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A B S T R A C T 

Brain age prediction has surfaced as a viable biomarker for neurodegenerative diseases, including Alzheimer’s Disease (AD). Although graph neural networks 

(GNNs) have demonstrated efficacy in utilizing spatial correlations in resting-state functional magnetic resonance imaging (rs-fMRI), they frequently overlook the 

fundamental temporal dynamics. This paper presents an innovative framework utilizing Neural Ordinary Differential Equations (Neural ODEs) to model brain 

activity as a continuous-time process on graph-structured data obtained from resting-state functional MRI (rs-fMRI). Utilizing data from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI), we develop dynamic brain graphs and apply ODE-GNNs for age regression. Our findings indicate enhanced performance 

compared to baseline GNNs and conventional regressors, particularly in detecting accelerated aging in Alzheimer's disease participants. The model additionally 

identifies temporally sensitive cerebral areas associated with aging and neurodegeneration. 
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1. INTRODUCTION 

Machine learning methods have been widely applied to solve diverse problems across numerous fields, demonstrating remarkable versatility (Suleiman 

et al., 2023). Alzheimer’s Disease (AD) is a progressive neurological disorder that deteriorates memory and cognitive abilities, presenting a considerable 

burden to worldwide health systems. Timely identification is crucial, since clinical manifestations typically emerge only after significant cerebral 

degeneration has transpired. Traditional diagnostic methods predominantly depend on cognitive evaluations and structural neuroimaging, frequently 

detecting the disease at a somewhat advanced stage. (Gao et al. 2023) have proposed brain age prediction as a non-invasive biomarker to detect 

neurological abnormalities earlier. Brain age estimation measures how old a person’s brain appears relative to their chronological age, with a greater 

discrepancy (brain age gap or BAG) indicating potential neurodegeneration.   

Numerous studies have utilized machine learning methods to estimate brain age based on rs-fMRI data (Gao et al. 2023) presented a Graph Neural 

Network (GNN) employing attention mechanisms to effectively capture spatial relationships in rs-fMRI graphs, demonstrating superior performance 

compared to traditional models such as support vector regression and autoencoders. Nevertheless, the method continues to regard the data as static, 

overlooking the temporal evolution of brain function—a limitation given that rs-fMRI fundamentally captures dynamic brain activity. (Millar et al. 2022) 

utilized Gaussian Process Regression (GPR) and attained satisfactory predictive performance; however, their model did not incorporate spatial 

representation of brain topology. Graph-based methods have emerged to tackle this issue, allowing the representation of brain regions as nodes and their 

functional connections as edges (Suleiman et al., 2025).  

(Hwang et al 2022) introduce a comprehensive machine learning framework aimed at distinguishing pathological neurodegeneration linked to 

Alzheimer’s disease (AD) from typical brain aging. The study effectively isolates age-related changes from Alzheimer's disease-specific biomarkers by 

employing multimodal neuroimaging data and advanced feature disentanglement techniques. Supervised learning models, such as regression and 

classification pipelines, are utilized to identify specific neuroanatomical patterns associated with Alzheimer's disease, while controlling for variance 

attributed to normal aging. This approach improves the specificity of brain age prediction models, facilitating more precise identification of early-stage 

Alzheimer's disease. 

(Zhao et al. 2021) pioneered the application of Neural Ordinary Differential Equations (Neural ODEs) to represent the continuous evolution of dynamic 

graph structures, providing a systematic approach to capture temporal relationships in graph-based data.  They offer an ODE-GNN framework that 

conceptualizes node representations as solutions to differential equations parameterized by graph topology, resolved by adaptive integration techniques.  

This method adeptly circumvents the constraints of discrete-time graph models, facilitating seamless interpolation between recorded graph snapshots and 

effectively managing irregular update intervals.  Empirical findings indicate substantial improvements in prediction tasks on dynamic graphs relative to 
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both static embedding techniques and heuristic temporal graph models, highlighting the effectiveness of continuous-time modelling.  By formalizing 

graph evolution through differential equations and utilizing the expressiveness of GNNs, this research establishes a robust platform for future 

developments in dynamic graph representation learning. 

Recent findings indicate that resting-state functional MRI (rs-fMRI), which measures brain activity and connectivity, may identify abnormalities prior to 

structural changes, especially those associated with Alzheimer’s pathology, including beta-amyloid (Aβ) deposition and tau protein accumulation (Gao 

et al. 2023, Gonneaud et al. 2021). The temporal sensitivity of rs-fMRI positions it as a promising modality for modelling brain age, particularly in 

populations at risk for Alzheimer's disease. Brain age prediction models have conventionally utilized structural MRI data, which depict anatomical 

changes like cortical thinning and hippocampal atrophy (, Bashyam et al. 2020, Gaser et al. 2013). While effective, these structural changes typically 

occur only after functional disruptions have taken place. 

(Shi et al. 2020) presents Transformer-GCN, an innovative framework that integrates feature propagation (via GNNs) and label propagation (through 

LPA) into a singular Graph Transformer model.  In contrast to previous attempts that utilized these methods in distinct phases, UniMP incorporates both 

during training and inference by incorporating partial labels with node attributes.  To prevent overfitting due to self-label leakage, the authors employ a 

masked label prediction technique, which involves randomly obscuring a portion of labels during training and necessitating that the model predicts them.  

UniMP establishes a new benchmark in performance, attaining 82.56% accuracy on ogbn-products, 86.42% ROC-AUC on ogbn-proteins, and 73.11% 

accuracy on ogbn-arxiv. 

(Ying et al. 2019) presents a model-agnostic approach to explain Graph Neural Network (GNN) predictions by finding a compact subgraph and key node 

properties.  GNNExplainer provides instance-level explanations of node classifications and graph outputs, unlike global interpretability techniques.  The 

strategy optimises GNN prediction and masked subgraph mutual information to expose decision structure and attributes.  This innovative method makes 

GNNs transparent, especially for essential applications like chemistry, social networks, and bioinformatics.  The framework's truthful and human-

interpretable explanations on synthetic and real-world datasets make it an important contribution to interpretable machine learning. 

(Chen et al. 2018) proposed Neural ODEs, which model hidden state dynamics as continuous transformations over time, rendering them suitable for 

capturing subtle, progressive changes in functional brain connectivity. In contrast to conventional GNNs that analyse each input graph in isolation, ODE-

based models are capable of learning the fundamental temporal trajectory of brain activity. When applied to rs-fMRI data, this approach would enable 

more accurate predictions of brain age and facilitate the tracking of network-level interactions in individuals with Alzheimer's disease. 

(Kipf et al. 2017) presented a straightforward yet potent Graph Convolutional Network (GCN) model for learning from graph-structured data.  They 

developed an effective layer-wise propagation rule that utilizes both node attributes and graph structure to execute semi-supervised node classification.  

By confining the model to the spectrum domain and streamlining the convolution process, the GCN attains robust performance with comparatively 

minimal computing complexity.  evaluated on benchmark citation network datasets, the model surpassed conventional methods and prior graph-based 

techniques, illustrating its effectiveness in situations with limited labelled data.  Their work became a core reference in graph deep learning, impacting 

numerous future advancements in both theoretical and applied domains. 

This study proposes a novel framework based on ODE-GNN for predicting brain age through dynamic resting-state fMRI graphs. We propose that 

employing Neural ODEs to model the temporal dynamics of functional brain networks will improve the accuracy of brain age predictions and more 

effectively represent the accelerated aging linked to Alzheimer’s disease. This study builds on the foundational work of (Gao et al. 2023) and integrates 

temporal modelling strategies from (Chen et al. 2018) to develop a more sensitive and interpretable tool for the early detection of neurodegeneration. We 

employ post hoc explainability techniques (Ying et al. 2019) to pinpoint critical brain regions that influence the aging signal, thereby providing insights 

into disease mechanisms.  

2. Materials and Methods 

2.1 Dataset 

This study employed resting-state functional magnetic resonance imaging (rs-fMRI) data sourced from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) (ADNI 2024), an extensive, multi-site, longitudinal dataset aimed at facilitating the exploration of Alzheimer’s Disease development.  The dataset 

includes scans from four primary diagnostic categories: 471 Healthy Controls (HC), 123 individuals with Early Mild Cognitive Impairment (EMCI), 63 

with Late Mild Cognitive Impairment (LMCI), and 90 patients diagnosed with Alzheimer’s Disease (AD).  This varied group offers an extensive picture 

of the aging brain throughout the spectrum of cognitive decline, ranging from normal aging to mild impairment and severe neurodegeneration.  All rs-

fMRI images were obtained following standardized imaging protocols and subjected to quality control measures to guarantee uniformity across 

acquisition sites.  The incorporation of these diagnostic categories facilitates the examination of both normative brains aging and the pathological aging 

patterns linked to Alzheimer’s disease, rendering the ADNI dataset especially appropriate for brain age prediction studies aimed at identifying early 

indicators of cognitive decline. 

2.2 Data preprocessing 

All data underwent preprocessing using recognized neuroimaging workflows to guarantee the quality and comparability of resting-state functional MRI 

(rs-fMRI) signals among subjects and scanning locations.  The preprocessing steps comprised slice timing correction to rectify acquisition delays among 

slices, motion correction to address participant movement during scanning, spatial normalization to align each subject's brain to a standard template 
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(usually MNI space), and signal denoising to mitigate artifacts from physiological noise and scanner drift.  The BRANT (Brainnetome fMRI Toolkit) 

(Fan et al 2017) was utilized to execute these procedures, serving as a multifaceted software designed for resting-state fMRI research, facilitating 

standardized and reproducible preprocessing workflows.  This preprocessing guarantees that the derived functional connectivity matrices precisely 

represent intrinsic brain activity patterns, which is essential for dependable further modelling of brain age. 

2.3 Graph construction 

The rs-fMRI data were converted into a graph-structured format appropriate for graph-based deep learning by parcellating each scan with the Automated 

Anatomical Labelling (AAL) atlas, which delineates the brain into 116 anatomically defined regions (Tzourio et al. 20002). This parcellation facilitates 

the extraction of mean time-series signals from each brain region, therefore condensing the high-dimensional voxel-level data into regional activity 

profiles. The AAL atlas is extensively utilized in functional connectivity research because of its anatomical clarity and uniformity across neuroimaging 

protocols. 

Functional connectivity (FC) was assessed by calculating the Pearson correlation coefficient for each pair of regional time-series, yielding a 116 × 116 

symmetric matrices for each participant. Each entry in this matrix denotes the intensity of temporal synchronization between two brain regions, regarded 

as the edge weight in the connection network. This functional connectivity matrix was utilized to delineate an undirected weighted graph G=(V,E), 

wherein each node v_i  ℇ V corresponds to a brain region, and each edge e_ij  ℇ E signifies the functional association between regions  v_i  and v_j, 

weighted by the strength of their correlation. To emphasize meaningful relationships and minimize extraneous data, low-correlation edges beneath a 

certain threshold may be eliminated, yielding a sparse, physiologically relevant graph. The complete time series of length 𝑇 = 140 was divided into 

overlapping segments utilizing a sliding window methodology to capture the temporal dynamics present in rs-fMRI. This temporal segmentation 

facilitated the representation of connectivity as a dynamic graph throughout time instead of a fixed picture. Each window produced an own connection 

matrix, creating a series of graphs for one subject. This process establishes the basis for implementing temporal models like Neural Ordinary Differential 

Equations (Neural ODEs), which may discern continual alterations in connection patterns and may uncover early indicators of neurodegenerative 

development that are not evident in static representations. 

2.4 Neural ODE Architecture 

We employ a graph-based Neural Ordinary Differential Equation (Neural ODE) framework to simulate the temporal dynamics of functional brain 

connection, conceptualizing the evolution of brain activity as a continuous process over time. The latent state of each brain area (node) is represented as 

ℎ(𝑡), which varies over time 𝑡 and is affected by the brain's graph structure. The progression of these states is articulated by the differential equation in 

equation 1. 

 

where 𝐴 is the adjacency matrix denoting the functional connectivity among brain areas, and 𝜃 represents the model's learnable parameters. This approach 

enables the depiction of neuronal activity in brain areas to change continuously over time, considering both their intrinsic activity and connections with 

interconnected regions. In contrast to conventional recurrent or convolutional methods that perceive time as a discrete series of snapshots, Neural ODEs 

offer a continuous time modelling capacity, effectively capturing subtle variations in brain network dynamics that may indicate neurodegenerative 

processes in Alzheimer's disease. 

We employed an ODE-GCN (Graph Convolutional Neural Ordinary Differential Equation) architecture to create this model. The fundamental concept is 

to implement graph convolutions within the derivative function 𝑓, facilitating message transmission among nodes throughout the integration process. We 

utilized the adaptive Runge-Kutta Dopri5 solver, which dynamically adjusts the time steps for integrating the ODE according to error assessments. This 

guarantees both numerical stability and efficiency in modelling subjects with diverse temporal signal properties. The segmented rs-fMRI time frames of 

each participant were converted into a dynamic graph sequence and encoded into starting node states, thereafter, input into the ODE solver. This 

integration yields a series of latent representations that encapsulate the temporal variations in each region's functional involvement within the dynamic 

brain network. Following the continuous integration, we executed temporal and spatial pooling on the final latent states of all nodes to derive a succinct 

graph-level representation. This embedding encapsulates the subject's comprehensive brain dynamic profile over time and space. Subsequently, we sent 

this representation through a fully linked neural regressor, yielding a singular scalar value— the estimated brain age. This prediction is designed to reduce 

the mean absolute error (MAE) between the estimated age and chronological age. The ODE-GCN architecture combines the neural ODE framework with 

graph-based learning and temporal modelling, providing a systematic and coherent method to reveal nuanced age-related functional impairments in 

individuals, especially those within the Alzheimer's disease spectrum. Overview of our proposed system is shown in figure 1. 
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Fig. 1 Overview of the proposed system. It begins with input G = (V, E), Each node is assigned initial features derived from rs-fMRI data. These 

features are encoded into initial hidden states ℎ (0), forming a matrix of shape ∣𝑉∣×𝑑. The system then models the evolution of these hidden states 

using a differential equation. Then An ODE solver integrates these dynamics to compute h(T), the latent states at time. The result is a learned 

representation matrix. These representations can then be used for the brain age prediction. 

3. Results 

3.1 Brain age prediction 

The proposed ODE-GCN model shown robust prediction capabilities in determining brain age using dynamic rs-fMRI-derived brain graphs. We assessed 

its performance utilizing three key metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Pearson Correlation Coefficient (PCC) 

between the predicted and actual ages the performance comparison is shown in figure 2. In comparison to various baseline models—Support Vector 

Regression (SVR), static Graph Convolutional Networks (GCN), and Transformer-based Graph Neural Networks (GNNs)— Our results in Table 1 

attained the lowest Mean Absolute Error (MAE) of 5.51 years, the lowest Root Mean Square Error (RMSE) of 7.02 years, and the highest Pearson 

Correlation Coefficient (PCC) of 0.49, signifying a more robust linear correlation with actual age. The results underscore the model's capacity to elucidate 

intricate spatiotemporal patterns in brain connectivity, indicating that employing Neural ODEs for dynamic changes yields more precise and biologically 

relevant age prediction. The exceptional performance of ODE-GCN is due to its capacity to represent the continuous-time evolution of brain network 

states, as opposed to depending on static or discretely sampled connection snapshots. In contrast to conventional approaches that regard functional brain 

connectivity as temporally constant, ODE-GCN synthesizes information across temporal intervals and acquires a continuous trajectory of the evolving 

functional roles of each brain region throughout time. This dynamic modelling is especially pertinent to Alzheimer's disease, in which slow and region-

specific functional deterioration frequently precedes structural loss. Ablation investigations demonstrated that the exclusion of temporal dynamics or the 

use of static representations markedly diminished performance, so affirming that the time-varying characteristics of rs-fMRI provide essential information 
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for estimating brain age. These findings indicate that temporal graph modelling using ODEs significantly improves the early detection of 

neurodegenerative alterations compared to static models alone. 

Table 1. Comparison with other models 

Model MAE RMSE PCC 

SVR 6.38 7.90 0.39 

GCN (static) 6.02 7.65 0.41 

Transformer-GCN 5.92 7.56 0.44 

ODE-GNN (ours) 5.51 7.02 0.49 

3.2 Brain age gap 

The Brain Age Gap (BAG) refers to the disparity between the brain age predicted by a model and the individual's actual chronological age.  This metric 

provides an interpretable means of evaluating accelerated or decelerated brain aging, where positive BAG values suggest a brain that appears "older" than 

anticipated, while negative values indicate a "younger" appearing brain.  In the realm of neurodegeneration, specifically Alzheimer’s disease (AD), a 

persistently high BAG indicates that the individual’s functional brain connectivity patterns are akin to those of an older demographic, possibly signifying 

pathological aging mechanisms. This study involved the computation of the BAG across four clinical groups: Healthy Controls (HC), Early Mild 

Cognitive Impairment (EMCI), Late MCI (LMCI), and Alzheimer’s Disease (AD).  The results indicated a distinct trend: the mean BAG exhibited a 

progressive increase from HC to EMCI, LMCI, and ultimately AD.  HC subjects exhibited a near-zero BAG (−0.12 ± 1.32), indicating that their predicted 

brain ages were closely aligned with their chronological ages, which reflects standard aging processes.  The EMCI and LMCI groups exhibited 

progressively negative BAG values (−0.58 ± 1.55 and −0.97 ± 1.66, respectively), indicating potential deviations from typical aging patterns.  The AD 

group exhibited a positive BAG of +1.12 ± 1.78, suggesting that their brain functional patterns were significantly older than their chronological age. 

 The results shown in table 2 are consistent with prior studies linking elevated BAG to the progression of AD (Gaser et al. 2013, Gonneaud et al. 2021).  

The application of dynamic functional connectivity graphs and a Neural ODE framework enhances the sensitivity of BAG in differentiating stages of 

cognitive decline.  This indicates that BAG, when obtained from temporally resolved models such as ours, might function as both a biomarker for aging 

and a discriminative indicator of disease severity in Alzheimer's and MCI populations.  The model's capacity to identify subtle functional deviations in 

EMCI patients presents opportunities for early-stage diagnosis and intervention, an aspect where traditional clinical assessments frequently lack 

effectiveness. 

Table 2. Results in HC, SMC, EMCI, MCI, LMCI, and AD 

Group BAG (mean ± std) 

HC -0.12 ± 1.32 

EMCI -0.58 ± 1.55 

LCMI -0.97 ± 1.66 

AD +1.12 ± 1.78 

3.3 Ablation study 

We performed a series of ablation studies to assess the specific contributions of essential architectural components in the proposed ODE-GCN model.  

The experiments sought to isolate and quantify the effects of modelling temporal dynamics and integrating weighted connectivity information on overall 

model performance.  We evaluated the contribution of each component to the predictive accuracy and biological relevance of brain age estimation by 

systematically disabling or altering individual elements. 

 Initially, we eliminated the time-dependence by substituting the dynamic, time-evolving graph representation with a static functional connectivity graph 

obtained from the complete rs-fMRI time series.  This simplification transformed the ODE-GCN into a standard static GCN model that processes a single 

connectivity snapshot per subject.  The Mean Absolute Error (MAE) increased by approximately 0.41 years, indicating that temporal modelling enhances 

prediction accuracy.  The observed decline in performance indicates that dynamic brain activity patterns, including transient connectivity changes and 

temporal fluctuations in network strength, provide significant insights into age-related functional decline.  The ODE-GCN effectively captures these 

dynamics, providing a more profound representation of the brain's evolving functional state, which static models do not utilize. We analyses the impact 

of eliminating edge weights, thereby transforming the graph from a weighted to an unweighted structure, in which all functional connections were 

regarded as equally significant.  This modification decreased the Pearson Correlation Coefficient (PCC) between predicted and chronological age from 

0.49 to 0.43, signifying a significant reduction in the model's capacity to represent the nuanced, strength-dependent relationships among brain regions.  
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Weighted edges represent the strength of functional associations, and their elimination results in a less informative graph structure, consequently 

diminishing the model's representational capacity.  The findings underscore the significance of precise functional edge weighting and temporal modelling 

in attaining reliable and biologically relevant brain age predictions.  The ablation study demonstrates that the complete ODE-GCN configuration, which 

includes weighted dynamic graphs, is crucial for optimizing model performance and interpretability in Alzheimer's disease research. 

 

Fig. 2 Model performance comparison 

3.4 Model evaluation metrics 

The proposed ODE-GCN model was evaluated using three key regression metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 

Pearson Correlation Coefficient (PCC), which are widely used in brain age prediction tasks. The MAE, given in equation 2 

 

measures the average absolute difference between the predicted brain age ӯ𝑖 and the actual chronological age 𝑦𝑖 , and was found to be 5.51 years, 

indicating high accuracy. The RMSE, defined as 

 

was 7.02 years, reflecting the model’s ability to minimize larger errors. The PCC, calculated as 

 

achieved a value of 0.49, showing a moderate to strong linear correlation between predicted and true ages. Additionally, the Brain Age Gap (BAG)—

computed as 𝐵𝐴𝐺𝑖 =  𝑦𝑖 − ӯ𝑖 was significantly higher in AD patients (+1.12 years), demonstrating the model’s sensitivity to pathological aging. These 

metrics collectively confirm that modelling brain dynamics with Neural ODEs offers improved accuracy and clinical relevance over static graph-based 

methods. 

3.5 Discussion 

The Proposed ODE-GNN framework presents a robust and biologically informed method for predicting brain age by modelling the continuous-time 

evolution of functional brain networks, a capability that traditional static or discrete models lack.  The model utilizes the temporal dynamics of resting-

state fMRI (rs-fMRI) to reveal nuanced patterns of connectivity changes over time, which are frequently overlooked in snapshot-based analyses.  This 

perspective is valuable for identifying transitional brain states, such as those seen in Mild Cognitive Impairment (MCI) and preclinical Alzheimer’s 

Disease (AD), where functional disruptions may not yet present as structural damage.  The model's capacity to localize time-sensitive brain regions, 

specifically the hippocampus, cingulate cortex, and praecuneus, enhances understanding of the brain areas most involved in pathological aging 

trajectories.  Rs-fMRI data exhibit greater noise compared to structural MRI, attributed to physiological artifacts and temporal variability. The continuous 

integration of temporal information in our ODE-GNN improves the model's robustness by enabling the learning of stable functional trends over time.  
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The framework enhances accuracy and sensitivity to early neurodegenerative changes, positioning it as a valuable tool for the early diagnosis and 

monitoring of Alzheimer’s progression. 

4. Conclusion 

This study introduces the first application of Neural ODEs to rs-fMRI-derived brain graphs for the purpose of predicting brain age.  The model 

demonstrates superior accuracy, identifies accelerated brain aging in Alzheimer's disease, and offers insights into temporal functional changes throughout 

various disease stages.  This method introduces novel avenues in dynamic brain modelling and the early diagnosis of neurodegenerative diseases. 

References 

Alzheimer's Disease Neuroimaging Initiative. (n.d.). Home page. Retrieved July 3, 2025, from https://adni.loni.usc.edu/ 

Bashyam, V. M., et al. (2020). MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14,468 individuals worldwide. 

Brain, 143, 2312–2324. https://doi.org/10.1093/brain/awaa160 

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary Differential Equations. Advances in Neural Information 

Processing Systems, 31. https://doi.org/10.48550/arXiv.1806.07366 

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2017, October 23). BrainNetome fMRI toolkit. Brainnetome. Retrieved July 3, 

2025, from http://www.brainnetome.org/toolkit/bf/201710/t20171023_385324.html 

Gao, J., Liu, J., Xu, Y., Peng, D., & Wang, Z. (2023). Brain age prediction using the graph neural network based on resting-state functional MRI in 

Alzheimer’s disease. Frontiers in Neuroscience, 17, 1222751. https://doi.org/10.3389/fnins.2023.1222751 

Gao, J., Liu, J., Xu, Y., Peng, D., & Wang, Z. (2023). Brain age prediction using the graph neural network based on resting-state functional MRI in 

Alzheimer’s disease. Frontiers in Neuroscience, 17, 1222751. https://doi.org/10.3389/fnins.2023.1222751 

Gaser, C., et al. (2013). BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE, 8, e67346. 

Gonneaud, J., et al. (2021). Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease. Nature Communications, 12, 5346. 

https://doi.org/10.1038/s41467-021-25492-9 

Hwang, G., Abdulkadir, A., Erus, G., Habes, M., Pomponio, R., Shou, H., et al. (2022). Disentangling Alzheimer’s disease neurodegeneration fromtypical 

brain ageing using machine learning. Brain Commun. 4, fcac117. doi: 10.1093/braincomms/fcac117 

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning 

Representations (ICLR). https://arxiv.org/abs/1609.02907 

Millar, P. R., et al. (2022). Predicting brain age from functional connectivity in symptomatic and preclinical Alzheimer disease. Neuroimage, 256, 119228. 

https://doi.org/10.1016/j.neuroimage.2022.119228 

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., & Sun, Y. (2020). Masked Label Prediction: Unified Message Passing Model for Semi-Supervised 

Classification. IJCAI 2021. https://doi.org/10.24963/ijcai.2021/214 

Suleiman, A. B., Luka, S., & Ibrahim, M. (2023). Cardiovascular disease prediction using random forest machine learning algorithm. FUDMA Journal 

of Sciences, 7(6), [pages if available]. https://doi.org/10.33003/fjs-2023-0706-2128 

Suleiman, A. B., Mahmud, A. I., & Anche, A. A. (2025). Ensemble-based deep learning architecture for fish disease detection and classification. 

Computers, Materials & Continua, 76(2), 2589–2607. https://doi.org/10.32604/cmc.2023.037733 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of 

activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. 

https://doi.org/10.1006/nimg.2001.0978 

Vapnik, V. (1998). The support vector method of function estimation. In Nonlinear Modeling: Advanced Black-Box Techniques (pp. 55–85). Springer. 

https://doi.org/10.1007/978-1-4615-5703-6_3 

Ying, Z., et al. (2019). GNNExplainer: Generating explanations for graph neural networks. Advances in Neural Information Processing Systems, 32. 

https://doi.org/10.48550/arXiv.1903.03894 

Zhao, L., Akoglu, L., & Zhang, Y. (2021). Learning from Evolving Graphs with Neural ODEs. Proceedings of the Web Conference (WWW). 

https://doi.org/10.1145/3442381.3449914 

 

 

https://adni.loni.usc.edu/
https://doi.org/10.1093/brain/awaa160
https://doi.org/10.48550/arXiv.1806.07366
http://www.brainnetome.org/toolkit/bf/201710/t20171023_385324.html
https://doi.org/10.3389/fnins.2023.1222751
https://doi.org/10.1038/s41467-021-25492-9
https://arxiv.org/abs/1609.02907
https://doi.org/10.1016/j.neuroimage.2022.119228
https://doi.org/10.24963/ijcai.2021/214
https://doi.org/10.1007/978-1-4615-5703-6_3
https://doi.org/10.48550/arXiv.1903.03894

