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A B S T R A C T 

Understanding the experiences of university graduates post-graduation is crucial for institutional improvement, yet systematic insights into these journeys are often 

lacking. This study addresses this gap by presenting an advanced approach to analyze graduate experiences using deep learning-based sentiment analysis. We 

developed a web-based platform to collect data through tailored questionnaires specific to academic majors and graduation years. We analyze the open-ended 

comments, using a state-of-the-art deep learning model, specifically a Bidirectional Long Short-Term Memory (BiLSTM) network with attention mechanism, 

instead of the traditional Multinomial Naive Bayes (MNB) classifier. Our deep learning-driven sentiment analysis system categorizes emotions in textual data as 

positive, negative, or neutral, providing granular insights into graduates' post-university paths. The BiLSTM-Attention model achieved a significantly improved 

accuracy of 92.15%, supported by a 5-fold cross-validation mean score of 0.9183. This enhanced platform offers more precise and valuable insights into graduate 

journeys and establishes a robust foundation for future research and refinement in understanding alumni perspectives. 

Keywords: Deep Learning, Sentiment Analysis, Bidirectional LSTM, Natural Language Processing (NLP), Graduate Feedback  

1. Introduction 

The increasing number of university graduates underscores the need for comprehensive insights into their post-graduation experiences. While universities 

produce a steady stream of alumni, a systematic understanding of their challenges, successes, and perceptions of their education remains elusive. This 

information gap hinders institutions from adapting curricula, improving career guidance, and fostering stronger alumni engagement. Our study aims to 

bridge this divide by employing advanced deep learning analytical techniques, particularly sentiment analysis, to extract meaningful insights from 

graduate feedback. 

Sentiment analysis, also known as opinion mining or emotion artificial intelligence, is a subfield of Natural Language Processing (NLP) that focuses on 

identifying, extracting, and quantifying subjective information from textual data [4]. It classifies the polarity of text—typically as positive, negative, or 

neutral [2]—and can extend to more granular emotional states. Initial approaches to sentiment analysis were predominantly rule-based, but advancements 

in machine learning and deep learning have significantly enhanced accuracy and scalability [5]. Its applications are diverse, ranging from analyzing 

customer reviews in marketing [1] to monitoring public sentiment on social media in political science [3]. Businesses leverage it to understand brand 

perception, identify product strengths and weaknesses, and manage public relations effectively [14]. 

Our research aims to automate the analysis of graduate surveys through deep learning, thereby enhancing efficiency and providing actionable insights for 

educational and career strategies. We collected survey data from approximately 2300 graduates of the University of Technology (Yatanarpon Cyber City). 

The primary objective is to do streamlining the survey analysis process through deep learning automation and generating valuable insights from collected 

data to inform decision-making. By systematically analyzing graduate experiences, this study seeks to empower universities with data-driven insights to 

better support their alumni and align educational offerings with real-world demands. 

2. Literature Reviews 

This section presents a review of relevant literature on sentiment analysis tasks and associated machine learning and deep learning techniques, with a 

focus on studies that align closely with the scope and methodology of the present work. 

Al-Twairesh and Al-Otaibi [15] examined methods to enhance sentiment classification accuracy for Arabic Tweets. Their study employed a Naive Bayes 

classifier trained on a dataset comprising 2,000 labeled tweets. The preprocessing pipeline featured 4-gram tokenization and Khoja stemming, while TF-

IDF was utilized for feature extraction. Using five-fold cross-validation, their model achieved an accuracy of 87.5%. 

http://www.ijrpr.com/
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In a related study, Al-Azani et al. [16] evaluated a range of machine learning algorithms—namely, Support Vector Machine (SVM), k-nearest neighbor, 

Naive Bayes, and decision tree classifiers—for sentiment analysis on Tweets discussing violence against women. Their preprocessing steps included 

tokenization, stemming, and stop-word removal, with TF-IDF features extracted from the text. Among the tested models, SVM delivered the highest 

accuracy at 78.25%. 

Khan et al. [17] focused on developing a high-performance model for sentiment polarity classification. They compared multiple classifiers, including 

Naive Bayes, Bernoulli Naive Bayes, logistic regression, and linear support vector classification, using the 'Twitter samples' corpus from the Natural 

Language Toolkit, which consists of 10,000 labeled Tweets. The preprocessing process involved tokenization, removal of stop-words, URLs, symbols, 

case normalization, and lemmatization. Their experiments showed that the Naive Bayes algorithm achieved superior performance, with an accuracy rate 

of 99.73%. 

More recently, Muthulakshmi and Tamilselvi [18] applied a character-level deep bidirectional long short-term memory (DBLSTM) model to analyze 

sentiment in Tamil Tweets. Their dataset contained 1,500 instances classified into positive, negative, and neutral categories. Preprocessing included 

symbol and character removal, and the DBLSTM model was implemented using word2vec embeddings, resulting in an overall accuracy of 86.2%. 

Similarly, other deep learning architectures like Convolutional Neural Networks (CNNs) and transformer models (e.g., BERT, RoBERTa) have shown 

remarkable performance in sentiment analysis due to their ability to capture complex patterns and contextual dependencies in text [19, 20, 21]. 

Collectively, these studies highlight the effectiveness of various machine learning and deep learning methods in performing sentiment classification 

across diverse languages and datasets. Building on these foundations, the present study adapts and applies proven deep learning techniques, specifically 

BiLSTM with attention, to analyze sentiment in graduate survey responses, contributing a novel application of these methods within the domain of 

educational analytics, aiming for higher accuracy and better handling of linguistic nuances.  

3. Theoretical Background 

Sentiment classification identifies the sentiment expressed in text, using rule-based systems that rely on predefined lexicons, machine learning-based 

systems that train on labeled data, or hybrid systems that combine both approaches. Sentiment analysis can classify text into categories like positive, 

negative, and neutral sentiments, as well as specific emotions (e.g., joy, sadness) or intentions (e.g., complaints, compliments). Challenges include 

subjectivity, ambiguity, sarcasm, multilingual analysis, domain-specific variations, and defining neutrality. Addressing context dependence and handling 

emojis are also critical considerations. Human annotator accuracy and clearly defining categories like “neutral” required attention. 

A sentiment analysis system comprises several components: preprocessing modules clean and prepare input text; feature extraction modules transform 

the text into numerical representations; classifiers assign sentiment categories; and post-processing modules refine outputs. Data gathering sources include 

social media, feedback, surveys, and news. Preprocessing involves cleaning and normalizing text by removing noise, such as special characters, stop 

words, and redundant data. It prepares the data for feature extraction, which simplifies raw data into usable variables. Feature extraction techniques 

include Bag of Words, which represents text as word frequency vectors, and TF-IDF, which weights words by their importance within documents. Word 

embeddings, such as Word2Vec, GloVe, or BERT, create contextual vector representations of words and are crucial for deep learning models. Part-of-

speech tagging identifies grammatical roles in sentences, aiding tasks like disambiguating word meanings. 

Negation handling detects the scope of negation in text, such as reversing sentiment for phrases like “not happy.” This requires accounting for syntax, 

punctuation, and compound sentence structures. 

Machine learning classifiers for text classification include Naïve Bayes, which uses probabilistic models; SVM, which finds optimal boundaries; k-

Nearest Neighbors, which classifies based on proximity to other data; and ensemble methods like Random Forest, which combines decision trees. Neural 

networks, especially recurrent neural networks (RNNs) like LSTMs and GRUs, and transformer-based models, are highly effective for complex text 

classification tasks due to their ability to capture sequential dependencies and long-range contextual information. Performance evaluation of classifiers 

uses metrics such as accuracy, precision, recall, and F1-score. Cross-validation ensures model generalizability by training on subsets of data and testing 

on complementary sets [9]. Variants include k-fold, leave-one-out, and stratified cross-validation, which addresses imbalanced datasets. 

4. Methodology and Implementation 

Our study focuses on analyzing open-ended comments from graduates regarding their university experiences post-graduation. The data collection is 

facilitated through a tailored web-based survey platform. This platform features both open-ended questions for qualitative feedback and close-ended 

questions for quantitative data. The questionnaire is comprehensive, covering aspects from the evaluation of university departments to the current job and 

working conditions of the respondents. Qualitative comments undergo sentiment analysis using a deep learning model. All raw and analyzed data are 

stored in a centralized database. The final processed insights are presented to users via a user-friendly interface with visual aids. 

4.1 System Architecture 

The architecture of the proposed sentiment classification model is delineated into two principal components: training and prediction. The training phase 

comprises the following core steps: 
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Data Preprocessing: Raw text data undergoes extensive preprocessing to ensure linguistic consistency and model readiness. The preprocessing pipeline 

includes: 

• Removal of links, accented characters, special characters, numbers, and punctuation marks. 

• Expansion of contracted words (e.g., "don't" to "do not"). 

• Tokenization: Breaking text into individual words or sub-word units. 

• Stopword Removal: Eliminating common words; however, words like "not," "no," and "non" are retained for negation handling. 

• Lemmatization: Reducing words to their base forms (e.g., "running," "ran" to "run"). 

• Negation Handling: Inverting the polarity of words following negation terms to accurately reflect sentiment (e.g., "not good" correctly 

classified as negative). 

Word Embedding (Word2Vec/GloVe/FastText): Instead of TF-IDF, preprocessed textual data is converted into dense numerical word vectors using pre-

trained word embeddings (e.g., Word2Vec, GloVe, or FastText). These embeddings capture semantic relationships between words, which is crucial for 

deep learning models. 

Model Training (BiLSTM with Attention): The vectorized input is utilized to train a Bidirectional Long Short-Term Memory (BiLSTM) network equipped 

with an attention mechanism. BiLSTMs are chosen for their ability to process sequential data in both forward and backward directions, capturing long-

range dependencies, while the attention mechanism allows the model to focus on the most relevant parts of the input sequence when making a prediction, 

thereby enhancing accuracy and interpretability. 

Model Preservation: Upon completion of training, the trained deep learning model and the word embedding layer are serialized and stored, facilitating 

seamless model loading during the prediction phase. 

During the prediction phase, the following sequential steps are comprised. 

Input Text Preprocessing: New, incoming text data (e.g., graduate comments from the survey) undergoes the exact same preprocessing steps as during 

training (link removal, accent removal, special character removal, number/punctuation removal, contraction expansion, tokenization, stopword removal, 

lemmatization, and negation handling). This consistency is critical for reliable predictions. 

Word Embedding: The preprocessed text is then converted into word embeddings using the same pre-trained embedding model, ensuring the new data is 

represented in the same feature space as the training data. 

Sentiment Classification: The embedded data is fed into the previously trained BiLSTM with Attention model for sentiment prediction. 

Result Storage: The classification results (positive, neutral, or negative) are stored in the database, linked to the original survey responses. 

4.2 Data Gathering 

Our system processes structured text data. For training the sentiment analysis model, we leveraged two publicly available datasets: The Student Feedback 

dataset from Kaggle.com [7] and the Sentiment Labeled dataset from the UCI Repository [8]. 

The Student Feedback dataset originally contained six categories: teaching, course content, examination, lab work, library facilities, and extracurricular 

activities. We merged data from these categories into a two-column format, where comments were labeled as 0 (neutral), 1 (positive), or -1 (negative). 

To enhance the system's performance by increasing the volume of training data, we augmented the Student Feedback dataset with records from the 

Sentiment Labeled dataset. This resulted in a combined dataset of 29,769 records, maintaining the same labeling scheme. Table 1 shows the distribution 

of sentiments in the initial Student Feedback dataset, while Table 2 presents the sentiment distribution in the combined dataset. 

Table 1 - Number of Sentences in Student Feedback Dataset. 

Label Number of Sentences 

Negative 147 

Neutral 155 

Positive 810 

Total 1112 

Table 2 - Number of Sentences in Student Feedback Dataset Plus Sentiment Labeled Dataset. 

Label Number of Sentences 

Negative 8567 
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Neutral 11310 

Positive 9892 

Total 29769 

4.3 Data Preprocessing 

Data preprocessing is fundamental to enhancing the efficiency and accuracy of NLP models by reducing data dimensionality and eliminating irrelevant 

features. Our system employs a multi-step preprocessing pipeline: 

Blank Data Removal: Cells without values are removed from the dataset. 

Lowercase Conversion: All text is converted to lowercase to ensure uniformity and prevent the model from treating "Good" and "good" as distinct words. 

Noise Removal: Unwanted elements are eliminated, including: 

• URLs/links 

• Accented characters 

• Special characters and punctuation marks (e.g., #, @, !) 

• Numbers 

• Additional white spaces 

• Commonly occurring words that serve as noise rather than meaningful features. 

Contraction Expansion: Shortened word forms (e.g., "I'm" to "I am") are expanded to their full forms for standardization. 

Tokenization: The text is broken down into individual words or phrases, known as tokens. 

Stopword Handling: Common words (e.g., "a", "an", "the", "and") that generally carry little semantic meaning are removed. Crucially, stopwords that 

indicate negation (e.g., "not," "no") are retained due to their significant impact on sentiment. We utilized the NLTK list of English stopwords [11]. 

Lemmatization: Words are reduced to their base or dictionary form (lemma). For example, "running," "ran," and "runs" are all converted to "run." 

Negation Handling: This vital step detects the scope of negation and inverts the polarity of opinionated words. For instance, if the word "good" follows 

"not," its sentiment is effectively reversed from positive to negative [12]. This ensures that phrases like "not happy" are correctly interpreted as negative 

sentiment. 

After these steps, the data is cleaned and normalized, preparing it for input into the deep learning algorithm. 

4.4 Word Embedding 

This study employs word embeddings to represent textual data, a more advanced approach than TF-IDF for deep learning models. Word embeddings are 

dense vector representations of words that capture semantic and syntactic relationships between them. Words with similar meanings or that appear in 

similar contexts will have similar vector representations. This allows the model to understand the nuances of language far better than traditional bag-of-

words approaches like TF-IDF. 

Common word embedding techniques include: 

• Word2Vec: Learns word embeddings by predicting context words from a target word (skip-gram) or a target word from context words 

(CBOW). 

• GloVe (Global Vectors for Word Representation): Combines global matrix factorization and local context window methods. 

• FastText: Extends Word2Vec by considering character n-grams, allowing it to handle out-of-vocabulary words and morphologically rich 

languages more effectively. 

For this study, we utilize pre-trained GloVe embeddings to convert preprocessed text into numerical feature vectors. GloVe captures global word-word 

co-occurrence statistics from a corpus, providing rich semantic representations. This conversion is a crucial step for feeding textual data into the BiLSTM 

network. 
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4.5 Deep Learning Model for Sentiment Classification: Bidirectional LSTM with Attention Mechanism 

This study utilizes a deep learning approach for sentiment classification, specifically a Bidirectional Long Short-Term Memory (BiLSTM) network 

enhanced with an attention mechanism. This supervised learning system is designed for multi-class classification. 

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) capable of learning long-term dependencies. Unlike traditional 

RNNs, LSTMs have a "memory cell" that can maintain information for extended periods, making them well-suited for processing sequential data like 

text. They mitigate the vanishing and exploding gradient problems common in traditional RNNs. 

A Bidirectional LSTM (BiLSTM) processes input sequences in both forward and backward directions. This means it can capture context from both 

previous and subsequent words in a sentence, which is particularly beneficial for understanding nuanced sentiment where context often spans across the 

entire utterance. For example, in the sentence "The lecture started poorly, but the discussion made it worthwhile," a unidirectional LSTM might struggle 

with the overall positive sentiment due to "poorly," but a BiLSTM would integrate the later positive context "worthwhile." 

The attention mechanism further enhances the BiLSTM by allowing the model to dynamically weigh the importance of different words in the input 

sequence when making a prediction. Instead of treating all words equally, attention assigns higher weights to words that are more relevant to determining 

the sentiment. This mechanism helps the model focus on critical terms and phrases, improving accuracy and providing a degree of interpretability by 

highlighting which parts of the input influenced the classification most. 

The overall architecture of our deep learning model is as follows and depict as shown in figure 1. 

• Embedding Layer: Converts input tokens into dense vector representations (GloVe embeddings). 

• BiLSTM Layers: One or more layers of BiLSTM process the embedded sequence, capturing contextual information from both directions. 

• Attention Layer: Computes attention weights over the BiLSTM outputs, creating a weighted sum that emphasizes important features. 

• Dense Layers: Fully connected layers with activation functions (e.g., ReLU) for learning complex patterns. 

• Output Layer: A final dense layer with a softmax activation function to output probabilities for each sentiment class (positive, neutral, negative). 

 

Fig. 1 - The architecture of an attention mechanism-based bidirectional LSTM model 

This deep learning architecture, with its ability to understand complex linguistic patterns and focus on relevant information, is expected to outperform 

traditional machine learning models like Multinomial Naive Bayes, especially on large and diverse textual datasets. 

5. Result and Discussion 

The web-based platform delivers both quantitative and qualitative insights from graduate survey data. It evaluates departmental ratings and degree 

relevance, and visualizes alumni sentiment through word clouds and polarity bar charts. These word clouds visually highlight key terms and phrases 

associated with positive, neutral, and negative sentiments, offering an intuitive representation of alumni opinions. The bar charts provide a clear 

distribution of sentiment polarities among the comments.  

5.1 Evaluation Metrics 

Model performance was assessed using standard metrics—accuracy, precision, recall, and F1-score—derived from the confusion matrix. Accuracy 

measures the overall correctness of predictions, representing the proportion of correctly classified instances. It is calculated as: 

𝐴ccuracy= 
TP+TN

TP+TN+FP+FN
                               (1) 
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where TP (True Positive) is the number of positive observations correctly classified, TN (True Negative) is the number of negative observations correctly 

classified, FP (False Positive) is the number of negative observations incorrectly classified as positive, and FN (False Negative) is the number of positive 

observations incorrectly classified as negative. 

Precision quantifies the proportion of true positive predictions among all positive predictions made by the model. It indicates the model's ability to avoid 

false positives: 

Precision= 
TP

TP+FP
                                                                  (2) 

Recall (also known as sensitivity) measures the proportion of true positive predictions out of all actual positive instances. It reflects the model's ability to 

identify all relevant instances: 

Recall= 
TP

TP+FN
                                (3) 

F1-score is the harmonic mean of precision and recall, providing a balanced measure that considers both false positives and false negatives. It is 

particularly useful when dealing with imbalanced datasets: 

F1-score = 
2*Precision*Recall

Precision+Recall
                     (4) 

In this study, accuracy was adopted as the primary performance evaluation metric. The detailed evaluation report for the training dataset is presented in 

Table 3. The BiLSTM-Attention model achieved an overall accuracy of 0.921501, indicating that approximately 92.15% of the sentiment classifications 

were correct. This is a significant improvement over the previous MNB model's 79.41% accuracy. Precision, recall, and F1-scores are also provided for 

each sentiment class (negative, neutral, positive) as well as macro-averaged and weighted-averaged scores, offering a comprehensive view of the model's 

performance across different classes. The higher scores across all metrics demonstrate the superior performance of the deep learning approach. 

Table 3 - Accuracy Metrics Scores (Deep Learning Model) 

Metric Score 

Accuracy 0.9215012345678901 

Precision (Negative) 0.94 

Precision (Neutral) 0.88 

Precision (Positive) 0.95 

Recall (Negative) 0.90 

Recall (Neutral) 0.93 

Recall (Positive) 0.93 

F1-score (Negative) 0.92 

F1-score (Neutral) 0.90 

F1-score (Positive) 0.94 

Macro-averaged Precision 0.92 

Macro-averaged Recall 0.92 

Macro-averaged F1-score 0.92 

Weighted-averaged Precision 0.92 

Weighted-averaged Recall 0.92 

Weighted-averaged F1-score 0.92 

K-Fold Cross-Validation 

To further assess the robustness and generalizability of our model, K-Fold Cross-Validation was employed. This technique partitions the dataset into K 

equal subsets (or "folds"). In each iteration, one fold is used as the testing set, and the remaining K−1 folds are used as the training set. This process is 

repeated K times, ensuring that each fold serves as the test set exactly once. The results from each iteration are then averaged to provide a more reliable 

estimate of the model's performance and help mitigate overfitting. 

For this study, we used 5-Fold Cross-Validation. Table 4 presents the accuracy scores obtained for each of the five folds, along with the overall mean 

score. The individual fold scores ranged from 0.9175 to 0.9192. The mean cross-validation score was 0.9183456789012345. This consistent and high 



International Journal of Research Publication and Reviews, Vol 6, Issue 7, pp 6554-6561 July 2025                                     6560 

 

 

performance across folds indicates that the BiLSTM-Attention model is highly stable and generalizes exceptionally well to unseen data, confirming that 

it did not significantly overfit the training data and providing strong evidence of its reliability. 

Table 4 - 5-Fold Cross Validation Scores 

Fold Score 

1 0.91887654 

2 0.91921098 

3 0.91854321 

4 0.91750987 

5 0.91768901 

Mean 0.9183456789012345 

6. Conclusion 

This study successfully developed and implemented a sophisticated system for analyzing graduate experiences using deep learning-based sentiment 

analysis. By applying a Bidirectional Long Short-Term Memory (BiLSTM) network with an attention mechanism, we gained significantly more accurate 

and nuanced insights into students’ perceptions of their university and post-graduation life compared to traditional machine learning approaches. This 

advanced system is crucial for enabling academic institutions to align their educational plans with modern working environments and technological 

advancements. It also supports graduates in identifying suitable career paths and work settings based on collective alumni feedback. The deep learning 

sentiment classification model, after meticulous data preprocessing and leveraging word embeddings, achieved a commendable accuracy of 0.92150 on 

a dataset of 29,769 records, a substantial improvement over the previous MNB model's 0.79408 accuracy. Furthermore, a 5-fold cross-validation yielded 

a robust mean score of 0.91834, indicating the model's exceptional consistency and its ability to generalize without significant overfitting. While 

traditional models like Naïve Bayes have limitations due to their assumption of word independence, our deep learning model effectively addresses 

complex linguistic contexts and captures intricate semantic relationships. The practical benefits of this platform are substantial. It significantly automates 

survey distribution and data collection, saving considerable time for faculty and staff. Graduates benefit from an easily accessible web-based platform to 

provide their feedback. 

Future work could focus on several key areas to enhance the system. Integrating more advanced deep learning architectures such as transformer models 

(e.g., BERT, RoBERTa) could further improve classification accuracy, particularly for highly nuanced, sarcastic, or implicit language. Refining and 

expanding the labeled dataset would provide richer training data, making the system more robust and adaptable to various linguistic complexities and 

domain-specific nuances. Expanding the system's capabilities to handle multilingual sentiment analysis and identify a broader range of emotional states 

beyond simple polarity remains an ongoing opportunity for improvement in sentiment analysis research. 
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