

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Generalized Fractional Derivative Operators of the Multi-Index Mittag-Leffler Functions with Applications

Ram Niwas Meghwal¹ Sunil Kumar² and Krishna Gopal Bhadana³

¹ Department of Mathematics, G. H. S. Government College, Sujangarh-331507

Maharshi Dayanand Saraswati University, Ajmer, Rajasthan-305009, India

 $E-mail(s): \underline{meghwalramniwas@gmail.com; sunilgehlot 286@gmail.com;} \underline{dr.bhadanakg@gmail.com}; \underline{dr.bhadanakg.gmail.com}; \underline{dr.$

ABSTRACT

In this paper we use fractional differential operators $D_{\alpha,\beta,x}^n$ and D_t^η to derive a number of key formulas of multivariable H-function. We use the generalized Leibnitz's rule for fractional derivatives in order to obtain one of the aforementioned formulas, which involve a product of generalized multi-index Mittag Leffler function. It is further shown that, each of these formulas yield interesting new formulas for generalized multi-index Mittag Leffler function 2020 Mathematics Subject Classification: 26A33, 33C45, 33E20.

Keywords and Phrases: generalized fractional derivative operators, multi-index Mittag Leffler function.

Definitions

Generalized Fractional Derivative Operators

We use the fractional derivative operator defined in the following manner [7]

$$D^{n}_{\alpha,\beta,x}(x^{\lambda}) = \prod_{r=0}^{n-1} \left[\frac{\Gamma(\lambda + r\alpha + 1)}{\Gamma(\lambda + r\alpha - \beta + 1)} \right] x^{\lambda + n\alpha}$$
(1.1)

Where $\beta \neq \lambda + 1$ and α and β are not necessarily integers

We use the binomial expansion in the following manner

$$(ax^{\mu} + b)^{\lambda} = b^{\lambda} \sum_{l=0}^{\infty} {\lambda \choose l} \left(\frac{ax^{\mu}}{b} \right)^{l} \qquad where \quad \left[\frac{ax^{\mu}}{b} \right] < 1$$
(1.2)

the familiar differential operator $\ ^{lpha}D_{x}^{\mu}$ is defined by [7]

$$_{\alpha}D_{x}^{\mu}f(\mathbf{x}) = \begin{bmatrix} \frac{1}{\sqrt{-\mu}} \int_{\alpha}^{x} (x-t)^{-\mu-1} f(t)dt &, & [\operatorname{Re}(\mu) < 0] \\ \frac{d^{m}}{dx^{m}} {_{\alpha}D_{x}^{\mu-m}} f(x), & [0 \le \operatorname{Re}(\mu) < m] \end{bmatrix}$$

(1.3)

Where m is a positive integer

^{2, 3}Department of Mathematics, S. P. C. Government College, Ajmer

For $\alpha=0$,(1.3) Defines the classical Riemann-Liouville fractional derivative of order μ (or- μ) when $\alpha\to\infty$ (1.3) may be identified with the definition of the well known Weyl fraction derivative of order μ (or- μ) [1,chap.13);3] the special case of fractional calculus operator αD_x^μ when $\alpha=0,\mu=\eta,x=t$ is written as D_t^η thus we have

$$D_{\iota}^{\eta} = \alpha D_{x}^{\mu}$$

$$D_t^{\eta}(x^{\lambda}) = \frac{\Gamma(1+\lambda)}{\Gamma(1+\lambda-\eta)} x^{\lambda-\eta} \quad \{Re(\lambda) > -1\}$$
 (1.4)

2. Generalized Multi-Index Mittag Leffler Function

The generalized multi-index Mittag Leffler function is defined by Saxena and Nishimoto [16] in the following summation form:

$$E_{(A_{j},B_{j})_{m}}^{\lambda,\rho}(x) = \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j})} \frac{x^{k}}{k!}; \quad (m \in \mathbb{N})$$
 (2.1)

where A_j , B_j , λ , $\rho \in \mathbb{C}$; $\mathcal{R}e(B_j) > 0$ and

$$\sum_{i=1}^{m} \mathcal{R}e(A_i) > \max \{ \mathcal{R}e(\rho) - 1; 0 \}.$$

For m = 1, the generalized multi-index Mittag Leffler function (2.1) reduce into the generalized Mittag-Leffler function given by Shukla and Prajapati [19] and defined as follows:

$$E_{A,B}^{\lambda,\rho}(x) = \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\Gamma(Ak+B)} \frac{x^k}{k!},$$
(2.2)

where $A, B, \lambda \in \mathbb{C}$; $\Re e(A) > 0, \Re e(B) > 0, \Re e(\lambda) > 0$ and $\rho \in (0,1) \cup \mathbb{N}$

For m = 1 and $\rho = 1$, the generalized multi-index Mittag-Leffler function (2.1) reduce into the generalized Mittag-Leffler function given by Prabhakar [12] defined as follows:

$$E_{A,B}^{\lambda}(x) = \sum_{k=0}^{\infty} \frac{(\lambda)_k}{\Gamma(Ak+B)} \frac{x^k}{k!},$$
(2.3)

where $A, B, \lambda \in \mathbb{C}$; $\Re e(A) > 0$, $\Re e(B) > 0$, $\Re e(\lambda) > 0$, $x \in \mathbb{C}$ and $(\lambda)_k$ is the well known Pochhammer symbol.

3. Main Results

Theorem 1. Fractional derivatives operator $D_t^{\eta}(x^{\lambda})$ associated with the product of two multi-index Mittag-Leffler functions.

$$D_t^{\eta} \left\{ t^{\delta-1} E_{\left(A_j, B_j\right)_m}^{\lambda, \rho}(x_1 t) \times E_{\left(A_j, B_j\right)_m}^{\lambda, \rho}(x_2 t) \right\}$$

$$= t^{\delta - \eta - 1} \left\{ E_{(A_j, B_j)_m}^{\lambda, \rho}(x_1) \times E_{(A_j, B_j)_m}^{\lambda, \rho}(x_2) \right\} \otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(\delta + k + l)}{\Gamma(\delta + k + l - \eta)} t^{k+l}$$
 (3.1)

Where \otimes stands for convolution product of two functions.

Proof. We refer to the left hand side of equation (3.1) by the symbol D_1 .

Then making the use of equation (2.1) in equation (3.1), we have

 $D_1 \equiv$

$$D_t^{\eta}\left\{t^{\delta-1}\sum_{k=0}^{\infty}\frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m}\Gamma(A_j\;k+B_j)}\frac{(x_1t)^k}{k!}\times\sum_{l=0}^{\infty}\frac{(\lambda)_{\rho l}}{\prod_{j=1}^{m}\Gamma(A_j\;l+B_j)}\frac{(x_2t)^l}{l!}\right\}$$

After changing the order of summations and derivative operator under

the conditions of theorem, we obtain the above as

$$= \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j})} \frac{(x_{1})^{k}}{k!} \times \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} l + B_{j})} \frac{(x_{2})^{l}}{l!}$$

$$\times D_t^{\eta}(t^{\delta+k+l-1})$$

We use the fractional derivative operator $D_t^{\eta}(x^{\lambda})$ after simplification we get

$$= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho k} (\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} \ k + B_{j}) \prod_{j=1}^{m} \Gamma(A_{j} \ l + B_{j})} \frac{(x_{1})^{k}}{k!} \frac{(x_{2})^{l}}{l!} \times \frac{\Gamma(\delta + k + l)}{\Gamma(\delta + k + l - \eta)} t^{\delta + k + l - \eta - 1}$$

Further, applying the definition (2.1) and convolution product on two series,

we obtain

$$D_1 \equiv t^{\delta - \eta - 1} \left\{ E_{(A_j, B_j)_m}^{\lambda, \rho}(x_1) \times E_{(A_j, B_j)_m}^{\lambda, \rho}(x_2) \right\} \otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(\delta + k + l)}{\Gamma(\delta + k + l - \eta)} t^{k+l}$$

Where \otimes stands for convolution product of two functions.

Theorem 2. Fractional derivatives operator $D_{\alpha,\beta,x}^n(x^{\lambda})$ associated with the product of two multi-index Mittag-Leffler functions.

$$D_{\alpha,\beta,t}^{n} \left\{ t^{\delta-1} E_{(A_{i},B_{i})_{...}}^{\lambda,\rho}(x_{1}t) \times E_{(A_{i},B_{i})_{...}}^{\lambda,\rho}(x_{2}t) \right\}$$

$$= t^{\delta + n\alpha - 1} \left\{ E_{(A_j,B_j)_m}^{\lambda,\rho}(x_1) \times E_{(A_j,B_j)_m}^{\lambda,\rho}(x_2) \right\}$$

$$\otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{r=0}^{n-1} \left\{ \frac{\Gamma(\delta + k + l + r\alpha)}{\Gamma(\delta + k + l + r\alpha - \beta)} \right\} t^{k+l} \right]$$
(3.2)

Where \otimes stands for convolution product of two functions.

Proof. We refer to the left hand side of equation (3.2) by the symbol D_2 .

Then making the use of equation (2.1) in equation (3.2), we have

 $D_2 \equiv$

$$D_{\alpha,\beta,t}^{n} \left\{ t^{\delta-1} \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j})} \frac{(x_{1}t)^{k}}{k!} \times \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} l + B_{j})} \frac{(x_{2}t)^{l}}{l!} \right\}$$

After changing the order of summations and derivative operator under the conditions of theorem, we obtain the above as

$$= \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j})} \frac{(x_{1})^{k}}{k!} \times \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} l + B_{j})} \frac{(x_{2})^{l}}{l!} \times D_{\alpha,\beta,t}^{n}(t^{\delta+k+l-1})$$

We use the fractional derivative operator $D_{\alpha,\beta,x}^n(x^{\lambda})$ after simplification we get

$$\begin{split} &= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho k} (\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma \left(A_{j} \ k + B_{j}\right) \prod_{j=1}^{m} \Gamma \left(A_{j} \ l + B_{j}\right)} \frac{(x_{1})^{k}}{k!} \frac{(x_{2})^{l}}{l!} \\ &\times \prod_{r=0}^{n-1} \left[\frac{\Gamma \left(\delta + k + l + r\alpha\right)}{\Gamma \left(\delta + k + l + r\alpha - \beta\right)} \right] t^{\delta + k + l - 1 + n\alpha} \end{split}$$

Further, applying the definition (2.1) and convolution product on two series,

we obtain

$$\begin{split} D_2 &\equiv t^{\delta + n\alpha - 1} \left\{ E_{(A_j,B_j)_m}^{\lambda,\rho}(x_1) \times E_{(A_j,B_j)_m}^{\lambda,\rho}(x_2) \right\} \\ &\otimes \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \left[\prod_{l=0}^{n-1} \left\{ \frac{\Gamma(\delta + k + l + r\alpha)}{\Gamma(\delta + k + l + r\alpha - \beta)} \right\} t^{k+l} \right] \end{split}$$

Where ⊗ stands for convolution product of two functions.

Theorem 3. Double fractional derivatives operators $D_t^{\eta}(x^{\lambda})$ and $D_{\alpha,\beta,x}^{n}(x^{\lambda})$

associated with the product of two multi-index Mittag-Leffler functions.

$$D^n_{\alpha,\beta,t}\left[\ D^\eta_t\left\{t^{\delta-1}\ E^{\lambda,\rho}_{(A_i,B_i)}\ (x_1t)\times E^{\lambda,\rho}_{(A_i,B_i)}\ (x_2t)\right\}\right]$$

$$= t^{\delta - \eta + n\alpha - 1} \left\{ E_{(A_j, B_j)_m}^{\lambda, \rho}(x_1) \times E_{(A_j, B_j)_m}^{\lambda, \rho}(x_2) \right\}$$

$$\otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{i=0}^{n-1} \left\{ \frac{\Gamma(\delta + k + l - \eta + r\alpha)}{\Gamma(\delta + k + l - \eta + r\alpha - \beta)} \right\} t^{k+l} \right]$$
(3.3)

Proof. We refer to the left hand side of equation (3.3) by the symbol D_3 .

Then making the use of equation (2.1) in equation (3.3), we have

$$D_{3} = D_{\alpha,\beta,t}^{n} \left[D_{t}^{\eta} \left\{ t^{\delta-1} \sum_{k=0}^{\infty} \frac{(\lambda)_{\rho k}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j})} \frac{(x_{1}t)^{k}}{k!} \times \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} l + B_{j})} \frac{(x_{2}t)^{l}}{l!} \right\} \right]$$

After changing the order of summations and derivative operator under the conditions of theorem, we obtain the above as.

$$D_{\alpha,\beta,t}^{n} \left[\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho k}(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} k + B_{j}) \prod_{j=1}^{m} \Gamma(A_{j} l + B_{j})} \frac{(x_{1})^{k}}{k!} \frac{(x_{2})^{l}}{k!} \times \left\{ D_{t}^{\eta} \left(t^{\delta + k + l - 1} \right) \right\} \right]$$

We use the fractional derivative operator $D_t^{\eta}(x^{\lambda})$ after simplification we get.

$$D_{\alpha,\beta,t}^{n} \left[\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{(\lambda)_{\rho k}(\lambda)_{\rho l}}{\prod_{j=1}^{m} \Gamma(A_{j} \ k + B_{j}) \prod_{j=1}^{m} \Gamma(A_{j} \ l + B_{j})} \frac{(x_{1})^{k}}{k!} \frac{(x_{2})^{l}}{k!} \times \frac{\Gamma(\delta + k + l)}{\Gamma(\delta + k + l - \eta)} \ t^{\delta + k + l - \eta - 1} \right]$$

$$=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}\frac{(\lambda)_{\rho k}(\lambda)_{\rho l}}{\prod_{j=1}^{m}\Gamma(A_{j}\;k+B_{j})\prod_{j=1}^{m}\Gamma(A_{j}\;l+B_{j})}\frac{(x_{1})^{k}}{k!}\frac{(x_{2})^{l}}{l!}\times\frac{\Gamma(\delta+k+l)}{\Gamma(\delta+k+l-\eta)}$$

$$\times \{D^n_{\alpha,\beta,t}(t^{\delta+k+l-\eta-1})\}$$

We use the fractional derivative operator $D_{\alpha,\beta,x}^n(x^{\lambda})$ after simplification we get

$$=\sum_{k=0}^{\infty}\sum_{l=0}^{\infty}\frac{(\lambda)_{\rho k}(\lambda)_{\rho l}}{\prod_{j=1}^{m}\Gamma(A_{j}\;k+B_{j})\prod_{j=1}^{m}\Gamma(A_{j}\;l+B_{j})}\frac{(x_{1})^{k}}{k!}\frac{(x_{2})^{l}}{l!}\times\frac{\Gamma(\delta+k+l)}{\Gamma(\delta+k+l-\eta)}$$

$$\times \prod_{l=1}^{n-1} \left[\frac{\Gamma(\delta+k+l-\eta+r\alpha)}{\Gamma(\delta+k+l-\eta+r\alpha-\beta)} \right] t^{\delta+k+l-\eta-1+n\alpha}$$

Further, applying the definition (2.1) and convolution product on two series,

we obtain.

$$D_3 \equiv t^{\delta - \eta + n\alpha - 1} \left\{ E_{\left(A_j, B_j\right)_m}^{\lambda, \rho}(x_1) \times E_{\left(A_j, B_j\right)_m}^{\lambda, \rho}(x_2) \right\}$$

$$\otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{r=0}^{n-1} \left\{ \frac{\Gamma(\delta+k+l-\eta+r\alpha)}{\Gamma(\delta+k+l-\eta+r\alpha-\beta)} \right\} t^{k+l} \right]$$

Where \otimes stands for convolution product of two functions.

4. Special cases

Our main provides unifications and extensions of various (known or new) results fractional differential operators. For the sake of illustration, we mention the following special cases

Corollary 1. Let the conditions of Theorem 1 be satisfied and $\eta = 1$, m = 1 then the theorem 1 reduced in the following form:

$$D_t^1 \left\{ t^{\delta - 1} E_{AB}^{\lambda, \rho}(x_1 t) \times E_{AB}^{\lambda, \rho}(x_2 t) \right\}$$

$$= t^{\delta-2} \left\{ E_{A,B}^{\lambda,\rho}(x_1) \times E_{A,B}^{\lambda,\rho}(x_2) \right\} \otimes \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(\delta+k+l)}{\Gamma(\delta+k+l-1)} t^{k+l}$$

$$\tag{4.1}$$

Corollary 2. Let the conditions of Theorem 2 be satisfied and $\alpha = 0$, $\beta = 1$ then the theorem 2 reduced in the following form:

$$D_{0,1,t}^{n} \left\{ t^{\delta-1} E_{(A_{j},B_{j})_{m}}^{\lambda,\rho}(x_{1}t) \times E_{(A_{j},B_{j})_{m}}^{\lambda,\rho}(x_{2}t) \right\}$$

$$= t^{\delta-1} \left\{ E_{(A_{j},B_{j})_{m}}^{\lambda,\rho}(x_{1}) \times E_{(A_{j},B_{j})_{m}}^{\lambda,\rho}(x_{2}) \right\}$$

$$\otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{r=0}^{n-1} \left\{ \frac{\Gamma(\delta+k+l)}{\Gamma(\delta+k+l-1)} \right\} t^{k+l} \right]$$
(4.2)

Corollary 3. Let the conditions of Theorem 3 be satisfied and $\alpha = 1$, $\beta = 0$,

 $\eta = 1, m = 1$ then the theorem 3 reduced in the following form:

$$D_{1,0,t}^{n} \left[D_{t}^{1} \left\{ t^{\delta-1} E_{A,B}^{\lambda,\rho}(x_{1}t) \times E_{A,B}^{\lambda,\rho}(x_{2}t) \right\} \right]$$

$$= t^{\delta+n-2} \left\{ E_{A,B}^{\lambda,\rho}(x_{1}) \times E_{A,B}^{\lambda,\rho}(x_{2}) \right\}$$

$$\otimes \sum_{l=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{n=0}^{n-1} \left\{ \frac{\Gamma(\delta+k+l+r-1)}{\Gamma(\delta+k+l+r-1)} \right\} t^{k+l} \right]$$

$$(4.3)$$

Corollary 4. Let the conditions of Theorem 3 be satisfied and $\alpha = 0$, $\beta = 1$,

 $\eta = 1, m = 1, \rho = 1$ then the theorem 3 reduced in the following form:

$$D_{0,1,t}^{n} \left[D_{t}^{1} \left\{ t^{\delta-1} E_{A,B}^{\lambda}(x_{1}t) \times E_{A,B}^{\lambda}(x_{2}t) \right\} \right]$$

$$= t^{\delta-\eta+n\alpha-1} \left\{ E_{A,B}^{\lambda}(x_{1}) \times E_{A,B}^{\lambda}(x_{2}) \right\}$$

$$\otimes \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left[\prod_{r=0}^{n-1} \left\{ \frac{\Gamma(\delta+k+l-1)}{\Gamma(\delta+k+l-2)} \right\} t^{k+l} \right]$$
(4.4)

REFERENCES

- [1] Choi, J. and Agarwal, P: A note on fractional integral operator associated with multiindex Mittag-leffler functions, Filomat, Vol. 30(7) (2016):1931-1939.
- [2] **Choi, J. Kumar, D. and Purohit, S. D.:** Integral formulas involving a product of generalized Bessel functions of the first kind, Kyungpook Math. J. Vol.56(1) (2016):131-136.
- [3] Erdelye, A. et al.: Higher Transcendental Fucntions, Vol. I, McGraw-Hill, New York London (1953).
- [4] **Kilbas, A. A. and Sebastian, N.:** Generalized fractional integration of BesselFunction of first kind, Integral Transform Special Function, Vol. 19(2008):869-883.
- [5] Kataria, K. K. and Vellaisamy, P.: The k-Wright function and Marichev-saigo-Maeda fractional operators, J. Anal. Vol. 23(2015):75-87.
- [6] Lavoie, J. L. and Trottier, G.: On the sum of certain Appell's series, Ganita (1969):2043 46
- [7]. Misra A.P. Ganita, 26(1975), 1-18.
- [8] Mishra, V. N. Suthar, D. L. and Purohit, S.D.: Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized mittag-Leffler function, Cogent mathematics 4(2017)
- [9] Mondal S. R. and Nisar K. S.: Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions, Maths Probl. Eng. (2014), p11.
- [10] Oberhettinger, F.: Tables of Mellin Transforms, Springer, New York(1947).
- [11] Pohlen, T.: The Hadamard product and universal power series, Ph.D. Thesis, Universitat Trier, Trier, Germany (2009).
- [12] **Prabhakar, T. R.:** A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J.Vol.19(1971):7-15.
- [13] Saigo, M.: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. College General Ed Kyushu univ., Vol.11(1978):135-143.
- [14] Saigo, M. and Maeda, N.: More generalization of fractional calculus, transform Method and Special Functions., Bulgarian Acadmey of Sciences, Sofia Vol. 96(1998):386-400.
- [15]. Saigo M. and Raina R.K.: Fukuoka univ.sci.reprts 18(1), (1988), 15-22
- [16] Saxena, R.K. and Nishimoto, K.: N-Fractional calculus of generalized Mittag-Leffler functions, J. Frac. Calc., Vol. 37(2010):43-52.

- [17] **Saxena, R.K. and Saigo, M.:** Generalized fractional calculus of the H-function associated with the Appell function F_3 , Journal of Fractional calculus, Vol. 19(2001): 89-104.
- [18] Saxena, R.K. and Parmar, R.K.: Fractional intergration and differention of the generalized Mathieu series, axioms 6(2017):18.
- [19] **Shukla, A. K. and Prajapati, J.C.:** On a generalization of Mittag Leffler function and its properties, J. Math. Ann. Appl., Vol. 336(2) (2007): 797-811.
- [20] Srivastava, H.M.: A contour integral involving Fox's H-function, India J. Math. Vol.14(1972):1-6
- [21]. **Srivastava, H.M. and Panda R.:** Some multiple Integral Transformations Involving the H-Function of several variables Nederl, Acad. wetensch proc. Ser. A 82 Indag Math.41 (1979) 353-362
- [22] Wright, E. M.: The asymptotic expansion of the generalized hypergeometric function II, Proc. London Math. Soc. Vol. 46(2) (1940):389-408.