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ABSTRACT

In this paper we use fractional differential operators Dy, and D, to derive a number of key formulas of multivariable H-function. We use the generalized Leibnitz’s
rule for fractional derivatives in order to obtain one of the aforementioned formulas, which involve a product of generalized multi-index Mittag Leffler function. It
is further shown that, each of these formulas yield interesting new formulas for generalized multi-index Mittag Leffler function 2020 Mathematics Subject
Classification: 26A33, 33C45, 33E20.
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Definitions

Generalized Fractional Derivative Operators

We use the fractional derivative operator defined in the following manner [7]

n N _ 1n—1| FA+ra+1) A+na
a,B,x(x )_ T=0 [[‘(A+ra—[ﬁ‘+1)]x (1'1)

Where 8 # 2+ 1 and @ and B are not necessarily integers

We use the binomial expansion in the following manner

|
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the familiar differential operator ¢ D’tl is defined by [7]

A=) @, Re(u)<0]
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SLDT, <Re(u) <
X
13)

Where m is a positive integer
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For & = 0 ,(1.3) Defines the classical Riemann-Liouville fractional derivative of order p (or-p) when o—oco ( 1.3) may be identified with the definition
Y7

of the well known Weyl fraction derivative of order u (or-) [ 1,chap.13);3] the special case of fractional calculus operator * ~ X whena = 0,u =n,x =

t is written as D, thus we have

Vi
D;’] —a DX
r(1+a) —
D] (x*) = - (H;n)xl 1 {Re(d) > —1} (1.4)

2. Generalized Multi-Index Mittag Leffler Function

The generalized multi-index Mittag Leffler function is defined by Saxena and Nishimoto [16] in the following summation form:

D xk
Ap _ p A
E(Aj’Bj)m(x) = ;7113’;1%4,- PRIV (meN) 2.1

where 4;, B;, 4, p € C; Re(B;) > 0 and
T Re(Aj) > max { Re(p) — 1;0}.

For m = 1, the generalized multi-index Mittag Leffler function (2.1) reduce into the generalized Mittag-Leffler function given by Shukla and Prajapati
[19] and defined as follows:

=3

A k
B0 =y o
k

LT (Ak + Bk’ 22)

where 4, B, 1€ C; Re(4) >0,Re(B) > 0,Re(1) > 0andp € (0,1) U N

For m =1 and p = 1, the generalized multi-index Mittag-Leffler function (2.1) reduce into the generalized Mittag-Leffler function given by
Prabhakar [12] defined as follows:

©

D x*

A — _
Eap(x) = Tk +BY KL’

(2.3)

where A,B,A € C; Re(A) >0, Re(B) > 0, Re(d) > 0,x € C and (1), is the well known Pochhammer symbol.

3. Main Results

Theorem 1. Fractional derivatives operator D:’ (x*) associated with the product of two multi-index Mittag-Leffler functions.

D e B ) DX B, ) (o)

o T(S+k+1D)
_ 2 8-n—-1 Ap Ap k+l
=g, ) ) XE(AJ-,B,-L"("”}@; Z Te+k+i—nt GV

Where @ stands for convolution product of two functions.
Proof. We refer to the left hand side of equation (3.1) by the symbol D, .
Then making the use of equation (2.1) in equation (3.1), we have

D, =

N W () < Do @)
phlgs-1 P x P
¢ [ ;H;ﬂ:lr(Aj k+B;) Kk ;n;r;lr(Aj l+B) U

After changing the order of summations and derivative operator under

the conditions of theorem, we obtain the above as

©
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X D;? (t6+k+171)

We use the fractional derivative operator Dt" (x*) after simplification we get

o

(D oD 1 (e)* () N ré+k+10
mor(Ak+B)I, r(41+B;) k' U "T@+k+1l-n)

t8+k+l—n—1

k=0 1=0
Further, applying the definition (2.1) and convolution product on two series,
we obtain

o N  G+k+1D)
D= e B ) GOXEL ) (@) Y pe st

k=0 1=0
Where @ stands for convolution product of two functions.

Theorem 2. Fractional derivatives operator Dy g , (x*) associated with the product of two multi-index Mittag-Leffler functions.

Bp AT B ) G B, (ot

— (S+na-1 {E(AX;.B,-),,‘ (x,) ¥ Eé"“;B/)m(xz)}

3 (RATTRIESTIRNS

Where ® stands for convolution product of two functions.
Proof. We refer to the left hand side of equation (3.2) by the symbol D,.

Then making the use of equation (2.1) in equation (3.2), we have
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S
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After changing the order of summations and derivative operator under the conditions of theorem, we obtain the above as

zi @) (xl)kxi Do )
kzor[;?;lr(Ajk+Bj) k! lzol‘[;.';lr(AjHBj) I

X Dortl,ﬁ,t (t6+k+l—1)

We use the fractional derivative operator D;',,;,x(x’l) after simplification we get

_ i i WD CONCAS
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k=01=0
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Further, applying the definition (2.1) and convolution product on two series,

we obtain

D, = té+nma-1 {E&‘;Bj)m(xl) X E();?Bj)m(xz)}

ONYJreser e
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Where @ stands for convolution product of two functions.
Theorem 3. Double fractional derivatives operators D, (x*) and D}, (x*)

associated with the product of two multi-index Mittag-Leffler functions.

D;‘Bt[D" { CEG ) (at) xE&‘;Bj)m(xzt)}]
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Proof. We refer to the left hand side of equation (3.3) by the symbol D;.
Then making the use of equation (2.1) in equation (3.3), we have

Dy =

RN D pi CTOLNAN Do (,t)!
n 5-1 P P
. {t ,Z:OHT:J(AJ k+B) K ;H;nzlr(‘qf L+5) U }]

After changing the order of summations and derivative operator under the conditions of theorem, we obtain the above as.
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We use the fractional derivative operator D] (x*) after simplification we get.
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We use the fractional derivative operator D,’,}ﬁ’x(x’l) after simplification we get
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Further, applying the definition (2.1) and convolution product on two series,

we obtain.

— +6-n+na-1 Ap Ap }
bs=t {E(Ai'Bi)m(xl) X E(Aj'Bj)m(xZ)
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Where ® stands for convolution product of two functions.

4. Special cases

Our main provides unifications and extensions of various (known or new) results fractional differential operators. For the sake of illustration, we mentior

the following special cases

Corollary 1. Let the conditions of Theorem 1 be satisfied and n = 1, m = 1 then the theorem 1 reduced in the following form:

_1 A, 2,
D {578 (g t) X Ep 5 (x20)}

N Gk
= OB X ENEI® ) Y rmr iy im 1)
k=0 1=0

Corollary 2. Let the conditions of Theorem 2 be satisfied and @ = 0, = 1 then the theorem 2 reduced in the following form:
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D%, {t‘“ E&‘;Bl_) (xyt) X E&‘;Bl_) (xzt)}

_ {E&?’Bj)m(xl) x E?A?’Bj)m(xz)}

=0
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k=0 =

©
0

Corollary 3. Let the conditions of Theorem 3 be satisfiedanda = 1, 8 =0,
n = 1,m = 1then the theorem 3 reduced in the following form:
Dilo.[ D {t77 Eqf (st X Eg (o)}

= 92 (P (x)) X Ef (x,)}

TT(M@E+k+1+7—1) et i
1_[1"(5+k+l+r—1) *3)

r=0

033

k=0 1=0

Corollary 4. Let the conditions of Theorem 3 be satisfiedanda = 0, 8 =1,
n = 1,m = 1, p = 1then the theorem 3 reduced in the following form:
D(T)l,l,t[ D} {t§_1 E,c/ll,B (x,8) X Eig(xzt)}]

= gomina-t {Eﬁl,B (xq) x Ej,B(xz)}

=3

©).).
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r=0
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