑝 < ∞, we denote by 𝐿𝛼
𝑝 (ℝ+

𝑑) the 

Lebesgue space consisting of measurable functions 𝑓 on ℝ+
𝑑 = ℝ𝑑−1 × ℝ+ equipped with the norm 

‖𝑓‖𝐿𝛼
𝑝
(ℝ+

𝑑) = (∫  
ℝ+

𝑑
  |𝑓(𝑥′, 𝑥𝑑)|

𝑝 d𝜇𝛼(𝑥′, 𝑥𝑑))

1/𝑝

 

where 

d𝜇𝛼(𝑥) = d𝜇𝛼(𝑥′, 𝑥𝑑) =
𝑥𝑑

2𝛼+1

𝜋
𝑑−1
2 2𝛼+

𝑑−1
2 Γ(𝛼 + 1)

d𝑥′d𝑥𝑑 =
𝑥𝑑

2𝛼+1

𝜋
𝑑−1
2 2𝛼+

𝑑−1
2 Γ(𝛼 + 1)

d𝑥1 …  d𝑥𝑑 

For 𝑓 ∈ 𝐿𝛼
1 (ℝ+

𝑑), the Weinstein (or Laplace-Bessel) transform is defined by 

ℱ𝑊(𝑓)(𝜉′, 𝜉𝑑) = ∫  
ℝ+

𝑑
𝑓(𝑥′, 𝑥𝑑)𝑒

−𝑖⟨𝑥′,𝜉′⟩𝑗𝛼(𝑥𝑑𝜉𝑑)d𝜇𝛼(𝑥′, 𝑥𝑑). 

The Weinstein wavelet on ℝ+
𝑑  is a measurable function ℎ on ℝ+

𝑑  satisfying, for almost all 𝜉 ∈ ℝ+
𝑑  

0 < 𝐶ℎ = ∫  
∞

0

|ℱ𝑊(ℎ)(𝑡)|2
𝑑𝑡

𝑡
< ∞. 

We denote by 𝐿𝜔𝛼

𝑝
, 1 ≤ 𝑝 ≤ ∞ the space of measurable functions 𝑓 on ℝ+

𝑑 × [0,∞] = ℝ++
𝑑+1, d𝜔𝛼(𝑥, 𝑏) = d𝜇𝛼(𝑥)

1

𝑏2𝛼+𝑑+2
 d𝑏 such that 

http://www.ijrpr.com/
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‖𝑓‖𝐿𝜔𝛼
𝑝

(ℝ++
𝑑+1) = (∫  

ℝ++
𝑑+1

  |𝑓(𝑥, 𝑏)|𝑝 d𝜔𝛼(𝑥, 𝑏))

1
𝑝

< ∞,1 ≤ 𝑝 < ∞. 

Let ℎ be a Weinstein wavelet on ℝ+
𝑑 ∈ 𝐿𝛼

2 (ℝ+
𝑑), we define the Weinstein continuous wavelet transform as follows 

𝒮𝑊
ℎ (𝑓)(𝑏, 𝑦) = ∫  

ℝ+
𝑑
𝑓(𝑦)ℎ𝑏,𝑦(𝑥)𝑑𝜇𝛼(𝑥), (𝑏, 𝑦) ∈ ℝ++

𝑑+1. 

We define for 𝑠 ∈ ℝ𝑑, 1 < 𝑝 ≤ 2 the H𝛼
2,𝑠(ℝ+

𝑑) space by 

H𝛼
2,𝑠(ℝ+

𝑑) = {𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑): |𝜉|𝑠ℱ𝑊(𝑓) ∈ 𝐿𝛼
2 (ℝ+

𝑑) ⋅} 

Recently, there are many results for the wavelet transform see [18], [13] and [14]. We will here concentrate on some uncertainties principles and some 

results for the Weinstein wavelet transform. 

       Our first result is the Heisenberg-type uncertainty principle for the wavelet transform: 

Theorem 2.1. Let 𝑠, 𝑡 > 1. Then, for all 𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑), we have 

‖|𝑥|𝑠𝒮𝑊
ℎ (𝑓)(𝑏, 𝑥)‖

𝐿𝜔𝛼
2 ℝ++

𝑑+1

𝑡
𝑠+𝑡 ‖|𝜉|𝑡ℱ𝑊(𝑓)(𝜉)‖

𝐿𝛼
2 ℝ+

𝑑

𝑠
𝑠+𝑡 ≥ 𝐶𝛼,𝑑(𝑠, 𝑡)𝒞

ℎ

𝑡
2(𝑠+𝑡)

‖𝑓‖𝐿𝛼
2 (ℝ+

𝑑) 

where 𝐶𝛼,𝑑(𝑠, 𝑡) = (𝛼 +
𝑑+1

2
)

𝑡𝑠

𝑠+𝑡
. 

 

       The second result is the Pitt's inequality for the Weinstein wavelet transform: 

Theorem 2.2. For 0 ≤ 𝑠 < 𝛼 +
𝑑+1

2
 and 𝑓 ∈  S(ℝ+

𝑑), the Pitt's-type inequality for the wavelet transform is given by 

‖|𝜉|𝑠ℱ𝑊(𝑓)‖𝐿𝛼
2 (ℝ+

𝑑) ≤ 𝒞ℎ
−1𝐶(𝛼, 𝑠, 𝑑)‖|𝑥|𝑠𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)‖𝐿𝛼
2 (ℝ++

𝑑+1). 

 

       The third result is the Benkner-Type uncertainty principle for the Weintein wavelet transform: 

Theorem 2.3. Let 𝑓 ∈  S(ℝ+
𝑑), the following logarithmic uncertainty principle inequality for the Weinstein wavelet transform holds 

∫  
ℝ++

𝑑+1
 ln⁡(|𝑥|)|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥) + 𝒞ℎ ∫  
ℝ+

𝑑
 ln⁡(|𝜉|)|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜇𝛼(𝜉)

≥ (
Γ′ (

2𝛼 + 𝑑 + 1
4

)

Γ (
2𝛼 + 𝑑 + 1

4
)

+ ln⁡(2))𝒞ℎ‖𝑓‖
𝐿𝛼
2 (ℝ+

𝑑)
2

 

 

Finally, the logarithmic Sobolev inequalities for the Weinstein wavelet transform:  

Theorem 2.4. Let 𝑠 >
2𝛼+𝑑+1

2𝑞
, 1 < 𝑝 ≤ 2 and for all 𝑓 ∈ H𝛼

𝑝,𝑠(ℝ+
𝑑) there exists a positive constant 𝜀(𝛼, 𝑑, 𝑠, ℎ, 𝑝), such that 

‖𝒮𝑊
ℎ (𝑓)‖

𝐿𝜔𝛼
2 (ℝ+

𝑑)
2 ≤ 𝜀(𝛼, 𝑑, 𝑠, ℎ, 𝑝, 𝑞) (‖𝑓‖

𝐿𝛼
2𝑝

(ℝ+
𝑑)

2𝑝
+ ‖|𝜉|𝑠ℱ𝑊‖

𝐿𝛼
2𝑝

(ℝ+
𝑑)

2𝑝
). 

 

Theorem 2.5. Let ℎ ∈ 𝐿𝛼
2 (ℝ+

𝑑) be a Weinstein wavelet and for all 𝑓 ∈ H𝛼
2,1, there exists a positive constant 𝒞(𝛼, 𝑑), such that 

∫  
ℝ++

𝑑++
 |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2ln⁡ (
|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|

‖𝒮𝑊
ℎ (𝑓)(𝑏, . )‖𝐿𝛼

2 (ℝ+
𝑑)

)𝑑𝜔𝛼(𝑥)

⁡≤ (𝛼 +
𝑑 + 1

2
)Cℎ ∫  

ℝ+
𝑑
  |ℱ𝑊(𝑓)(𝜉)|2ln⁡ |𝜉|𝑑𝜇𝛼(𝑥) − 𝒞(𝛼, 𝑑)Cℎ‖𝑓‖

𝐿𝛼
2 (ℝ+

𝑑)
2

 

 

Theorem 2.6. For all 𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑)⋂ ⁡ H𝛼
2,1, there exists a positive constant such that 

∫  
ℝ++

𝑑+1
|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2ln⁡(1 + |𝑥|2)𝑑𝜔𝛼(𝑏, 𝑥) + Cℎ ∫  
ℝ+

𝑑

|ℱ𝑊(𝑓)(𝑥)|2ln⁡(1 + |𝑥|2)𝑑𝜇𝛼(𝑥) 

≥ 𝒞(𝛼, 𝑑)𝒞ℎ‖𝑓‖
𝐿𝛼
2 (ℝ+

𝑑)
2  

The structure of the paper is as follows. In the next section we introduce some further notations as well as some preliminary results. the Section 3, is 

devoted to prove some result for the Weinstein wavelet transform. 

1.1. Harmonic analysis associated with the Weinstein operator 

       In order to describe our paper, we first need to introduce some notations. 

The unit sphere of ℝ𝑑 is denoted by 𝕊𝑑−1, if we denote by 𝕊+
𝑑−1 = 𝕊𝑑−1 ∩ ℝ+

𝑑 , then 



International Journal of Research Publication and Reviews, Vol (6), Issue (8), August (2025), Page – 345-353                         347 

 

𝑤𝑑,𝛼: = ∫  
𝕊+

𝑑−1
𝑥𝑑

2𝛼+1 d𝜎𝑑(𝑥) =
𝜋

𝑑−1
2 Γ(𝛼 + 1)

Γ (𝛼 +
𝑑 + 1

2
)
 

where 𝜎𝑑 is the normalized surface measure on 𝕊+
𝑑−1. 

For a radial function 𝑓 ∈ 𝐿𝛼
1 (ℝ+

𝑑) the function 𝑓 defined on ℝ+such that 𝑓(𝑥) = 𝑓(|𝑥|),  for all ⁡𝑥 ∈ ℝ+
𝑑  is integrable with respect to the measure 

𝑟2𝛼+𝑑 d𝑟. More precisely, we have 

∫  
ℝ+

𝑑
 𝑓(𝑥)d𝜇𝛼(𝑥) = 𝑎𝛼 ∫  

∞

0

 𝑓(𝑟)𝑟2𝛼+𝑑 d𝑟  

where 

𝑎𝛼 =
𝑤𝑑,𝛼

𝜋
𝑑−1
2 2𝛼+

𝑑−1
2 Γ(𝛼 + 1)

=
1

2𝛼+
𝑑−1
2 Γ(𝛼 +

𝑑 + 1
2

)
 

For 𝑟 > 0 we will denote by 𝐵𝑟 = {𝑥 ∈ ℝ+
𝑑 : |𝑥| < 𝑟} the "ball" in ℝ+

𝑑  of center 0 and radius 𝑟 and the characteristic function of a set 𝐴 will be denoted 

by 𝜒𝐴, so that 𝜒𝐴(𝑥) = {
1,  if 𝑥 ∈ 𝐴;
0,  otherwise .

 

We consider the Weinstein operator (also called Laplace-Bessel operator), (see [3, 4]), defined on ℝ𝑑−1 × (0,∞) by 

Δ𝑊 = ∑  

𝑑

𝑖=1

𝜕

𝜕𝑥𝑖
2 +

2𝛼 + 1

𝑥𝑑

𝜕

𝜕𝑥𝑑−1

; ⁡𝑑 ≥ 2, 𝛼 > −1/2 

For 𝑑 > 2, the operator Δ𝑊 is the Laplace-Beltrami operator on the Riemanian space ℝ𝑑−1 × (0,∞) equipped with the metric [3] 

d𝑠2 = 𝑥𝑑
4𝛼+2/(𝑑−2)

∑ 

𝑑

𝑖=1

 d𝑥𝑖
2 

The Weinstein operator has several applications in pure and applied Mathematics especially in Fluid Mechanics (see e.g. [7, 24]). For 1 ≤ 𝑝 ≤ ∞, we 

denote by 𝐿𝛼
𝑝 (ℝ+

𝑑) the Lebesgue space consisting of measurable functions 𝑓 on ℝ+
𝑑 = ℝ𝑑−1 × ℝ+equipped with the norm, 

(1)                     ⁡‖𝑓‖𝐿𝛼
𝑝
(ℝ+

𝑑) = (∫  
ℝ+

𝑑   |𝑓(𝑥′, 𝑥𝑑)|
𝑝 d𝜇𝛼(𝑥′, 𝑥𝑑))

1/𝑝

, 1 ≤ 𝑝 < ∞

⁡

, 

‖𝑓‖𝐿𝛼
∞(ℝ+

𝑑) = ess sup
𝑥∈ℝ+

𝑑
 |𝑓(𝑥)| < ∞ 

where  for 𝑥 = (𝑥1, … , 𝑥𝑑−1, 𝑥𝑑) = (𝑥′, 𝑥𝑑) and 

d𝜇𝛼(𝑥) =
𝑥𝑑

2𝛼+1

𝜋
𝑑−1
2 2𝛼+

𝑑−1
2 Γ(𝛼 + 1)

d𝑥′d𝑥𝑑 =
𝑥𝑑

2𝛼+1

𝜋
𝑑−1
2 2𝛼+

𝑑−1
2 Γ(𝛼 + 1)

d𝑥1 …  d𝑥𝑑 

For  𝑓 ∈ 𝐿𝛼
1 (ℝ+

𝑑), the Weinstein (or Laplace-Bessel) transform is defined by 

ℱ𝑊(𝑓)(𝜉′, 𝜉𝑑) = ∫  
ℝ+

𝑑
𝑓(𝑥′, 𝑥𝑑)𝑒

−𝑖⟨𝑥′,𝜉′⟩𝑗𝛼(𝑥𝑑𝜉𝑑)d𝜇𝛼(𝑥′, 𝑥𝑑), 

where  𝑗𝛼 is the spherical Bessel function : 

𝑗𝛼(𝑧) = Γ(𝛼 + 1)∑  

∞

𝑘=0

(−1)𝑘

𝑘! Γ(𝛼 + 𝑘 + 1)
(
𝑧

2
)

2𝑘

, 𝑧 ∈ ℂ 

extends uniquely to an isometric isomorphism on 𝐿𝛼
2 (ℝ+

𝑑) i.e. 

(2) ‖ℱ𝑊(𝑓)‖𝐿𝛼
2 (ℝ+

𝑑) = ‖𝑓‖𝐿𝛼
2 (ℝ+

𝑑),  

and we have 

ℱ𝑊
−1(𝑓)(𝜉) = ℱ𝑊(𝑓)(−𝜉′, 𝜉𝑑), 𝜉 = (𝜉′, 𝜉𝑑) ∈ ℝ+

𝑑  

Moreover if 𝑓 ∈ 𝐿𝛼
1 (ℝ+

𝑑), then 

(3) ‖ℱ𝑊(𝑓)‖𝐿𝛼
∞(ℝ+

𝑑) ≤ ‖𝑓‖𝐿𝛼
1 (ℝ+

𝑑)⁡.⁡⁡⁡  

We recall the generalized translation operator 𝒯𝑥, 𝑥 ∈ ℝ+
𝑑  associated with the Weinstein operator Δ𝑊 is defined for a continuous function 𝑓 on ℝ+

𝑑 , even 

with respect to the last variable by 

𝒯𝑥𝑓(𝑦) =
Γ(𝛼 + 1)

√𝜋Γ(𝛼 + 1/2)
∫  

𝜋

0

𝑓 (𝑥′ + 𝑦′; √𝑥𝑑
2 + 𝑦𝑑

2 + 2𝑥𝑑
2𝑦𝑑

2cos⁡ 𝜃) (sin⁡ 𝜃)2𝛼 d𝜃, 𝑦 ∈ ℝ+
𝑑  

where 𝑥′ + 𝑦′ = (𝑥1 + 𝑦1, … , 𝑥𝑑−1 + 𝑦𝑑−1). 

For any function 𝑔 ∈ 𝐿𝛼
2 (ℝ+

𝑑) and any 𝑦 ∈ ℝ+
𝑑 , here ∗𝑊 denotes the convolution product associated with the Weinstein operator given by 

𝑓 ∗𝑊 𝑔(𝑥) = ∫  
ℝ+

𝑑 𝑓(𝑦)𝒯−𝑥(𝑔)(𝑦)𝑑𝜇𝛼(𝑦). 
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1.2. The Weinstein wavelet transform 

       A Weinstein wavelet on ℝ+
𝑑  is a measurable function ℎ on ℝ+

𝑑  satisfying, for almost all 𝜉 ∈ ℝ+
𝑑  

(4) 0 < 𝐶ℎ = ∫  
∞

0
  |ℱ𝑊(ℎ)(𝑡)|2

𝑑𝑡

𝑡
< ∞.  

Let 𝑏 > 0, and let ℎ ∈ 𝐿𝛼
2 (ℝ+

𝑑), we define the dilation of ℎ as follows: 

∀𝑦 ∈ ℝ+
𝑑 , ℎ𝑏(𝑦) =

1

𝑏2𝛼+𝑑+1
ℎ (

𝑦

𝑏
). 

It easy to see that ℎ𝑏 ∈ 𝐿𝛼
2 (ℝ+

𝑑) and 

∀𝜉 ∈ ℝ+
𝑑 , ℱ𝑊(ℎ𝑏)(𝜉) = ℱ𝑊(ℎ)(𝑏𝜉)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

(5) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝐶ℎ = ∫  
∞

0
  |ℱ𝑊(ℎ)(𝑏𝜉)|2

𝑑𝑏

𝑏
< ∞. 

We introduce ℎ𝑏,𝑦, 𝑏 > 0, and 𝑦 ∈ 𝑅+
𝑑, 𝑦 ∈ ℝ+

𝑑 , of Weinstein wavelet on ℝ+
𝑑  in in 𝐿𝛼

2 (ℝ+
𝑑), defined by 

(6) ∀𝑥 ∈ ℝ+
𝑑 , ℎ𝑏,𝑦(𝑥) = 𝑏𝛼+

𝑑+1

2 𝒯𝑥ℎ𝑏(−𝑦′, 𝑦𝑑).  

We note that 

∀𝑏 > 0, ∀𝑦 ∈ ℝ+
𝑑 , ‖ℎ𝑏,𝑦‖𝐿𝛼

2 (ℝ+
𝑑)

≤ ‖ℎ‖𝐿𝛼
2 (ℝ+

𝑑) 

Also, we denote by 𝐿𝜔𝛼

𝑝
, 1 ≤ 𝑝 ≤ ∞ the space of measurable functions 𝑓 on ℝ+

𝑑 × [0,∞] = ℝ++
𝑑+1, d𝜔𝛼(𝑥, 𝑏) = d𝜇𝛼(𝑥)

1

𝑏2𝛼+𝑑+2
 d𝑏 such that 

‖𝑓‖𝐿𝜔𝛼
𝑝

(ℝ++
𝑑+1)⁡= (∫  

ℝ++
𝑑+1

  |𝑓(𝑥, 𝑏)|𝑝 d𝜔𝛼(𝑥, 𝑏))

1
𝑝

< ∞,1 ≤ 𝑝 < ∞

‖𝑓‖𝐿𝜔𝛼
∞ (ℝ++

𝑑+1)⁡= ess sup
𝑥,𝑦∈ℝ++

𝑑+1
 |𝑓(𝑥, 𝑏)| < ∞

 

Let ℎ be a Weinstein wavelet on ℝ+
𝑑 ∈ 𝐿𝛼

2 (ℝ+
𝑑). we defined the Weinstein continuous wavelet 

(7) 𝒮𝑊
ℎ (𝑓)(𝑏, 𝑦) = ∫  

ℝ+
𝑑  𝑓(𝑦)ℎ𝑏,𝑦(𝑥)𝑑𝜇𝛼(𝑥), (𝑏, 𝑦) ∈ ℝ++

𝑑+1.  

And 

(8) 𝒮𝑊
ℎ (𝑓)(𝑏, 𝑦) = 𝑏𝛼+

𝑑+1

2 ⟨𝑓, 𝒯𝑥ℎ𝑏⟩𝐿𝛼
2 (ℝ+

𝑑) = 𝑏𝛼+
𝑑+1

2 𝑓 ∗𝑊 ℎ𝑏 .  

Then 

(9) 𝒮𝑊
ℎ (𝑓)(𝑏, 𝑦) = 𝑏𝛼+

𝑑+1

2 ℱ𝑊
−1[ℱ𝑊(𝑓)(𝜉)ℱ𝑊(ℎ)(𝜉𝑏)](𝑦),  

and 

(10) ‖𝒮𝑊
ℎ (𝑓)‖𝐿𝜔𝛼

2 (ℝ++
𝑑+1) ≤ ‖𝑓‖𝐿𝛼

2 (ℝ+
𝑑)‖ℎ‖𝐿𝛼

2 (ℝ+
𝑑).  

Theorem 1.1. (Plancherel's formula for 𝒮𝑊
ℎ  )Let ℎ be a Weinstein wavelet. For all 𝑓 ∈ 𝐿𝛼

2 (ℝ+
𝑑) 

(11) ∫  
ℝ+

𝑑   |𝑓(𝑥)|2𝑑𝜇𝛼(𝑥) = 𝒞ℎ
−1 ∫  

ℝ++
𝑑+1   |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑦)|2𝑑𝜔𝛼(𝑏, 𝑦).  

Corollary 1.1. (Parseval's formula for 𝒮𝑊
ℎ  ) Let ℎ be a Weinstein wavelet. For all 𝑓1, 𝑓2 ∈ 𝐿𝛼

2 (ℝ+
𝑑) 

(12) ∫  
ℝ+

𝑑  𝑓1(𝑥)𝑓2(𝑥)𝑑𝜇𝛼(𝑥) = 𝒞ℎ
−1 ∫  

ℝ++
𝑑+1  𝒮𝑊

ℎ (𝑓1)(𝑏, 𝑦)𝒮𝑊
ℎ (𝑓2)(𝑏, 𝑦)𝑑𝜔𝛼(𝑏, 𝑦).  

Proposition 1.1. for all 𝑠 ≥ 0 and 𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑) we have 

(13) ∫  
ℝ+

𝑑   |𝜉|𝑠|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜇𝛼(𝜉) = Cℎ
−1 ∫  

ℝ++
𝑑+1   |𝜉|𝑠|𝒮𝑊

ℎ (𝑓)(𝜉)|2𝑑𝜔𝛼(𝑏, 𝑦).  

Proof. By (5) and (9) we can easy proof it. 

2. New results for the Weinstein wavelet transform 

      In this section, we will analogue of Heisenberg-Type Uncertainty Principle for the Weinstein Wavelet Transform, Pitt's Inequality for the Weinstein 

Wavelet Transform, the Benkner-Type uncertainty principle for the Weintein wavelet transform and the logarithmic Sobolev inequalities for the 

Weinstein  

wavelet transform our proof is inspired from [14], whose proved some results for deformed wavelet transform and related uncertainty principle. 

2.1. Heisenberg-type uncertainty principle for the Weinstein wavelet transform 

      Extension to our studies in [5] and there are many studies the Heisenberg uncertainty principle inequality for wavelet transforms [[18], [14]]. In this 

section, we introduce the uncertainty inequality for the Weinstein wavelet transform. Firstly from our study [Corollary 3.5, [5]], we present the 

following theorem. 
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Theorem 2.1. Let 𝑠, 𝑡 > 1. Then, for all 𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑), we have 

(14) ‖|𝑥|𝑠𝒮𝑊
ℎ (𝑓)(𝑏, 𝑥)‖

𝐿𝜔𝛼
2 ℝ++

𝑑+1

𝑡

𝑠+𝑡 ‖|𝜉|𝑡ℱ𝑊(𝑓)(𝜉)‖
𝐿𝛼
2 ℝ+

𝑑

𝑠

𝑠+𝑡 ≥ 𝐶𝛼,𝑑(𝑠, 𝑡)𝒞
ℎ

𝑡

2(𝑠+𝑡)‖𝑓‖𝐿𝛼
2 (ℝ+

𝑑)⁡,⁡⁡⁡⁡⁡⁡⁡  

where 𝐶𝛼,𝑑(𝑠, 𝑡) = (𝛼 +
𝑑+1

2
)

𝑡𝑠

𝑠+𝑡
. 

Proof. From [(3.10),[5]], implies that for all 𝑏 > 0 

(∫  
ℝ+

𝑑
  |𝜉|2𝑡|ℱ𝑊[𝒮𝑊

ℎ (𝑓)(𝑏, . )](𝜉)|2𝑑𝜇𝛼(𝜉))

𝑠
𝑡+𝑠

(∫  
ℝ+

𝑑
  |𝑥|2𝑠|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥))

𝑡
𝑡+𝑠

≥ (𝐶𝛼,𝑑(𝑠, 𝑡))
2
∫  
ℝ+

𝑑
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥).

 

Integrating both sides with respect to the measure 
𝑑𝑏

𝑏2𝛼+𝑑+2
, we obtain, by Hölder's inequality and Plancherel's formula, 

∫  
∞

0

 (∫  
ℝ+

𝑑
  |𝜉|2𝑡|ℱ𝑊[𝒮𝑊

ℎ (𝑓)(𝑏, . )](𝜉)|2𝑑𝜇𝛼(𝜉))

𝑠
𝑡+𝑠

(∫  
ℝ+

𝑑
  |𝑥|2𝑠|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥))

𝑡
𝑡+𝑠 𝑑𝑏

𝑏2𝛼+𝑑+2

≥ (𝐶𝛼,𝑑(𝑠, 𝑡))
2
∫  

∞

0

 ∫  
ℝ+

𝑑
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥)
𝑑𝑏

𝑏2𝛼+𝑑+2
.

 

Thus, form (13), we deduce 

𝒞
ℎ

𝑠
𝑡+𝑠 (∫  

ℝ+
𝑑
  |𝜉|2𝑡|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜔𝛼(𝑏, 𝜉))

𝑠
𝑡+𝑠

(∫  
ℝ++

𝑑+1
  |𝑥|2𝑠|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥))

𝑡
𝑡+𝑠

⁡≥ (𝐶𝛼,𝑑(𝑠, 𝑡))
2
∫  
ℝ++

𝑑+1
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑥)

⁡≥ (𝐶𝛼,𝑑(𝑠, 𝑡))
2
𝒞ℎ ∫  

ℝ+
𝑑
  |𝑓(𝑥)|2𝑑𝜇𝛼(𝑥)

⁡≥ (𝐶𝛼,𝑑(𝑠, 𝑡))
2
𝒞ℎ‖𝑓(𝑥)‖

ℝ+
𝑑

2 .

 

2.1. Pitt's inequality for the Weinstein wavelet transform 

       The Pitt's inequality for the Weinstein transform is studied in [1], for all ∈  S(ℝ+
𝑑), (the Schwartz space of rapidly decreasing functions on ℝ+

𝑑 , even 

with respect to the last variable) and 0 ≤ 𝑠 < 𝛼 +
𝑑+1

2
 

(15) ‖|𝜉|−𝑠ℱ𝑊(𝑓)(𝜉)‖𝐿𝛼
2 (ℝ+

𝑑) ≤ 𝐶(𝛼, 𝑠, 𝑑)‖|𝑥|𝑠𝑓‖𝐿𝛼
2 (ℝ+

𝑑),  

where 

𝐶(𝛼, 𝑠, 𝑑) = 2−𝑠

Γ(
𝛼 +

𝑑 + 1
2

− 𝑠

2 )

Γ(
𝛼 +

𝑑 + 1
2

+ 𝑠

2 )

. 

The main aim of this section is to formulate an analogue of Pitt's inequality (15) for the Weinstein wavelet transform. 

 

Theorem 2.2. For 0 ≤ 𝑠 < 𝛼 +
𝑑+1

2
 and ∈  S(ℝ+

𝑑), the Pitt's-type inequality for the wavelet transform is given by 

(16) ‖|𝜉|𝑠ℱ𝑊(𝑓)‖𝐿𝛼
2 (ℝ+

𝑑) ≤ 𝒞ℎ
−1𝐶(𝛼, 𝑠, 𝑑)‖|𝑥|𝑠𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)‖𝐿𝛼
2 (ℝ++

𝑑+1).  

Proof.  From (15), replace 𝑓 with 𝒮𝑊
ℎ (𝑓) and for 𝑏 > 0, we have 

∫  
ℝ+

𝑑
|𝜉|𝑠ℱ𝑊 [𝒮𝑊

ℎ (𝑓)((𝑏, . )](𝜉)d𝜇𝛼(𝑥) ≤ 𝐶(𝛼, 𝑠, 𝑑)∫  
ℝ++

𝑑+1
  |𝑥|𝑠𝒮𝑊

ℎ (𝑓)((𝑏, 𝑥)𝑑𝜔𝛼(𝑥). 

By integrating the both sides with respect to the measure 
𝑑𝑏

𝑏2𝛼+𝑑+2
, and by Fubini's theorem, we have 

∫  
ℝ+

𝑑
 ∫  

∞

0

  |𝜉|2𝑠 ∣ ℱ𝑊[𝒮𝑊
ℎ (𝑓)((𝑏, . )]|2

𝑑𝑏

𝑏2𝛼+𝑑+2
 d𝜇𝛼(𝜉)

⁡≤ 𝐶(𝛼, 𝑠, 𝑑)∫  
ℝ+

𝑑
 ∫  

∞

0

  |𝑥|2𝑠 |⁡𝒮𝑊
ℎ (𝑓) ((𝑏, 𝑥) |⁡

𝑑𝑏

𝑏2𝛼+𝑑+2
𝑑𝜇𝛼(𝑥)

. 

Using (9), the last inequality has introduced as follows: 
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∫  
ℝ+

𝑑
 ∫  

∞

0

  |𝜉|2𝑠|ℱ𝑊(ℎ𝑏)(𝜉)|
2|ℱ𝑊(𝑓)(𝜉)|2

𝑑𝑏

𝑏2𝛼+𝑑+2
 d𝜇𝛼(𝜉)

⁡≤ 𝐶(𝛼, 𝑠, 𝑑)∫  
ℝ++

𝑑+1
  |𝑥|2𝑠 |⁡𝒮𝑊

ℎ (𝑓) ((𝑏, 𝑥)|2
𝑑𝑏

𝑏2𝛼+𝑑+2
𝑑𝜔𝛼(𝑥).

 

Thus 

∫  
ℝ+

𝑑
  |𝜉|2𝑠 (∫  

∞

0

  |ℱ𝑊(ℎ𝑏)(𝜉)|
2
𝑑𝑏

𝑏
)|ℱ𝑊(𝑓)(𝜉)|2 d𝜇𝛼(𝜉)

⁡≤ 𝐶(𝛼, 𝑠, 𝑑)∫  
ℝ+

𝑑
 ∫  

∞

0

  |𝑥|2𝑠 |⁡𝒮𝑊
ℎ (𝑓) ((𝑏, 𝑥)|2

𝑑𝑏

𝑏2𝛼+𝑑+2
𝑑𝜔𝛼(𝑥).

 

 

From (5), we obtain 

𝒞ℎ ∫  
ℝ+

𝑑
|𝜉|2𝑠|ℱ𝑊(𝑓)(𝜉)|2 d𝜇𝛼(𝜉) ≤ 𝐶(𝛼, 𝑠, 𝑑)∫  

ℝ++
𝑑+1

|𝑥|2𝑠 |⁡𝒮𝑊
ℎ (𝑓) ((𝑏, 𝑥)|2

𝑑𝑏

𝑏2𝛼+𝑑+2
𝑑𝜔𝛼(𝑥). 

This completes the proof. 

2.3. Benkner-Type uncertainty principle for the Weinstein wavelet transform 

       In this section study the Benkner-Type uncertainty principle for the Weinstein wavelet transform as the following theorem. 

Theorem 2.3.  Let ∈  S(ℝ+
𝑑), the following logarithmic uncertainty principle inequality for the Weinstein wavelet transform holds 

∫  
ℝ++

𝑑+1
  ln(|𝑥|) |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥) + 𝒞ℎ ∫  
ℝ+

𝑑
 ln⁡(|𝜉|)|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜇𝛼(𝜉)

 

(17) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ (
Γ′(

2𝛼+𝑑+1

4
)

Γ(
2𝛼+𝑑+1

4
)
+ ln⁡(2))𝒞ℎ‖𝑓‖

𝐿𝛼
2 (ℝ+

𝑑)⁡⁡⁡
2  

 

Proof.  From [Theorem4.5,[1]], we observe 

∫  
ℝ+

𝑑
ln⁡(|𝑥|)|𝑓(𝑥)|2𝑑𝜇𝛼(𝑥) + ∫  

ℝ+
𝑑
ln(|𝜉|) |ℱ𝑊(𝑓)(𝜉)|2𝑑𝜇𝛼(𝜉)⁡⁡⁡⁡⁡⁡⁡ 

≥ (
Γ′ (

2𝛼 + 𝑑 + 1
4

)

Γ (
2𝛼 + 𝑑 + 1

4
)

+ ln(2))‖𝑓‖
𝐿𝛼
2 (ℝ+

𝑑)
2 . 

Here we replace 𝑓 by 𝒮𝑊
ℎ (𝑏,⁡.),𝑤𝑒𝑔𝑒𝑡 

∫  
ℝ+

𝑑
 ln⁡(|𝑥|)|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥) + ∫  
ℝ+

𝑑
 ln⁡(|𝜉|)|ℱ𝑊[𝒮𝑊

ℎ (𝑓)(𝑏, . )](𝜉)|2𝑑𝜇𝛼(𝜉)

⁡≥ (
Γ′ (

2𝛼 + 𝑑 + 1
4

)

Γ (
2𝛼 + 𝑑 + 1

4
)

+ ln⁡(2))∫  
ℝ+

𝑑
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥)

 

Integrating the last inequality, the both sides with respect to the measure  
𝑑𝑏

𝑏2𝛼+𝑑+2
, and by Fubini's theorem, we have 

∫  
ℝ++

𝑑+1
 ln⁡(|𝑥|)|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥)⁡+∫  
ℝ++

𝑑+1
 ln⁡(|𝜉|)|ℱ𝑊[𝒮𝑊

ℎ (𝑓)(𝑏, . )](𝜉)|2𝑑𝜔𝛼(𝑏, 𝜉)

⁡≥ (
Γ′ (

2𝛼 + 𝑑 + 1
4

)

Γ (
2𝛼 + 𝑑 + 1

4
)

+ ln⁡(2))∫  
ℝ++

𝑑+1
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜇𝛼(𝑥)

 

Using (9), and Plancherel's  formula, we obtain 

∫  
ℝ++

𝑑+1
 ln⁡(|𝑥|)|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥) + ∫  
ℝ++

𝑑+1
 ln⁡(|𝜉|)|ℱ𝑊(ℎ)(𝑏, 𝜉)|2|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜔𝛼(𝑏, 𝜉)

⁡≥ (
Γ′ (

2𝛼 + 𝑑 + 1
4

)

Γ (
2𝛼 + 𝑑 + 1

4
)

+ ln⁡(2))∫  
ℝ++

𝑑+1
  |ℱ𝑊(ℎ)(𝑏, 𝜉)|2|ℱ𝑊(𝑓)(𝜉)|2𝑑𝜔𝛼(𝑏, 𝑥).

 

Consequently 

∫  
ℝ++

𝑑+1
ln(|𝑥|) |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2𝑑𝜔𝛼(𝑏, 𝑥) + 𝒞ℎ ∫  
ℝ+

𝑑
ln(|𝜉|) |ℱ𝑊(𝑓)(𝜉)|2𝑑𝜇𝛼(𝜉). 

Which proves the desired result. 
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α   

   

  

 

 

  

 

 

2.4. Logarithmic Sobolev inequalities for the Weinstein wavelet transform 

Definition. Let N s ∈ ℝ+
d ,⁡ 1 ≤ p < ∞ and T ∈ S'(ℝ+

d   ) be a distribution we define: 

(18) Hα
p,s(ℝ+

d  ) = { T ∈ S(ℝ+
d  ) : (1⁡ +⁡|ξ|

2
)

ps

2

 
 ℱW (T ) ∈ Lα

p
(ℝ+

d)}. 

Means that for s > 0, T ∈ Hα
p,s(ℝ+

d  ) and ℱW (T ) is given by a function in Lα
p

(ℝ+
d),  the norm on Hα

p,s is defined by 

‖T‖Hα
p,s = ‖(1⁡ +⁡|ξ|

2
)
ps
2 ‖

⁡Lα
p

(ℝ+
d)

 

In case p = 2, for 𝑇⁡ ∈ ⁡𝐻𝛼
𝑝,𝑠(ℝ+

𝑑 ⁡), it be can seen that T is necessary given by a function f ∈  L2 (ℝ+
d   ) the space Hα

p,s(ℝ+
d  ) can be 

defined as 

(19)                                       H𝛼
2,𝑠(ℝ+

𝑑) = {𝑓 ∈ 𝐿𝛼
2 (ℝ+

𝑑): |𝜉|𝑠ℱ𝑊(𝑓) ∈ 𝐿𝛼
2 (ℝ+

𝑑)}. 

          In the following, we give a Sobolev embedding theorem. 

Theorem 2.4 Let s⁡ >
⁡2α+d+1

2q
, 1 < p ≤ 2 and for all f⁡ ∈ ⁡Hα

p,s(ℝ+
d ) there exists a positive constant ε(α, d, s, h, p), such that 

(20) ‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ ε(α, d, s, h, p, q)(‖f‖2p

Lα
2p

(ℝ+
d) + ‖|ξ|sℱw(f)‖

Lα
p

(ℝ+
d)

2p
⁡

Proof. From Plancherel’s formula, we obtain 

‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ 𝒞ℎ ∫ |ℱ𝑊(𝑓)(𝜉)|2(1⁡ +⁡|ξ|

2
)s(1⁡ +⁡|ξ|

2
)−s

ℝ+
d

⁡𝑑𝜇𝛼(𝜉) 

Using Hölder  inequality, we get 

‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ (∫ |ℱ𝑊(𝑓)(𝜉)|2p(1⁡ +⁡|ξ|

2
)sp𝑑𝜇𝛼(𝜉))

1
p (∫ (1⁡ +⁡|ξ|

2
)−sq𝑑𝜇𝛼(𝜉)

ℝ+
d

)

1/q

ℝ+
d

 

 

By (1), we have 

∫ (1⁡ +⁡|ξ|
2
)−sq𝑑𝜇𝛼(𝜉)

ℝ+
d

=

Γ(𝑠𝑞 − (𝛼 +
𝑑 + 1

2
))Γ (𝛼 +

𝑑 + 1
2

)

2𝛼+
d+1
2 Γ (𝛼 +

𝑑 + 1
2

) Γ(𝑠𝑞)
. 

Using the fact that (a + b)s ≤ 2s(as + bs), we get 

‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ 𝒞ℎ

p [
Γ(𝑠𝑞−(𝛼+

𝑑+1

2
))Γ(𝛼+

𝑑+1

2
)

2
𝛼+

d+1
2 Γ(𝛼+

𝑑+1

2
)Γ(𝑠𝑞)

]

𝑝

𝑞

2𝑠𝑝 (‖f‖2p
Lα

2p
(ℝ+

d) + ‖|ξ|sℱw(f)‖
Lα

p
(ℝ+

d)

2p
⁡ ).

Thus 

ε(α, d, s, h, p, q) = 𝒞ℎ
p

[
 
 
 
 Γ (𝑠𝑞 − (𝛼 +

𝑑 + 1
2

))Γ (𝛼 +
𝑑 + 1

2
)

2𝛼+
d+1
2 Γ(𝛼 +

𝑑 + 1
2

) Γ(𝑠𝑞)
]
 
 
 
 

𝑝
𝑞

2𝑠𝑝. 

 

Corollary 2.1.  Let s⁡ >
⁡2α+d+1

2q
, there exists a positive constant ε(α, d, s, h, p), such that 

(21) ‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ ε(α, d, s, h, p, q)(‖f‖2p

Lα
2p

(ℝ+
d) + ‖|ξ|sℱw(f)‖

Lα
p

(ℝ+
d)

2p
).

Proof. Using the dilated ⁡𝐷𝜆(𝑓⁡)(𝑥) ⁡=⁡𝜆𝛼+
𝑑+1

2 𝑓(𝜆𝑥) to (20) , we get 

‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ ε(α, d, s, h, p, q)(𝜆2α+d+1‖f‖2p

Lα
2p

(ℝ+
d) + 𝜆2sp−(2α+d+1)‖|ξ|sℱw(f)‖

Lα
p

(ℝ+
d)

2p
⁡ )

By minimizing the right-hand side last inequality, we obtain 
  

 

‖Sw
h (f)‖

LWα
2 (ℝ+

d)

2
≤ 𝜀(𝛼, 𝑑, 𝑠, ℎ, 𝑝, 𝑞)

1
2

(

 
 
 sp(ps − (𝛼 +

𝑑 + 1
2

))

2α+d+1−2sp
2sp

(𝛼 +
𝑑 + 1

2
)

2α+d+1
2sp

)

 
 
 

 

 

                                                                                         × (‖f‖⁡
Lα

2p
(ℝ+

d)

p−
2α+d+1

2s ⁡⁡‖|ξ|sℱw(f)‖
Lα

p
(ℝ+

d)

2α+d+1

2s ⁡ )

This is the desired result. 
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Now, to describe next our result we need to recall the Theorem 5.6 in [2], there exists a positive constant C(α, d) such that for al  f 

∈Hα
2,s(ℝ+

d  )  

∫  
ℝ+

𝑑
 |f(𝑥)|2n(

f(x)

‖f‖Lα
2 (ℝ+

d)

)𝑑𝜇𝛼(𝑥) ≤ ∫  
ℝ+

𝑑
  |ℱ𝑊(ℎ)(𝜉)|2 ln(|𝜉|) 𝑑𝜇𝛼(𝜉)

 

(22) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝐶(𝛼, 𝑑)‖f‖⁡
Lα

2 (ℝ+
d)

2 . 

Now, with the same constant C(α, d), we show the following theorem 

 

Theorem 2.5. Let h ∈ 𝐿𝛼
2 (ℝ+

𝑑) be a Weinstein wavelet and for all f ∈ Hα
2,s(ℝ+

d  ), there exist  a positive constant C(α, d), Such that     

∫  
ℝ+

𝑑
  |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2ln (
|𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|

‖𝒮𝑊
ℎ (𝑓)(𝑏, . )‖Lα

2 (ℝ+
d)

)𝑑𝑤𝛼(𝑥) 
 

(23) 
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≤ (𝛼 +

𝑑+1

2
)𝒞ℎ ∫  

ℝ+
𝑑  ln(|𝜉|) |ℱ𝑊(f)(𝜉)|2𝑑𝜇𝛼(𝜉) − 𝐶(𝛼, 𝑑)𝒞ℎ ‖f‖⁡

Lα
2 (ℝ+

d)
2 .

 

Proof. Replacing 𝒮𝑊
ℎ (𝑓)⁡⁡(𝑏, 𝑥)and integrate with respect to the measure  

𝑑𝑏

𝑏2𝛼+𝑑+2
⁡⁡  both sides in (22), we get 

 

∫  
∞

0

 ∫  
ℝ+

𝑑

|𝒮𝑊
ℎ (𝑓)(𝑏, 𝑥)|2ln(

|𝒮𝑊
ℎ (𝑓)(𝑏, 𝑥)|

‖𝒮𝑊
ℎ (𝑓)(𝑏, . )‖Lα

2 (ℝ+
d)

)𝑑𝜇𝛼(𝑥) 
𝑑𝑏

𝑏2𝛼+𝑑+2 

≤ (𝛼 +
𝑑 + 1

2
)⁡
∫  

∞

0

 ∫  
ℝ+

𝑑

|ℱ𝑊(𝒮𝑊
ℎ (𝑓)(𝑏, . ))(𝜉)|2ln(|ξ|)𝑑𝜇𝛼(𝜉) 

𝑑𝑏

𝑏2𝛼+𝑑+2
− 𝐶(𝛼, 𝑑)∫ ‖𝒮𝑊

ℎ (𝑓)(𝑏, . )‖
Lα

2 (ℝ+
d)

2 . 
∞

0

Now, by Fubini’s theorem and Plancherel’s formula, we get the required result. 

Finally, we give another version of logarithmic uncertainty for the Weinstein wavelet transform. 

 

 

Theorem 2.6.  For all f ∈ 𝐿𝛼
2 (ℝ+

𝑑), there exists a positive constant such that 

∫  
ℝ++

𝑑+1
 |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2ln⁡(1 + |𝑥|2)𝑑𝜔𝛼(𝑏, 𝑥) + 𝒞ℎ ∫  
ℝ+

𝑑
  |ℱ𝑊(𝑓)(𝜉)|2ln⁡(1 + |𝑥|2)𝑑𝜇𝛼(𝜉)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 

(24) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ 𝐶(𝛼, 𝑑)𝒞ℎ‖f‖⁡Lα
2 (ℝ+

d)
2 . 

Proof. In the same manner. Replacing f  with  𝒮𝑊
ℎ (𝑓)⁡and by integrating both sides to inequality of [Theorem 5.8, [2]], we obtain

∫  
ℝ++

𝑑+1
 |𝒮𝑊

ℎ (𝑓)(𝑏, 𝑥)|2ln⁡(1 + |𝑥|2)𝑑𝜔𝛼(𝑏, 𝑥) + ∫  
ℝ++

𝑑+1
|ℱ𝑊[𝒮𝑊

ℎ (𝑓)(𝑏, . )](𝜉)|2ln⁡(1 + |𝑥|2)𝑑𝜔𝛼(𝑏, 𝜉)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ 𝐶(𝛼, 𝑑)‖𝒮𝑊
ℎ (𝑓)(𝑏, . )‖

Lα
2 (ℝ+

d)
2 . 

Applying Proposition 2.3 Plancherel’s formula, we obtain 

(25)   ∫  
ℝ++

𝑑+1  |𝒮𝑊
ℎ (𝑓)(𝑏, 𝑥)|2ln⁡(1 + |𝑥|2)𝑑𝜔𝛼(𝑏, 𝑥) + 𝒞ℎ ∫  

ℝ+
𝑑   |ℱ𝑊(𝑓)(𝜉)|2ln⁡(1 + |𝑥|2)𝑑𝜇𝛼(𝜉)

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ 𝐶(𝛼, 𝑑)𝒞ℎ‖f‖⁡Lα
2 (ℝ+

d)
2 . 
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