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ABSTRACT:  

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder that leads to the deterioration of brain function over time. Early and 

accurate diagnosis is essential to initiate timely treatment and slow the progression of the disease. In recent years, researchers have increasingly explored the 

application of machine learning techniques, particularly deep learning, to enhance the automated diagnosis of AD using neuroimaging data. This study presents a 

comparative analysis of five deep learning models—ResNet, ConvNeXt, CaiT, Swin Transformer, and CVT—applied to 2D brain slices extracted from magnetic 

resonance imaging (MRI) scans. These models were trained to extract discriminative features and classify subjects into three categories: Alzheimer's disease, 

mild cognitive impairment (MCI), and normal controls. The experiments utilized data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. 

Among the tested models, ConvNeXt demonstrated superior performance, achieving an average accuracy of 95.74%, precision of 96.71%, recall of 95.74%, and 

an F1 score of 96.14% in the 3-way classification task. These findings indicate that ConvNeXt is a promising model for the reliable identification of AD using 2D 

MRI slice-based analysis. 
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Introduction 

Cognitive decline, memory loss, and other intellectual impairments are symptoms of Alzheimer’s disease (AD), a degenerative brain disease that 

commonly affects individuals of advanced age. Dementia is a term used to represent a variety of symptoms associated with a mental decline sufficiently 

severe to cause daily difficulties. AD is a prominent cause of dementia, but it is still unclear what causes AD exactly. It is reported that in 2019 there 

were 57.4 million dementia sufferers worldwide; by 2050, that number might reach 152.8 million . A considerable amount of research in recent years 

has focused on comprehending the underlying reasons for AD and creating efficient treatments. There is presently no medicine that can completely cure 

AD; instead, it can only temporarily alleviate symptoms. Effective clinical intervention and reducing disease progression depend on early detection . 

Conventional diagnostic techniques for AD can involve a tedious and complex procedure of assessing symptoms, performing cognitive tests, and 

obtaining a medical history. Moreover, these approaches frequently rely on subjective evaluations, such as memory and cognitive tests, whose results 

might be influenced by anxiety, depression, and stress, making them less trustworthy.  The diagnosis and treatment of AD could be dramatically 

impacted by automatic diagnosis. Automatic AD diagnosis can increase diagnostic accuracy by evaluating various data sources using machine learning 

and other artificial intelligence techniques. Effective disease management and therapy depend on early detection, which can also reduce the disease’s 

progression. 

The field of medicine has experienced rapid progress in the realm of artificial intelligence (AI), which led to the successful integration of various AI-

assisted applications, particularly those related to classification , localization , and segmentation . Applying machine learning and other AI techniques 

for automatic AD diagnosis has become progressively more common. Early diagnosis is essential for effective disease management and therapy; 

therefore, the present research was motivated by the need for more precise and practical techniques for classifying individuals with AD. Creating 

algorithms that can interpret medical imaging data, like structural magnetic resonance imaging (MRI), to identify AD is considered a crucial area of 

research within this field. MRI is a noninvasive imaging method that prevents the patient from being exposed to contrast agents or ionizing radiation. 

High-resolution images of the brain are provided by MRI, which possesses the capability to detect subtle alterations in brain structure associated with 

AD. AD can be identified using information on the structural, functional, and metabolic aspects of the brain that can be obtained from MRI. Repeated 

MRI scans make it possible to track an illness’s development and evaluate a treatment’s effectiveness. Further, in order to create models that can 

automatically detect and quantify the alterations in cerebral morphology and cognitive processes associated with AD, researchers are employing various 

machine learning methodologies, such as deep learning techniques, in their investigations. 

http://www.ijrpr.com/
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Compared with 3D models, 2D ones usually have fewer parameters and need less time for learning . In order to train a more generalized model, an 

affine transformation data augmentation technique was implemented in the present study. The primary disadvantage of the 2D slice-level technique was 

that, in contrast to 3D MRI, the slices of one subject were subjected to independent examination using 2D convolutional filters in most cases. As a 

result, among the slices of a subject, spatial information that can be crucial in classification may be lost. The aforementioned issue can be addressed by 

integrating data from several multiple slices. The aim of the present research was to evaluate and compare the precision and effectiveness of models 

based on convolutional neural networks (CNNs), models based on vision transformers (ViTs), and their incor- porated models for the purpose of 

diagnosing AD through the utilization of 2D MRI slices. The present study contains two research questions: How do CNN-based models compare to 

ViT-based models and their hybrid models with regard to accuracy for diagnosing AD adopting 2D MRI slices and what is the influence of varying 

perspectives, such as axial, coronal, and sagittal views, on the diagnosis of AD through the utilization of 2D MRI slices? AD is a prevalent neurological 

disease that impacts a significant number of individuals globally. Timely intervention and treatment are contingent upon precise and prompt diagnosis. 

Through comparative analysis of various deep learning models, the optimal methodology for precise diagnosis of AD via 2D MRI slices can be 

identified. The utilization of ViT-based models has garnered considerable interest in diverse computer vision tasks. However, their implementation in 

the diagnosis of AD through the utilization of 2D MRI slices remains relatively underexplored. The integration of CNN-based models and ViT-based 

models in hybrid models holds promise for enhancing the diagnostic accuracy in AD. The effectiveness of hybrid approaches and optimal 

configurations for future development and deployment can be assessed by comparing their accuracy and efficiency with those of standalone models. 

Through the use of 2D MRI slices, our comparative study seeks to provide important insights into the effectiveness of several deep-learning-based 

models in the diagnosis of AD. The findings of the present study could be a useful resource for researchers, clinicians, and developers seeking to 

identify the optimal strategy for achieving a precise and efficient diagnosis of AD. Ultimately, these insights have the potential to enhance patient care 

and improve health outcomes. 

The novelties of the paper include: the application of a ViT-based model for AD diagnosis, a thorough examination of CNN-based, ViT-based, and 

their hybrid models, and an in-depth evaluation of the axial, coronal, and sagittal views of the MRI scan utilizing 2D MRI slices to diagnose AD. The 

manuscript is organized as follows: Section 1 presents a comprehensive overview of the contextual background pertaining to the diagnosis of AD. 

Section 2 offers a review of the pertinent literature that has been published in recent years. Section 3 includes a thorough examination of the utilization 

of the dataset, the processing of the data, the adoption of networks, and the implementation of experiments. Section 4 outlines the evaluation metrics 

employed in the present study. Section 5 highlights the findings and outcomes of the experiments we conducted. Section 6 outlines the constraints of 

the present study and provides insight into potential avenues for future research. 

Related work 

CNNs have started to be widely used in medical fields, which goes hand in hand with the prominence of deep learning in computer vision. Existing 

CNNs with outstanding success for natural image classification are of benefit in medical diagnosis. In particular, numerous reliable pretrained 2D CNN 

models can be employed in transfer learning, such as VGG , ResNet , DenseNet, and GoogLeNet . In particular, various research has investigated the 

use of deep learning models in the analysis of 2D MRI slices in the identification of AD. In order to diagnose AD using 2D MRI slices, this section 

gives a thorough assessment of recent research on CNN- and ViT-based models. Previous research has shown the effectiveness of CNN-based models 

in analyzing medical images, including MRI scans. Valliani and Soni employed a CNN consisting of a single convolutional layer and two fully 

connected (FC) layers . For each subject, only one axial slice was employed. The authors also adopted transfer learning through pretraining their CNN 

network on ImageNet .  Wen et al. performed a series of experiments on three distinct datasets: ADNI, Australian Imaging Biomarkers and Lifestyle 

Study of Ageing (AIBL) , and Open Access Series of Imaging Studies (OASIS) . They took pretrained ResNet as the backbone, added an FC layer on 

top of it, and achieved an accuracy of 79%. In our research, the sagittal slices were retrieved and replicated into three channels of a fake red, green, and 

blue (RGB) image for each patient. Puente-Castro et al. proposed a ResNet-SVM hybrid model to classify sagittal slices of MRIs from ADNI and 

OASIS datasets . SVM and ResNet were used as the classifier and the feature extractor. The features extracted from ResNet were concatenated with sex 

and age and then fed into the SVM. To create a three-channel image, each slice was replicated three times. Then the network was trained using the 

images generated and it achieved an average accuracy of 86.47% on OASIS and 78.72% on ADNI. Lim et al. examined a custom CNN, VGG, and 

ResNet to perform 3-way classification using pictures of the brain taken from the axial perspective of the MRI image . The highest accuracy in their 

study was 80.66% achieved by VGG. Additionally, following the preprocessing stage, the data were transformed into a series of two-dimensional 

images. This process significantly decreases the size of the dataset from 37 GB to 260 MB. These studies demonstrate the capability of CNN-based 

models in accurately diagnosing AD using 2D MRI slices. ViT-based models have been investigated in recent research as a potential alternative to 

CNN-based models for medical image analysis. Bedel et al. presented a transformer-based model BolT with cross-window attention and regularization 

for fMRI blood–oxygen-level-dependent response analysis . BolT has high efficiency in extracting features that range from local to global, which 

enables effective performance in detecting tasks. Sarraf et al. proposed an optimized vision transformer (OViTAD) based on a vision transformer for 

AD prediction using 2D MRI axial slices . OViTAD achieves the same level of performance but uses a reduced number of parameters in contrast to the 

vanilla vision transformer. The OViTAD model achieved an average accuracy of 89.48% in a 3-way classification task. Their research indicates that 

models based on vision transformers possess the capability to offer an alternative method for diagnosing AD by utilizing 2D MRI slices. Despite the 

limited use of ViT-based models in the diagnosis of AD, current research efforts have started to look at their potential benefits. 

In general, the existing literature demonstrates the efficacy of CNN-based models in the context of diagnosing AD through the utilization of 2D MRI 

slices. Additionally, it is conceivable that ViT-based models or Vit–CNN hybrid models could potentially function as replacements for CNNs within 

this domain. 
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Materials and methods 

Dataset 

The ADNI dataset (https://adni.loni.usc.edu/) was utilized in our research. Its objective is to better understand how MRI, PET, and other 

biological indications, in addition to clinical and neuropsychological testing, can be used to diagnose MCI and early AD. The dataset 

included 188 AD, 401 mild cognitive impairment (MCI), and 229 normal control (NC) subjects. In total, 4174 MRI scans of 818 

participants from the database were used in the study. Only the standard 1.5 T T1-weighted sMRI data were used. The original 

dimensions of the raw MRI images were 256 × 256 × 256 . 

Preprocessing 

A standard pipeline of preprocessing was implemented to preprocess the MRI images . The preprocessing pipeline includes orientation, registration, 

skull stripping, bias field correction, image enhancement, and intensity normalization. The overall preprocessing workflow is shown in Figure 1. Using 

the orientation tool in the FMRIB Software Library (FSL) , an image can be rotated to make it align with the orientation of the common template 

images (MNI152 template), making them appear to be ”the same way around.” In order to ensure the spatial correspondence of anatomy across distinct 

images, image registration enables multiple images to be aligned into one integrated image. Image rotation, skew, and scale are common issues when 

overlaying images that can be resolved by registration. FLIRT (FMRIB’s Linear Image Registration Tool) in FSL was utilized for brain image 

registration. Skull stripping is an essential step in the process of identifying brain concerns. It involves separating brain tissue from other tissue types on 

an MRI brain scan. Accurate skull stripping is the key to performing the subsequent neuroimage analysis. The Brain Extraction Tool (BET) in FSL was 

utilized in the present study for skull removal . Bias field correction is a method that has been developed to eliminate this intensity gradient from the 

image. The N4 technique for bias field correction is frequently applied for addressing the bias field in MRI image data. The N4 algorithm offered by 

ANTs was utilized in the present research. Image enhancement is the technique of modifying an image to improve its visual impact by modifying the 

brightness levels of the pixels. A few image enhancement techniques were 

implemented to provide better input for the model. First, a median filter was used to remove noise from images, then 0.5% and 99.5% of the value of 

each image were taken as the minimum and maximum pixel value for rescaling, and lastly histogram equalization was used to improve contrast in the 

images. An image is scaled and shifted during normalization so that each pixel has a mean and variance of 0 and 1, respectively. 

 
 
 
 
 
 

Figure 1. The overall workflow of preprocessing. 

 
Generation of 2D slices from 3D MRIs 

Each 3D MRI image was sliced to generate slices from three perspectives, i.e. axial, coronal, and sagittal. After preprocessing, the middlemost slices 

tend to be the most informative slices of the image and contain the most significant information entropy. When choosing slices for classification, the 

slices in the middle should be used. First, select the middlemost slice of the nonzero part of the image. Then take two more slices from a few steps away 

before and after to compensate for missing 3D data. This step number is a hyperparameter, and was taken as five in our research. Consider the three 

slices mentioned above as the three channels of a three-channel image and stack them together to compose a fake RGB image. As a result, each MRI 

image will generate an axial, a coronal, and a sagittal slice. 

 

Data augmentation 

Data augmentation is a technique that, without generating new data, significantly broadens the range of data that are easily available for training 

models. To artificially extend the training set, data augmentation is the process of altering existing data to produce changed copies of datasets. To 

produce reliable predictions, deep learning models usually require an adequate quantity of training data, which is not always available. As a result, 

additional data are added to the original data to create a more broadly applicable model. The two categories of data enhancement techniques are 

position augmentation and color augmentation. A picture’s pixel positions are altered through position augmentations. Position augmentation includes 

scaling, flipping, cropping, rotation, padding, affine transformation, translation, etc. Color augmentation is an approach to changing the color properties 

of an image by modifying its pixel values. Color augmentation consists of brightness, contrast, saturation, etc. Specifically, contrast brightness, 

contrast, random flipping, random affine, random blur, and random noise were used in the present study. Each data augmentation approach is 

implemented dynamically, which means when loading an image from a disk an augmented image will be generated. The augmented image will be 

resized to 224 × 224 before being fed into a model. 

Network architecture 

The performance of multiple cutting-edge models for diagnosing AD using 2D MRI slices was evaluated and compared in the present work. Three 

categories of models, i.e. CNN-based, ViT-based, and hybrid, were chosen for analysis. Specifically, the models considered for analysis include 

ResNet, ConvNeXt, CaiT, Swin Transformer (Swin-T), and CVT. These models were selected due to their success in the computer vision field and 

https://adni.loni.usc.edu/
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their potential for assisting in a precise diagnosis of AD. The architectures of these models are shown in the following sections. Some models, like 

vanilla ViT, were excluded due to the limited computational resources. 

 

CNNs 

CNNs are deep learning models designed specifically for processing and analyzing data like images. As CNNs can automatically extract and learn 

complex hierarchical features from images, they have drastically changed computer vision. Convolutional, pooling, and FC layers are basic components 

of CNNs. Convolu- tional layers analyze the input image for local patterns and features using filters and convolutions. Pooling layers allow extraction 

of the most valuable information while increasing computing efficiency and reducing the spatial dimensions of the feature maps. Finally, FC layers 

integrate the extracted features and make the final prediction or classification. 

 
ResNet When the depth of CNNs reaches a particular threshold, the gradient disappears, which causes the accuracy to drop rather than rise. 

ResNet solves this issue by introducing residual connections. By skipping some intermediary levels and connecting the layer to succeeding 

layers, the residual connection forms a residual block. ResNet is constructed by stacking these residual building blocks. This type of 

skip connection, or identity mapping, has the advantage that regularization will not include any layer that impairs architecture effectiveness. 

As a result, vanishing or exploding gradient problems are not encountered while training very deep neural networks. In the present 

research, the pretrained ResNet on ImageNet, ResNet18, ResNet34, and ResNet50, were adopted. Since the latest PyTorch version 

provides two pretrained weights for ResNet50, the newer one was employed. ResNet34 and ResNet50 share a similar architecture with 

ResNet18 but contain different numbers of residual blocks. Initially, the last dense layer of ResNet has an output dimension of 1000, but, 

in our study, we modified the output dimension to 3, aligning it with the specific task of AD diagnosis. As an example, the architecture of 

ResNet18 is depicted in Figure 2. 

 
Figure 2. Architecture of ResNet18. ResNet34 and ResNet50 share a similar architecture with ResNet18 but contain different 

numbers of residual blocks. The original output dimension of the last dense layer is 1000 and we changed it to 3 in the present 

study. 

ConvNeXt Considering that the ViT has outperformed CNNs in numerous tasks of computer vision, the author modified a 

conventional ResNet by incorporating the design of the Swin-T. Through this process, the author identified notable performance 

differences. The ConvNeXt model mimics the patching approach of the Swin-T and substitutes the ResNet-style stem cell with a patchy 

layer. Specifically, a large kernel with a correspondingly large stride was utilized to ensure that there was no overlap among the 

sliding windows. These sliding windows exhibit comparable behavior to the patches in ViT. ConvNeXt also modifies the number of blocks 

within every stage following Swin.  The utilization of depthwise convolution in ConvNeXt bears a resemblance to the weighted 

summation process observed in self-attention. Last, moving up the depthwise convolutional layer and utilizing larger convolutional kernel sizes 

were performed to enhance the global receptive field. In the present study, ConvNeXt-tiny and ConvNeXt-small were utilized. 

 

ViT 

Proposed transformer architecture to solve issues in the field of natural language processing (NLP). The transformer is introduced and explained with 

an encoder–decoder architecture and becomes the foundation for many state-of-the-art NLP models. The transformer now holds a dominant position in 

the NLP field, and more and more research is being done to try to apply it in the realm of computer vision. One of the transformer’s merits is that it 

excels at handling a wide variety of inputs. Additionally, the convolution operation mainly considers local neighbors, which leads to global information 

being missed. In contrast, the attention model is very adept at modeling lengthy periods as shown in Equation (1). 

 
 
 
 
 
 
where query, key, and value are abbreviated as Q, K, and V. 

The ViT model that Dosovitskiy proposed uses the transformer model framework from NLP to tackle all of the challenges in computer vision [28]. A 

transformer may be used in the image domain by inputting a series of tokens into the bottom layer of the transformer, using ViT’s proprietary 
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technology, which is analogous to NLP in image processing. Specifically, the image is separated into several parts, each of which is then squeezed and 

mapped into a 1D vector with a fixed dimension using a neural network. The converted 1D vector is subsequently fed into the transformer encoder. 

However, the drawback of ViT is splitting the image into patches, resulting in a lower-resolution output. In addition, the transformer model’s 

computational cost grows with the sequence’s length, and direct application of pixel-level prediction tasks can lead to a surge in computation and 

memory consumption. 

 
Swin Transformer Liu et al. proposed the Swin-T and achieved a better speed–accuracy trade-off than with vanilla ViT [29]. Local attention 

is employed in the Swin-T to divide patches into windows, and interpatch attention is performed only within the windows to improve efficiency. 

However, there would be no information interaction between the patches of different windows. The Swin-T proposed a shifted window, 

borrowing from the sliding window approach, which used different window configurations in different layers to address this concern. The 

window positions are shifted horizontally and vertically by several patches, allowing the patches within different windows to interact with 

information from different layers. The multihead self-attention (MSA) block utilized in the ViT architecture is substituted with the Window 

and Shifted Window MSA block. In the present study, Swin-T, Swin Transformer Small (Swin-S), and Swin Transformer Big (Swin-B) were 

utilized. Similar to the method implemented on Resnet, the output dimension of the last dense layer was also revised to 3 and the rest of 

the layers were kept. An overview of a Swin-T’s structure is shown in Figure 3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The architecture of a Swin Transformer (Swin-T). 

Class-attention in image transformers (CaiT) CaiT adds per-channel weighting (a diagonal learnable matrix) to each residual block’s 

output [30] as shown in Equation (2). 

 
x′ = xl + diag (λl,1, . . . , λl,d) × SA (LN (xl)) 

x = x′ + diag 
(
λ′ , . . . , λ′ 

) 
× FFN (LN (x′)) ,

 
(2) 

 
where LN represents the LayerNorm operator, FFN stands for the feed-forward network, SA is for self-attention, and diag (λl,1, . . . , λl,d) 

stands for the learnable diagonal matrix to assign weights for each channel. The use of class embeddings is postponed compared with 

the ViT because, in the shallow layers, semantic information about classification is merely extracted. CaiT utilizes a separate set of 

attention layers called class attention (CA) to simulate the communication between the representations of the class token and the image 

patch. In the present study, CaiT-S36 was utilized. The architecture of CaiT is shown in Figure 4. 

 

Figure 4. The architecture of CaiT. 
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Hybrid models 

Convolutional vision transformer (CVT) CVT is a deep learning model that combines convolutional layers and transformers, providing a 

hybrid architecture for vision tasks [31]. In CVT, overlapping patches are initially created from the input image. Position encoding may not 

be required due to the presence of overlapping tokens. Rather than directly inputting the patches into a transformer encoder, CVT integrates 

the convolutional token embedding blocks to construct a model that captures the spatial context. Moreover, the linear projection utilized in 

the ViT is substituted with a convolutional projection to attain supplementary modeling of the local spatial context. The present study 

employed CvT-13 as one of the chosen models and the architecture of CvT is shown in Figure 5. 

 

Figure 5. The architecture of CVT. 

Network training 

The current research entailed the evaluation and comparison of five distinct models, namely ResNet, Swin-T, ConvNeXt, CaiT, and CvT. Three 

experiments were conducted for each model, utilizing axial, sagittal, and coronal slices. Cross-validation was used to train all of the models using the 

ADNI dataset. Firstly, the whole dataset was randomly split into the test and nontest datasets with a ratio of 1 : 9 . Then the nontest dataset was further 

divided into ten folds of equal size. Nine of the ten folds were used for training, while the remaining one was used for validation. The AdamW 

optimizer was used for training, utilizing an initial learning rate of 5e − 5 , and the batch size was configured to 32 . Weight decay and momentum were 

set to 1e − 4 and 0.9 . Since the dataset was unbalanced, the cross-entropy loss was applied along with manually adjusted weights assigned to each class 

according to Equation (3). 

 
 

 

 

 

 

 

All MRI images were processed and models were trained on a workstation equipped with an Intel Core i5 16-core 3.69 GHz CPU and a 12GB NVIDIA 

GeForce GTX 3080ti GPU. The operating system of this server was Ubuntu 20.04.3 LTS. Python 3.9.7 was used for preprocessing and model 

development. FMRIB Software Library v6.0 (FSL) was used for all phases of the MRI processing workflow. 

Results 

Evaluation metrics 

Each model’s accuracy, precision, sensitivity, and F1 score were computed to evaluate the performance of the 

classification. All models’ performance measures were presented as a mean value across five cross-validation folds. 

The evaluation of the classification performance was conducted using four metrics: classification accuracy, precision, sensitivity, and F1 

score, as defined by Equations (4), (5), (6), and (7): 
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where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, respectively. 

Comparative analysis 

The overall performance of the models is shown in Table 1. The deep learning models performed separate training on the axial, coronal, and 

sagittal views, and their performance was evaluated through the use of evaluation metrics consisting of accuracy, sensitivity, specificity, and F1 

score. ConvNeXt-tiny demonstrated the best performance among the examined models in the comparative analysis that was conducted when 

evaluated with axial slices. Specifically, ConvNeXt-tiny achieved an average accuracy of 95.74%, precision of 96.71%, sensitivity of 95.74%, 

and F1 score of 96.14%. As shown in Table 2, the finding implied that, in terms of the given evaluation metrics, CNN-based models 

outperformed the other alternatives. The results in Table 3 indicated that the axial view exhibited superior accuracy compared to the other 

two perspectives. 

DISCUSSION 

The result of our comparative study shows that ViT-based models do not perform as well as CNN-based networks on small to medium-

sized datasets[32]. When dealing with a medical dataset of the size of ADNI, it is recommended to use a CNN-based model rather than a 

ViT-based model. CNNs are developed to be capable of identifying regional patterns and spatial data, which is advantageous for image-

based jobs. In contrast, ViTs rely heavily on self-attention mechanisms, making them more appropriate for larger datasets containing an 

abundance of data. In comparison to ViTs, CNNs often have fewer parameters, making them more parameter- efficient. 

The axial view of MRI scans typically contains less nonbrain area and is easier to remove during brain extraction compared with the sagittal and 

coronal views. As a result, the axial view images tend to contain a reduced level of noise. Furthermore, axial slices effectively depict several 

prominent brain regions implicated with AD, including the hippocampus and entorhinal cortex. A noteworthy limitation of our study 

pertains to the comparatively small size of the dataset employed. The restricted size of the dataset utilized in the present study means that it 

may not comprehensively involve the diverse and intricate characteristics of AD cases, which may restrict the generality of our results. 

Although the deep learning models employed in the present study have exhibited potential in diverse computer vision assignments, they 

might not entirely grasp the temporal or progressive characteristics of AD. 

Furthermore, there currently exist general limitations within the realm of automated diagnosis of AD using deep learning. Several 

existing models for automatically diagnosing AD rely heavily on data from MRI and PET scans and other types of medical imaging. Automatic 

AD diagnosis using machine learning approaches can provide hard-to-understand and -interpret models, making it difficult for medical 

professionals to comprehend how the models yielded a specific diagnosis and to utilize this knowledge to guide treatment choices. Most 

models have yet to be tested in real-world situations, where data complexity and unpredictability might be significantly higher than in controlled 

laboratory conditions. Because of this, evaluating the precision and generalizability of these models in a clinical situation is challenging. 

Moreover, while the data used for training and testing models may contain sensitive information about individuals, using machine learning 

models for autonomous AD detection raises ethical and privacy issues. Researchers must ensure the data are gathered and used ethically and in 

accordance with applicable privacy laws. To summarize, the lack of diversity in datasets, reliance on imaging data, limited interpretability of 

models, poor validation in real-world settings, and ethical and privacy concerns all restrict current research on automatic AD detection. 

The adoption of various datasets and an increase in the sample size are further options for improvement. Assemble models that take multiple 

slices may improve the performance further. Several variables relevant to AD detection are MRI, CT, PET, neurological examinations, 

cognitive or blood tests, sex, age, the pattern of speech, retinal abnormalities, αβ protein, mini-mental state examination, Clinical 

Dementia Rating score, logical memory test, genes, etc. Since multimodality of input may provide complementary information, 
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multimodal models that integrate more than one variable mentioned above may be helpful in future compre- hensive diagnostics. In order 

to increase the accuracy and reliability of the diagnosis, research on automatic AD diagnosis is generally moving towards the development 

of more complex and accurate algorithms and the integration of multiple data sources. A diffusion-based model proposed by Bedel and 

Çukur for fMRI interpretation also provides a new perspective for future research. There is still more to be accomplished in this field and more 

research is required to create better systems for the early and precise identification of AD. 

CONCLUSION 

In this study, a series of experiments were conducted using preprocessed 2D MRI brain slices obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database. The models evaluated included CNN-based architectures, Vision Transformer (ViT)-based 

models, and hybrid variants combining both approaches. Among all models tested, ConvNeXt-tiny achieved the highest performance 

when evaluated using axial brain slices. Overall, the CNN-based models consistently outperformed their ViT-based and hybrid 

counterparts. Furthermore, among the three anatomical orientations assessed, the axial view yielded the most accurate classification 

results. These findings contribute valuable insights to the domain of automated Alzheimer’s diagnosis, reinforcing the effect iveness of 

CNN architectures. Additionally, the results highlight the importance of considering slice orientation—particularly axial views—when 

employing 2D MRI data for detecting Alzheimer’s disease. 
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