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ABSTRACT : 

Antimicrobial resistance has become one of the most crucial threat to public health due to the ability of microbes resistance against antimicrobial drugs. The 

escalating threat posed by antimicrobial resistance underscores the urgent necessity for the development of targeted therapeutic strategies and enhanced 

international collaboration to effectively mitigate the global impact of AMR .To oppose drug resistance we introduce more potent drug by using in silico 

approaches with the help of drug designing methods. We built the model against a Gram-positive bacterial strain using the co-crystallized ligand from the 

Dihydrofolate Reductase protein (PDB ID: 6PR7). Ligand-based study was performed on 63 benzoxazole derivatives. With help of molecular docking studies 

shows that PF7 emerges as the best docked compound with docking score (-4.368 kcal/mol). A four-point pharmacophore model was created using the dataset, 

and based on this model, an atom-based 3D-QSAR model was developed. The model showed good statistical values, with a correlation coefficient of Q² = 0.7380 

for the training set and R² = 0.9793 for the test set, proving its reliability. The best-docked compound was selected and used to perform ligand-based virtual 

screening through the PubChem database. After that, to ensure their safety and effectiveness.  ADMET (absorption, distribution, metabolism, excretion, and 

toxicity) studies were done on the top 10 screened compounds.Overall, the results suggest that these compounds could be promising inhibitors of  Dihydrofolate 

Reductase  and may be useful in treating microbial infections. 

 

Keywords: In silico ; antimicrobial; molecular docking; 3D-QSAR; ADMET; pharmacophore hypothesis. 

1.0 Introduction 

The growing threat of antimicrobial resistance (AMR) has become a critical global health concern, undermining the efficacy of existing antibiotics and 

leading to increased rates of treatment failure, prolonged illness, and mortality (1, 2). Among the various resistant pathogens, Staphylococcus aureus, 

particularly methicillin-resistant Staphylococcus aureus (MRSA), has emerged as a major cause of infections in both healthcare and community settings 

(3). The resistance of S. aureus to conventional antibiotics such as trimethoprim and β-lactams has made the treatment of common bacterial infections 

increasingly difficult (4). This highlights an urgent need for novel therapeutic agents that can effectively target resistant strains. One promising 

approach involves focusing on essential bacterial enzymes, such as dihydrofolate reductase (DHFR), (5) which plays a crucial role in folate metabolism 

and is necessary for DNA synthesis and cell proliferation. Despite being a well-established target, there is a continuing need for selective and potent 

DHFR inhibitors that can overcome existing resistance mechanisms. 

This research aims to explore the antimicrobial potential of benzoxazole derivatives as inhibitors of Staphylococcus aureus DHFR through in silico 

approaches. The study is designed to identify structurally active benzoxazole compounds (6, 7 ,8) develop a pharmacophore hypothesis (9) that captures 

the key features required for DHFR inhibition, build and validate a 3D-QSAR model to predict biological activity (10), and perform molecular docking 

to analyze interactions between the compounds and the DHFR binding site, particularly using structural insights from PDB ID: 6PR7 (11). 

Additionally, virtual screening will be employed to identify new lead molecules, and ADMET profiling will be conducted to evaluate their drug-

likeness and safety. 

The significance of this study lies in its potential to contribute to the discovery of new antimicrobial agents capable of addressing drug resistance in S. 

aureus. Utilizing benzoxazole as a pharmacophoric scaffold leverages its known pharmacological versatility, while the integration of computational 

methods offers a cost-effective and time-efficient strategy for drug development. By identifying promising DHFR inhibitors, this research supports the 

global effort to mitigate the impact of AMR and provides a foundation for future experimental validation and therapeutic advancement (12). 

http://www.ijrpr.com/
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2.0 Material and method 

This chapter provides a thorough explanation of the software and publicly available web resources utilized for analysis. Details on the techniques 

employed for the theoretical and experimental studies are provided. 

2.1 Application software and web-based software  

Schrodinger's suite (Maestro version 13.6), LLC, New York, 2022, is used for computational investigations such as molecular docking, pharmacophore 

hypothesis creation, QikProp experiments, 3D-QSAR model generation, and virtual screening. Online research was done for non-profit, publicly 

available web tools such as PubChem and ProTox-II. 

2.2 Methods 

2.2.1 Ligand-based drug design 

2.2.1.1 Dataset 

Molecular docking was conducted on the dataset of all 63 benzoxazole derivatives that had been synthesized before and had varying MIC50 against 

Staphylococcus aureus species. The dataset was retrieved and collated from the published work (Table  2.2.1). Additionally, the MIC50 value was 

transformed into pMIC50 [-log10 (MIC50)] for the purpose of developing pharmacophore hypotheses and the 3D-QSAR model (13). 

 

2.2.1.2 The generation of 3D X-ray crystallographic structure of S. aureus dihydrofolate reductase co-crystallized with benzyl-

dihydropthalazine inhibitor and NADP(H) (6PR7) 

The protein dihydrofolate reductase 3D structure of the mutation-free (PDB ID: 6PR7, resolution 2.01 Å) was obtained from the Protein Data Bank 

(PDB) (https://www.rcsb.org/structure/6PR7) (14) . In the 6PR7 structure, the protein is derived from Staphylococcus aureus (strain NCTC 8325) and 

crystallized at 2.01 Å resolution, providing high-resolution insight into the binding interactions of DHFR with the antifolate drug Methotrexate and the 

cofactor NADPH. The structure was determined by X-ray diffraction. To see the dihedral angles ψ against φ of the amino acid residues in the protein 

structure, the Ramachandran plot was employed. It shows the empirical distribution of the data points in a single structure. The red and yellow spots on 

the plan represented the places that were extensively vetted and showed potential. 

 
2.2.1.3 Protein preparation and a grid generation for selected target Dihydrofolate reductase 

After obtaining the PDB ID using the protein production wizard, the protein was examined for extraneous atoms and chains, unbound ligands, and 

water molecules. Grid creation was made possible by the Glide module following the inclusion of hydrogen bonds and missing residues. A protein's 

structure was refined and its energy was minimized using the OPLS-2005 force field. (15) 

 

2.2.1.4 Preparation of ligands 

Using ChemDraw 16.0, all 63 of the gathered benzoxazole derivatives were sketched in two dimensions. The LigPrep module (2022, Schrodinger, 

LLC, NY) was then used to convert them into three dimensions (16). Each ligand was created by choosing it from the LigPrep module's Project table. 

No conformers were produced for the compounds, and they were neutralized with ionization states adjusted at a pH 7.4+0.0 with a maximum ligand 
size of 500 atoms. The energy minimization was done using the OPLS-2005 force field. 

 

2.2.1.5 Molecular docking 

The preferred orientation for ligand-receptor binding is predicted via molecular docking. The active pocket site of the protein dihydrofolate reductase 
(PDB ID: 6PR7) was docked with all 63 of the generated ligands using a Glide module. For the optimal orientation of the ligand and protein, the "Extra 

precision mode" from the ligand docking of a gliding module was employed. The program's ligand interaction tool was used to verify the best docked 

compound's 2D and 3D ligand-protein interaction after it was selected based on docking scores (17). 

 
Table 2.2.1: Library of benzoxazole derivatives with MIC values (µg/ml) 

S. No. Compounds Chemical Structures MIC50 (µg/ml) 

1 PA1 

 

1.558749 

2 PA2 

 

1.460992 

3 PA3 

 

1.243534 

4 PA4 

 

1.230913 

https://www.rcsb.org/structure/6PR7
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5 PA5 

 

1.701633 

6 PA6 

 

1.429853 

7 PA7 

 

0.954633 

8 PA8 

 

1.052651 

9 PA9 

 

1.081627 

10 PB1 

 

3.591862 

11 PB2 

 

3.318082 

12 PB3 

 

3.926133 

13 PB4 

 

3.926133 

14 PB5 

 

3.347183 

15 PB6 

 

3.979522 

16 PB7 

 

3.628862 

17 PB8 

 

3.355342 

18 PB9 

 

4.336134 

19 PB10 

 

3.682985 

20 PC1 

 

2.453808 

21 PC2 

 

3.095232 
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22 PC3 

 

2.471075 

23 PC4 

 

0.727224 

24 PC5 

 

1.042623 

25 PC6 

 

0.33694 

26 PC7 

 

2.792356 

27 PC8 

 

2.526397 

28 PC9 

 

2.419161 

29 PC10 

 

2.748963 

30 PC11 

 

0.654706 

31 PD1 

 

1.554688 

32 PD2 

 

1.83305 

33 PD3 

 

1.561607 
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34 PD4 

 

1.547617 

35 PD5 

 

1.825608 

36 PD6 

 

1.554668 

37 PE1 

 

0.643067 

38 PE2 

 

0.664201 

39 PE3 

 

1.596322 

40 PE4 

 

1.31417 

41 PE5 

 

1.653526 

42 PE6 

 

1.369077 

43 PE7 

 

0.968118 

44 PE8 

 

0.988141 

45 PE9 

 

0.687111 

46 PE10 

 

1.007268 
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47 PE11 

 

1.340246 

48 PE12 

 

1.357303 

49 PE13 

 

1.641276 

50 PE14 

 

1.658333 

51 PE15 

 

1.692737 

52 PE16 

 

2.299627 

53 PE17 

 

2.299627 

54 PE18 

 

2.582359 

55 PE19 

 

2.582359 

56 PE20 

 

2.602331 

57 PF1 

 

0.433623 

58 PF2 

 

0.570408 
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59 PF3 

 

0.661955 

60 PF4 

 

0.84095 

61 PF5 

 

0.706251 

62 PF6 

 

1.831307 

63 PF7 

 

2.103929 

2.2.1.6 A Pharmacophore model generation 

The potential interactions between ligand-receptor complexes are identified and extracted using a ligand-based pharmacophore model, which is an 

ensemble of similar steric and electronic properties. The pharmacophore model was made using a PHASE module. A PHASE module is a 

multicomputed product used for 3D-QSAR model creation, pharmacophore modeling, and structural alignment. 

Initially, all 63 designed ligands were aligned using the ligand alignment tool in the PHASE module. After aligning them, different molecular shapes 

(conformers) were generated for each ligand—up to 50 per structure. The compounds were then categorized based on their antimicrobial activity: those 
with a pMIC50 value of 0.65 or higher were labeled as active, while those with lower values were considered inactive. To build a pharmacophore 

model—a kind of chemical pattern that describes the features necessary for biological activity—six key features were considered: hydrophobic regions 

(H), hydrogen bond donors (D), hydrogen bond acceptors (A), positively charged groups (P), negatively charged groups (N), and aromatic rings (R). 
Out of the 63 ligands, 42 were found to be active, 3 inactive, and the rest showed moderate activity. 

Using this information, four unique pharmacophore hypotheses were generated, with each model containing up to five key features (18).The best-
performing hypothesis was chosen based on its ability to correctly identify active and inactive compounds. The top model, named AARR_1, consisted 
of four key pharmacophoric features and is detailed in Table 2.2.2. 

To test the reliability of this hypothesis, it was validated using a set of 109 decoy compounds (inactive compounds with similar properties) taken from 

the DUD-E database, along with the 42 active ligands. The total dataset of 151 compounds was used to evaluate the model’s accuracy using various 

statistical methods: Enrichment Factor (EF at 1%), BEDROC (a measure of early recognition), RIE (initial ranking quality), ROC (overall model 
performance), and AUAC (how well the model ranks actives higher than inactives). All these scores range from 0 to 1, where 1 is ideal (19). 

Finally, A 3D-QSAR model was constructed using this validated pharmacophore model in order to gain a better understanding of the structural 
characteristics that give rise to antimicrobial action. 

 

Table 2.2.2: All 4 generated hypothesis by PHASE module and their parametric scores. 

 
Hypothesis Survival 

Score 

Site Score Vector Score Volume Score 

 

AARR_2 

 

5.223 

 

0.721 

 

0.922 

 

0.594 

AARR_1 5.244 0.725 0.925 0.598 

AARR_3 5.204 0.708 0.892 0.604 



International Journal of Research Publication and Reviews, Vol (6), Issue (7), July (2025), Page – 4944-4962                        4951 

 

AARR_4 5.201 0.700 0.905 0.501 

     

 

2.2.1.7 Atom based 3D-QSAR model 

The 3D-QSAR approach aims to establish a statistical correlation between the three-dimensional structural properties of ligands and their biological 

activity using mathematical modeling techniques. In this study, an atom-based 3D-QSAR model was constructed using the PHASE module integrated 
within Schrodinger's Maestro software (version 13.6) (20). 

For the development of the QSAR model, the most reliable pharmacophore hypothesis, AARR_1, was selected, encompassing a total of 67 ligands. 
These compounds were randomly divided into two sets: a training set comprising 67.2% of the ligands (39 compounds) and a test set with the 
remaining 32.7% (19 compounds), as presented in Table 2.2.3 (21). 

The atom-based QSAR modeling employed a maximum of four Partial Least Squares (PLS) factors with a grid spacing of 1 Å. To evaluate the internal 

predictive accuracy of the model, a Leave-One-Out (LOO) cross-validation method was applied. The model included six distinct molecular features: 

negatively charged groups (N), positively charged groups (P), hydrogen bond donors (D), hydrophobic regions (H), electron-withdrawing groups (W), 

and miscellaneous features (X) (22). 

To facilitate the understanding of how molecular structures influence activity, a QSAR visualization was performed using both the most active and the 
least active compounds in the dataset, thereby supporting structural optimization and future ligand design. 

Table 2.2.3: Dataset of Atom based 3D-QSAR model built by AARR_1 hypothesis with their docking score, observed and predicted activity (pMIC50). 

 
Compound no. QSAR set Observed activity Predicted activity Docking score 

PA1 Training 1.558 0.984 -5.584 

PA2 Test 1.460 2.158 -5.566 

PA3 Training 1.243 2.520 -5.774 

PA4 Training 1.230 2.543 -5.514 

PA5 Training 1.701 2.346 -5.342 

PA6 Training 1.429 1.692 -5.808 

PA7 Test 0.954 2.499 -5.342 

PA8 Test 1.052 2.093 -5.571 

PA9 Test 1.081 1.428 -5.572 

PB1 Test 3.591 3.545 -6.038 

PB2 Test 3.318 3.547 -7.511 

PB3 Training 3.926 4.070 -5.693 

PB4 Training 3.926 3.607 -3.361 

PB5 Training 3.347 3.400 -5.016 

PB6 Test 3.979 1.617 -5.016 

PB7 Training 3.628 3.56756 -4.876 

PB8 Training 3.355 3.585 -3.854 

PB9 Test 4.336 3.590 -4.624 

PB10 Test 3.682 2.930 -6.366 

PC1 Training 2.453 2.392 -6.436 

PC2 Training 3.095 3.108 -7.575 

PC3 Training 2.471 1.079 -5.42 

PC4 Training 0.727 2.441 -6.235 

PC5 Training 1.042 0.970 -5.833 

PC6 Training 0.336 0.427 -2.751 

PC7 Training 2.792 2.833 -8.572 

PC8 Training 2.526 2.461 -6.612 

PC9 Test 2.419 0.894 -3.546 
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PC10 Test 2.748 1.474 -5.745 

PC11 Test 0.654 1.758 -6.396 

PD1 Training 1.554 1.490 -6.466 

PD2 Training 1.833 1.010 -7.314 

PD3 Training 1.561 1.624 -7.126 

PD4 Test 1.547 1.809 -4.877 

PD5 Test 1.825 1.768 -5.969 

PD6 Test 1.554 1.952 -8.51 

PE1 Test 0.643 1.142 -6.558 

PE2 Training 0.664 0.836 -5.638 

PE3 Training 1.596 1.154 -5.85 

PE4 Training 1.314 1.359 -4.596 

PE5 Test 1.653 1.694 -5.587 

PE6 Training 1.369 1.447 -4.744 

PE7 Training 0.968 0.929 -3.8 

PE8 Training 0.988 0.972 -5.355 

PE9 Training 0.687 0.872 -4.479 

PE10 Training 1.007 1.063 -5.672 

PE11 Training 1.340 0.960 -5.006 

PE12 Training 1.357 2.243 -4.788 

PE13 Training 1.641 1.617 -5.27 

PE14 Training 1.658 1.681 -5.023 

PE15 Training 1.692 1.830 -4.546 

PE16 Training 2.299 2.270 -4.708 

PE17 Training 2.299 2.315 -4.541 

PE18 Test 2.582 2.275 5.819 

PE19 Training 2.582 2.321 -4.783 

PE20 Test 2.602 2.540 -4.953 

PF1 Training 0.433 0.596 -3.441 

PF2 Training 0.570 0.645 -2.744 

PF3 - 0.661 - -4.839 

PF4 - 0.840 - -4.774 

PF5 - 0.706 - -3.341 

PF6 - 1.831 - 5.051 

PF7 - 2.103 - -4.771 

2.2.1.8 Molecular docking based virtual screening 

Virtual screening is a computational technique employed in drug discovery to explore huge chemical libraries and identify small molecules that are 

probably  to bind effectively to a specific biological target. In this study, the PubChem database—a freely accessible repository of chemical structures 
and bioactivity data—was utilized to identify potential lead compounds. The most promising docked compound, designated as PC7, was used as a 

reference to perform a structural similarity search within PubChem. This search yielded a total of 67 structurally similar compounds (hit leads). The 2D 

structures of these hit molecules were subsequently downloaded and subjected to molecular docking studies against the target protein, dihydrofolate 
reductase. Docking was performed using the Extra Precision (XP) mode to ensure accurate prediction of ligand–protein binding orientations. From 

these, the top 10 compounds showing the highest binding affinity and favorable interaction profiles were selected for further pharmacokinetic (ADME) 
and toxicity evaluations (22). 

2.2.1.9 In silico ADME screening and toxicity predictions 

Pharmacokinetics characteristics, including absorption, distribution, metabolism, excretion, and toxicity profiles of the compounds, were assessed using 

the QikProp module (2022, Schrodinger, LLC, NY) and the ProTox-II web tool in order to enhance the safety, quality, and effectiveness of a 
medication (23). Intestinal absorption, blood-brain barrier permeability, CYP inhibition, and total clearance rate are some of the variables that affect the 

ADME profile. Hepatotoxicity, mutagenicity, carcinogenicity, and immunotoxicity can all be assessed using toxicity profiles, both subjectively and 

quantitatively (24).Additionally, the top ten virtually screened compounds underwent ADME and toxicity profile analyses, which provide valuable 
information about the pharmaceuticals' ADME in the body along with their toxicity effects (25). 
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3.0 Results and Discussion 

3.1 Ligand-based drug design 

3.1.1 Molecular docking 

The docking was performed for 63 benzoxazole derivatives and compared with the standard drugs used – ciprofloxacin, ceftriaxone and cefotaxime. 

From the results shown, it was cleared that PC7 compound showed the best docking score (-8.572 kcal/mol) and discovered to be more active as 

compared to the standard drugs ceftriaxone (-7.039 kcal/mol), cefotaxime (-5.778 kcal/mol) and Ceftriaxone (-7.039 kcal/mol). It showed that 

compound PC7 found to be had One hydrogen bonding with the amino acid residue (C=O....LYS29) and two salt bridge (O- …LYS29 , O- …LYS32) 

(Figure 4.1.1) (Table3.2.3). 

 

Further, the best docked active compound was screened for drug similarity from the PubChem database and the obtained 67 compounds were then put 

through for XP docking with the protein dihydrofolate reductase. The obtained result showed that, compound CID 174377141 had the best docking 

score (-9.934 kcal/mol) against the standard drugs ceftriaxone (-7.039 kcal/mol), Ciprfloxacin (-7.254 kcal/mol) and cefotaxime (-5.778 kcal/mol). The 

compound CID 174377141 had one H-bond with amino acid residue (NH2….SER49), considered being the most active and has higher binding affinity 

among all the hits compound thus outspacing the standard drugs. The top 10 hit lead ligand-amino acid residues were shown in Table 3.1.1). 

 

 

 

 

 

 

                                 (a)                                                                             (b) 

Figure 3.1.1: (a) 2D and (b) 3D ligand interaction of best docked molecule PC7. 

 

                                                   (a)                                                              (b) 
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                           (C)                                                                             (d) 

 

                                        

(e)                                                                                (f) 
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(g)                          (h) 

 

                                 (i)                                                                            (j) 

Figure 3.1.2: 2D ligand interaction and surface binding of derivative (a) CID 174377141 (b) CID 172743839 (c) CID 162579096 (d) CID 174331251  

(e) CID 163955800 (f) CID 175567519 (g) CID 166872478 (h) CID 163583501 (i) CID 165521246 (j) CID 165349091 

S.NO Compounds Chemical structure Docking score 

1 174377141 

 

-9.934 

2 172743839 

 

-9.910 
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3 162579096 

 

-9.714 

4 174331251 

 

-9.647 

5 163955800 

 

-9.392 

6 175567519 

 

-8.527 

7 166872478 

 

-8.493 

8 163583501 

 

-8.490 

9 165521246 

 

-8.357 

10 165349091 

 

-8.307 

11 Ceftriaxone 

 

-7.039 
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12 Cefotaxime 

 

-5.778 

13 Cirprofloxacin 

 

-7.254 

Table 3.1.1: XP docking results of the 10 topmost compounds against the protein dihydrofolate reductase (PDB ID: 6PR7). 

 

Table 3.1.2: Ligand-Amino acid residues interactions of the 10 topmost docked compounds. 

S. no. Ligand H-bond interactions Other interactions 

1 

174377141 

SER 49 - 

2 

172743839 

LEU 20, SER 49 Pi-Pi stacking: PHE 92 

3 

162579096 

SER 49 - 

4 

174331251 

LEU 20, SER 49 

- 

5 

163955800 

GLN 19 

- 

6 

175567519 

LEU 5 

- 

7 

166872478 

LEU 20 - 

8 

163583501 

LEU 20 - 

9 

165521246 

LEU 20 - 

10 

165349091 

LEU 20, SER 49, ASP 27 - 

 
3.1.2 Pharmacophore hypothesis analysis 

The 4-point hypothesis AARR_1 was chosen as the best of the 4 generated hypotheses based on their volume score (0.598), vector score (0.925), site 

score (0.725), and survival score (5.244) (Table 2.2.2). The decoy dataset (DUD-e database), which contains 151 compounds (109 decoys and 42 
actives), was then used to validate the best chosen hypothesis. 

The verified AARR_1 hypothesis had a ROC (receiver operating characteristics) of 0.11, an Enrichment factor (1%) of 1.30, a Phase hypo score of 

1.11, an AUAC (area under accumulation curve) of 0.54, a robust initial enhancement (RIE) of 1.58, and a BEDROC160.9 of 0.04. Sensitivity (true 
positive rate) on the X-axis and specificity (false positive rate) on the Y-axis were plotted in a ROC analysis. Active compounds are ranked higher than 

inactive ones if the curve exhibits a sharp rise towards the upper left corner and flattens out with a value nearer 1. 

The accuracy of the developed pharmacophore model AARR_1 is demonstrated graphically by the curve that begins in the upper left corner and 
flattens at the end, with a ROC value of 0.11 (Figure 3.1.3). According to the best theory, an activity requires two hydrogen bond acceptors, and two 

aromatic ring characteristic (Figure 3.1.4). 

 
Figure 3.1.3: A ROC plot of the best generated hypothesis AARR 1. 
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(a)                                                                           (b) 

 
Figure 3.1.4: (a) A four point generated pharmacophore model (AARR_1) by PHASE module (b) Overlapping of the active ligands on pharmacophore 

model AARR_1 

3.1.3 Statistical validation of Atom based 3D-QSAR model 

As the 3D-QSAR model was generated, it was validated for their reliability, robustness and stability. For the regression analysis the leave-one-out cross 

internal validation method was used by keeping the partial least square factor (PLS) 4. The internal validation report showed that the statistical 

parameters such as correlation coefficient for the training set (Q2 = 0.8129), regression coefficient (R2 = 0.9440), Scramble Fischer test (F = 176.9), a 

significance level of variance ratio (P = 1.09e-25), Standard deviation (SD = 0.2339), root mean square error (RMSE = 0.46) were found to be of good 

values for the generation of 3D-QSAR model (Table  3.1.3 and Table 3.1.4). Graphically, the scattered plots were shown for the test and training set 

depicting the values of the generated QSAR model (Figure 3.1.5). 

Table 3.1.3: PLS parameters for the Atom based 3D-QSAR model. 

PLS 

Factor 

SD R2 F P Stability Q2 RMSE Pearson-R 

1. 0.5642 0.6506 83.8 7.69e-12 0.863 0.7361 0.54 0.8641 

2. 0.3941 0.8333 110.0 7.64e-18 0.67 0.8141 0.45 0.9215 

3. 0.2712 0.9229 171.5 6.12e-24 0.461 0.8007 0.47 0.9274 

4. 0.2339 0.9440 176.9 1.09e-25 0.453 0.8129 0.46 0.9281 

 

Table 3.1.4: Statistical data of Atom based 3D-QSAR. 

PLS 

Factors 

HBD Hydrophobic/ non-polar Negative ionic Positive ionic e- 

withdrawing 

1 0.040187 0.637762 0.025432 0.035507 0.218226 

2 0.039857 0.624798 0.030728 0.035156 0.231427 

3 0.042161 0.629142 0.028565 0.028649 0.237696 

4 0.042973 0.635465 0.028433 0.026602 0.234998 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Figure 3.1.5: Graphical representation of an observed activity (X-axis) v/s predicted activity (Y-axis) of (a) test set and (b) training set compounds of 

the hypothesis AARR_1. The best fit line for test set is y = 0.68x + 0.76 (R2 = 0.86). 

 
3.1.4 Computation of contour maps of Atom based 3D-QSAR model 

3D-QSAR is a comprehensive method that uses a variety of statistical techniques to correlate the ligands' 3D features in order to predict their 

physiological and biological activities. Predicting biological activities is made necessary by the existence of several functional groups and moieties. 
Contour map depiction illustrates how the functional groups or moieties contribute to the compound's biological activity. 

 The maps' red areas represent the unfavorable interactions, while the blue areas highlight the advantageous characteristics that promoted interactions 

between enzymes and ligands. The hydrogen bond donor's atom-based 3D-QSAR contour map in Figure 3.1.6 (a) makes it easier to compare and see 

which groups or moieties are the most and least potent. 

While the blue cubes surrounding the oxazole ring, phenyl ring, and C=O bond of the least active compound PC6 showed an increase in activity (Figure  

3.1.6 (1b)), the red region around the phenyl ring indicates that a substitution is required to increase the activity, and the blue region around the oxazole 

ring of the most active compound PC7 (Figure  3.1.6 (1a)) indicates that a hydrogen bond donor is favorable for activity. 

 

Furthermore, the hydrophobic map, as depicted in Figure 3.1.6 (2a), indicates that the large blue cubes covering the entire benzoxazole ring and the C-S 

group of the most active compound, PC7, are essential for the antimicrobial activity. However, the red region surrounding the phenyl ring suggests that 

some changes should be made to enhance the biological activity, in contrast to the red regions of the least active compound, PC6, which cover the NO2 
of the phenyl ring and NO2 attached to the benzoxazole ring, which demonstrate the compound's decreased activity (Figure 3.1.6 (2b)). 

Additionally, the e-withdrawing contour map of the most active compound, PC7 (Figure  3.1.6 (3a)), demonstrates that the blue region on the C-O-C 

bond of the oxazole ring, NH, and C=O attached to the alkyl chain shows a significant increase in activity, while the presence of red regions on the 
phenyl ring attached to the alkyl chain, benzene ring attached to the oxazole ring, and C-P bond shows a decline in activity due to the presence of 

electron-withdrawing group. Meanwhile, the presence of red cubes covering the entire compound, with the exception of the C=N group of five 

members, indicates a decline in the biological activity of the least active compound, PC6 (Figure 3.1.6 (3b)). 
 

By the contour map visualization, the functional groups and its relation to the biological activity had been clarified.  
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Figure 3.1.6: Visualization of Atom based 3D-QSAR model of most active compound  

PC7 - 1(a) Hydrogen bond donor 2(a) Hydrophobic 3(a) Electron withdrawing and least active compound PC6 - 1(b) Hydrogen bond donor 2(b) 

Hydrophobic 3(b) Electron withdrawing Blue coloured cubes shows increase in activity and red coloured cubes shows decrease in activity. 

3.1.5 ADME and toxicity profile prediction 

The ADMET profiling of the top ten selected drug candidates was conducted using the QikProp module and the ProTox II online tool. All evaluated 

parameters were within the acceptable limits and complied with Lipinski's Rule of Five, which is essential for assessing drug-likeness. Compounds 

exhibiting optimal intestinal absorption and membrane permeability typically possess fewer than five hydrogen bond donors, fewer than ten hydrogen 

bond acceptors, a molecular weight under 500 Daltons, and a LogP value not exceeding 5. Key pharmacokinetic parameters, including the partition 

coefficient (LogP o/w ranging from -0.247 to 5.693), blood-brain barrier permeability (LogBB between 0.201 to -0.080), human serum albumin binding 

affinity (LogKhsa between -0.483 and 0.708), and skin permeability (P_caco values ranging from 1.196 to 5638.654), were analyzed to facilitate the 

identification of the most promising lead compounds (Table 3.1.5). 

Insilco toxicity studies were conducted for predicting the toxicity and adverse effects of the selected top 10 drug hits by utilizing the ProTox II server 

which evaluated the results for hepatotoxicity, mutagenicity, carcinogenicity, immunotoxicity and cytotoxicity. The estimated results were taken into 

consideration by the predicted toxicity class level (I, II, III, IV, V and VI) and predicted median lethal dose (LD50) in mg/kg weight. Based on the 

outcome data, compounds CID 174331251, CID 163955800, CID 175567519, CID 166872478, and CID 163583501 were classified under toxicity 

class IV, indicating a low level of acute toxicity. Among them, CID 163955800 and CID 163583501 exhibited an LD50 value of 1600 mg/kg, reflecting 

a comparatively safer toxicity profile. Additionally, all organ toxicity parameters for these compounds were found to be inactive, further supporting 

their safety. These favorable findings highlight their strong potential for further exploration and development in future studies (Table 3.1.6). 

 

Table 3.1.5: Top 10 drug hits ADME predictions by QikProp. 

Entry #Stars 
Log p 

o/w 
P caco Log BB #Metab Log khsa 

% human oral 

absorption 

Rule 

of five 

174377141 0 1.366 74.317 -1.950 5 -0.483 68.432 0 

172743839 1 4.285     23.778 -1.055 4 0.045 76.665 0 

162579096 1 5.693 284.519 -0.419 6 0.695 91.247 1 

174331251 1 2.453 40.184 -1.6914 6 0.011 70.019 0 

163955800 0 4.663 2502.390 -0.318 3 0.708        100 0 

175567519 0 4.214  5121.852 -0.080 3 0.398        100 0 

166872478 0 3.668 97.958 -1.351 4 0.027 84.055 0 

163583501 0 4.094 5638.654 0.201 4 0.431 100 0 

165521246 0 3.124 171.430 -0.993 5 -0.222 85.224 0 

165349091 0 -0.247 1.196 -2.124 2 -1.120 26.982 0 

Acceptable ranges 
 

-2 -6.5 
<25 poor; >500 

good 
-3- 1.2 1-8 -1.5-1.5 Max 100 Max 4 

  
Table 3.1.6: Toxicity parameters of the top 10 drug hits by ProTox II tool. 

Compounds 

Classification 

Organ 

toxicity 
Toxicity end points 

Hepatoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity Class 

CID 174377141 Inactive Inactive Inactive Inactive Inactive IV 

CID 172743839 Active Inactive Inactive Inactive Inactive IV 
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CID 162579096 Active Active Inactive Inactive Inactive IV 

CID 174331251 Inactive Inactive Inactive Inactive Inactive IV 

CID 163955800 Inactive Inactive Inactive Inactive Inactive IV 

CID 175567519 Inactive Inactive Inactive Inactive Inactive IV 

CID 166872478 Inactive Inactive Inactive Inactive Inactive IV 

CID 163583501 Inactive Inactive Inactive Inactive Inactive IV 

CID 165521246 Inactive Inactive Inactive Active Inactive IV 

CID 165349091 Inactive Inactive Inactive Inactive Inactive IV 

4.0 Summary 

The present research work describes the antimicrobial activity of benzoxazole derivatives against the targeted protein dihydrofolate reductase by the 

Ligand-based drug design  in silico approaches. 

Ligand-based study was performed on 63 benzoxazole derivatives. Through Molecular docking studies compound PC7 emerges as the best docked 

compound with docking score (-8.572 kcal/mol). A ligand-based pharmacophore model was generated with AARR_1 as best hypothesis showed that 

two hydrogen bond acceptors and two aromatic ring feature are good for the activity. The Atom based 3D-QSAR model was built by utilizing the best 

generated hypotheses AAHR_1 and the internal validation showed that statistical parameters such as (Q2 = 0.8129), (R2 = 0.9440), (SD = 0.2339), and 

(RMSE = 0.46) were found to be good values for the built model. The best docked compound was performed for drug similarity in the PubChem 

database and molecular docking was carried out. The resulted top 10 hits were preceded to ADME/T predictions. From the resulting data it clarified 

that CID 163955800 and CID 163583501 have more potential as antimicrobial agents. 
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