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A B S T R A C T 

The rapid advancement of intelligent transportation systems has brought with it a demand for decentralized and ultra-low-latency computing. Mobile Edge 

Computing (MEC) meets this demand by placing computation closer to the data source—such as smart vehicles, traffic sensors, and edge nodes—thereby enabling 

faster decision-making and improved efficiency. However, this shift to distributed infrastructure also introduces significant cybersecurity challenges. Traditional 

security solutions like firewall rules or signature-based Intrusion Detection Systems (IDS) fall short in this context, particularly when facing zero-day attacks, 

unknown threats, or high-speed real-time traffic at the edge. 

To address these limitations, our project proposes a hybrid deep learning-based security system that leverages two key techniques: (1) an unsupervised Autoencoder 

for detecting anomalies by learning patterns in normal network traffic and measuring reconstruction error, and (2) a supervised XGBoost classifier to categorize 

the detected anomalies into specific attack types like DDoS, PortScan, WebAttack, etc. The entire system is implemented using Python and includes a Flask-based 

REST API to accept live or simulated traffic as 78-dimensional feature vectors. The API processes these inputs and returns JSON-formatted predictions that indicate 

whether the traffic is malicious or benign. 

Moreover, to ensure ease of use and real-time visibility, a user-friendly Streamlit dashboard is integrated to visualize results. The dashboard displays detection 

statistics, attack probability scores, confidence levels, and supports both automated monitoring and manual traffic analysis. The solution is designed for modular 

deployment and is fully containerized using Docker, making it platform-independent and scalable across various edge environments, including MEC gateways. 

This comprehensive and adaptive system demonstrates high accuracy (>95%) in detecting unknown threats and over 99% classification precision on known attacks, 

making it an ideal fit for real-time protection in next-generation transportation networks. 

Keywords: MEC, Intrusion Detection System (IDS), Autoencoder, Anomaly Detection, XGBoost, Cybersecurity, Docker, Streamlit, Flask API, Real-

Time Detection. 

1. Introduction: 

In recent years, the evolution of intelligent transportation systems (ITS) has redefined how vehicles, infrastructure, and communication networks 

interact. These systems rely on vast amounts of real-time data to make critical decisions that ensure safety, reduce congestion, and optimize resource use. 

However, as transportation systems become increasingly connected and automated, they are also becoming more vulnerable to cyber threats. Attacks 

on connected vehicles, smart traffic signals, and roadside units can not only disrupt services but may also pose serious risks to human life. 

To support the real-time data needs of ITS, Mobile Edge Computing (MEC) has emerged as a crucial architectural paradigm. Unlike traditional cloud 

computing models where data must travel long distances to centralized servers, MEC pushes computation and storage closer to the data source. This 

reduces latency, enhances responsiveness, and makes real-time analytics feasible for applications such as autonomous driving, traffic prediction, and 

emergency response. However, the decentralized and dynamic nature of MEC also exposes new cybersecurity challenges. Edge nodes, due to their 

geographic distribution and physical exposure, often lack robust protection mechanisms, making them attractive targets for attackers. 

Traditional Intrusion Detection Systems (IDS), which depend on predefined signatures or rules, are inadequate in these contexts. They struggle to detect 

zero-day attacks or previously unseen threats, especially in environments where traffic patterns vary dynamically. Moreover, these systems often rely 

on centralized infrastructures, which are not compatible with the decentralized nature of MEC. 

To overcome these limitations, this project proposes a hybrid deep learning-based security solution designed specifically for MEC-enabled 

transportation networks. The system employs an unsupervised autoencoder neural network that learns to reconstruct normal network traffic. Any input 

with a high reconstruction error is flagged as an anomaly. If an anomaly is detected, the input is further processed by a supervised XGBoost classifier, 
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which identifies the specific type of attack. This two-stage approach ensures that the system can both detect unknown threats and provide meaningful 

classification for actionable response. 

Additionally, the solution includes a Flask-based REST API for real-time traffic classification and a Streamlit dashboard for live monitoring and 

analysis. The dashboard provides intuitive visualizations of detection results, including error metrics, confidence levels, and attack distribution. To make 

the system platform-independent and easily deployable, the entire stack is containerized using Docker. 

In essence, this project bridges the gap between security and low-latency edge computing, ensuring that ITS applications remain both responsive and 

resilient against emerging cyber threats. The proposed model provides not just high detection accuracy but also practical usability for deployment in real-

world, distributed environments. 

Nomenclature 

Term / Abbreviation Description 

MEC Mobile Edge Computing - A decentralized architecture that brings computation and storage closer to the data source. 

ITS Intelligent Transportation System - Network of technologies enabling smart and connected transportation. 

IDS Intrusion Detection System - A system designed to detect unauthorized access or anomalies in a network. 

Autoencoder 
A type of unsupervised neural network used for anomaly detection by reconstructing input data and comparing it to the 

original. 

XGBoost eXtreme Gradient Boosting - A supervised machine learning algorithm used for classification tasks. 

API Application Programming Interface - Enables communication between different software components. 

Flask A lightweight Python-based web framework used to build the REST API for this project. 

Streamlit A Python library for building interactive dashboards and user interfaces for machine learning applications. 

Docker An open-source platform used to containerize applications for consistent deployment across systems. 

CICIDS2017 
Canadian Institute for Cybersecurity Intrusion Detection System 2017 - A widely-used benchmark dataset for intrusion 

detection tasks. 

Reconstruction 

Error 

The error calculated as the difference between the original input and the reconstructed output of the autoencoder. Used to 

detect anomalies. 

Threshold A pre-calculated value used to decide whether the reconstruction error indicates an anomaly. 

Label Encoder A tool used to convert categorical labels (e.g., 'DDoS', 'PortScan') into numeric values for machine learning models. 

BENIGN A label used in datasets to refer to normal (non-malicious) traffic. 

Anomaly Detection Identifying patterns in data that do not conform to expected behavior, often without labeled data. 

Zero-day Attack A previously unknown vulnerability exploited by attackers before developers are aware and can patch it. 

Feature Vector An array of numerical values representing traffic data features (e.g., packet count, duration) used for prediction. 

Preprocessing The stage in the ML pipeline where raw data is cleaned, normalized, and prepared for training/inference. 

1.1 Table: 

The table below summarizes the performance metrics obtained by evaluating the MEC Security System’s detection pipeline. The evaluation was 

performed in two parts: 

• Anomaly Detection Phase using the Autoencoder model trained on normal traffic. 

• Attack Classification Phase using an XGBoost classifier trained on anomalous traffic labeled with specific attack types. 

The metrics include Accuracy, Precision, Recall, and F1-Score, which provide quantitative insight into the effectiveness of both models in terms of 

correctly identifying and classifying security threats. 
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Table 1: Performance Comparison 

Model Accuracy Precision Recall F1-Score 

Autoencoder 95.6 % 95.0 % 94.8 % 94.9 % 

XGBoost Classifier 99.98 % 99.97 % 99.96 % 99.965 % 

Interpretation: 

• The Autoencoder model effectively distinguishes between normal and abnormal traffic by learning the behavior of benign patterns and flagging 

any major deviation as suspicious. Its 95.6% accuracy and balanced precision-recall indicate strong generalization capability in unseen traffic 

data. 

• Once an anomaly is detected, the XGBoost classifier identifies the specific attack type (e.g., DDoS, PortScan, Botnet). With an accuracy of 

99.98%, it shows exceptional performance in classifying known threats. The near-perfect scores across all metrics confirm its robustness. 

• This two-stage architecture (unsupervised + supervised) enhances both detection and classification accuracy, making the system lightweight 

yet effective for real-time deployment in Mobile Edge Computing environments. 

2. System Analysis and Design 

2.1 Existing System: 

Traditional Intrusion Detection Systems (IDS) used in network security rely primarily on signature-based detection mechanisms. These systems 

maintain a database of known attack patterns or malicious behavior signatures and attempt to match incoming traffic against them. While they are effective 

for known threats, they completely fail to detect novel or zero-day attacks, which do not match any pre-existing pattern in the system. 

In the context of Mobile Edge Computing (MEC) and intelligent transportation systems, this limitation becomes more severe. Most of the existing 

systems: 

• Are centralized, making them unsuitable for edge environments that require decentralized, low-latency responses. 

• Are resource-intensive, and not optimized for deployment on lightweight edge devices like routers or vehicular IoT systems. 

• Lack self-learning mechanisms, which means they do not adapt to evolving cyber threat patterns. 

• Do not support real-time visualization, making it difficult for administrators to get timely insights or act quickly. 

Additionally, many conventional IDS solutions offer limited user interfaces, making them inaccessible to non-expert users and administrators. They 

often lack modularity, and any attempt to upgrade the detection logic or integrate them with newer APIs or data pipelines usually requires extensive 

manual intervention. 

Thus, the need arises for a modern, flexible, and adaptive security system that not only identifies previously unseen attacks using unsupervised 

learning, but also integrates smoothly with MEC deployments for real-time monitoring, decision-making, and automated response generation. 

2.2 Proposed System: 

 

To address the critical limitations of existing Intrusion Detection Systems (IDS) in Mobile Edge Computing (MEC)-enabled transportation environments, 

this project proposes a robust and modular anomaly-based detection framework. The proposed system leverages a hybrid deep learning architecture that 

combines the unsupervised learning capability of an Autoencoder with the supervised classification power of XGBoost. 

The primary innovation of this system lies in its ability to detect unknown or zero-day attacks by analyzing traffic behavior rather than relying on 

predefined attack signatures. The Autoencoder model is trained exclusively on normal (benign) traffic, learning the underlying patterns and distributions. 

During deployment, the model reconstructs incoming traffic vectors and flags instances with high reconstruction errors as anomalies. 

For every traffic instance identified as anomalous, the XGBoost classifier is invoked to categorize the attack type, offering fine-grained visibility into the 

nature of the threat. This two-stage detection pipeline provides both general anomaly detection and specific threat classification, ensuring better situational 

awareness. 

Key features of the proposed system include: 

• REST API Layer: Built using Flask, the API allows external clients or monitoring tools to send traffic data and receive predictions in JSON 

format. 
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• Real-time Streamlit Dashboard: A web-based interface that supports visual monitoring of traffic, displays detection results with confidence 

scores, shows attack distribution, and allows manual testing. 

• Containerized Deployment: The system is Dockerized for platform independence and quick deployment across different environments. 

• Modularity: Components like the Autoencoder, classifier, scaler, and dashboard are loosely coupled, allowing easy maintenance and future 

enhancements. 

• In-memory Logging: Although the system currently avoids external database dependencies, it stores predictions and logs in memory for real-

time historical visualization and future integration with persistent storage solutions. 

This system is specifically tailored to transportation networks, where high-speed data processing, low latency, and adaptive security are essential. The 

proposed architecture can be deployed not only on edge gateways or routers in vehicular networks but also in smart traffic systems, public transport 

coordination hubs, and other critical mobility infrastructure. 

Overall, the proposed system offers a lightweight, scalable, and intelligent approach to modern network security, marking a significant improvement over 

legacy IDS frameworks in MEC environments. 

2.3 Architecture: 

 

Fig. 1 – System Architecture 
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The architecture of the proposed MEC Security System has been thoughtfully designed to address the core challenges associated with detecting cyber-

attacks in mobile edge computing environments. It adopts a modular and layered approach, ensuring clear separation of concerns between data handling, 

anomaly detection, attack classification, and user interaction. This architectural design allows for improved scalability, easier debugging, and seamless 

adaptability to future upgrades. 

At the heart of the system lies the data ingestion and preprocessing pipeline. This component is responsible for receiving incoming network traffic in the 

form of 78-dimensional feature vectors. These vectors are submitted through a Flask-based RESTful API endpoint (/detect), enabling external systems 

to interface with the model programmatically. Upon receiving the data, the system applies a pre-trained StandardScaler to normalize the input features, 

ensuring that they are consistent with the distribution of the training data used to build the model. 

 

The normalized data is then passed to an unsupervised deep learning model, specifically an autoencoder. This autoencoder has been trained solely on 

benign traffic and is designed to reconstruct inputs that it recognizes as "normal." If the input is similar to known traffic behavior, the model reconstructs 

it accurately with low error. However, if the reconstruction error — measured by Mean Squared Error (MSE) — exceeds a certain threshold (defined by 

the 95th percentile of training MSE values), the input is flagged as an anomaly. This threshold, saved during training as threshold.npy, serves as the 

decision boundary between normal and potentially malicious behavior. 

Once an anomaly is detected, the system invokes a secondary model — an XGBoost classifier — to determine the specific type of attack. This classifier, 

trained on preprocessed attack samples, predicts the attack label and provides a set of probability scores indicating its confidence in the classification. 

Both the classifier and the associated label encoder are stored as serialized objects (attack_classifier.pkl and attack_encoder.pkl) and are loaded during 

runtime for fast and efficient predictions. 

All prediction results, whether normal or anomalous, are sent to a Streamlit-based dashboard. This dashboard acts as the primary user interface, displaying 

real-time outputs, visual analytics, and history logs. It supports both automatic data flow (from the API) and manual testing, allowing administrators to 

enter custom traffic vectors to evaluate the system’s behavior. Charts and metrics are also generated dynamically to help monitor system accuracy, error 

rates, and attack type distributions. 

To ensure platform independence and ease of deployment, the entire system — including the Flask API, trained models, and dashboard — is packaged 

using Docker. This containerization guarantees that the system will run identically across various environments, regardless of the host operating system 

or dependency versions. 

3. Methodology: 

The development of the MEC Security System followed a structured multi-phase methodology that ensured logical progression from raw data acquisition 

to final system deployment. Each phase was critical in achieving the objective of real-time anomaly detection and attack classification for MEC-enabled 

transportation networks. 

1. Dataset Collection and Preparation: The process began with the acquisition of the CICIDS2017 dataset, a comprehensive intrusion detection 

dataset containing a wide range of normal and attack traffic types. The raw CSV files were preprocessed to remove inconsistencies such as 

missing values, infinite values, and unnecessary whitespace in column headers. All datasets were merged, and labels were standardized. Two 

versions of the dataset were created—one for training the anomaly detection model, and the other for training the classifier. 

2. Anomaly Detection Using Autoencoder: The cleaned dataset was first used to train a deep autoencoder model in an unsupervised manner. 

Only "BENIGN" (normal) samples were used during this phase. The autoencoder learns to reconstruct normal traffic. Once trained, it was 

used to evaluate traffic samples based on their reconstruction error (Mean Squared Error). Inputs with errors above the 95th percentile threshold 

were flagged as anomalies. This stage ensured the system could detect even unknown or zero-day threats without relying on labeled attack 

data. 

3. Attack Type Classification Using XGBoost: To enhance the functionality of the anomaly detector, a supervised classifier (XGBoost) was 

trained to categorize anomalous traffic into predefined attack types such as DDoS, PortScan, WebAttack, Heartbleed, etc. This training used 

the samples flagged as attacks in the dataset. A LabelEncoder was applied to convert string-based labels into numeric form for training and 

decoding during inference. This classifier helped identify the nature of each detected threat. 

4. Model Integration and REST API Development: Once both models were trained, they were integrated into a unified inference pipeline. A 

RESTful API was developed using Flask, which accepts a 78-dimensional traffic feature vector via POST requests. The API first runs the 

input through the autoencoder, checks if it's an anomaly, and if so, classifies it using the XGBoost model. The API then returns a detailed 

JSON response indicating whether the input is normal or malicious, the attack type, and the model’s confidence scores. 

5. Real-Time Visualization via Streamlit Dashboard: To make the system user-friendly and allow real-time monitoring, a front-end interface 

was developed using Streamlit. The dashboard provides live visualizations of incoming traffic predictions, confidence scores, anomaly 

thresholds, and statistical charts. It also supports manual input of traffic samples for offline testing. This interface bridges the gap between 

automated detection and human decision-making. 



International Journal of Research Publication and Reviews, Vol 6, Issue 7, pp 2146-2153 July 2025                                     2151 

 

 

6. Containerization and Deployment with Docker: The entire system—including the trained models, Flask API, and dashboard—was 

containerized using Docker. This makes the project highly portable and easy to deploy across different environments such as local machines, 

edge devices, or cloud platforms. Docker ensures consistency in behavior regardless of the host system, aligning with the scalable and 

distributed nature of MEC. 

This step-by-step methodology allows for modular development, scalable deployment, and real-time security insights, addressing the core challenges 

faced in MEC-based cybersecurity. 

4. Results:  

Autoencoder Performance (Anomaly Detection Accuracy) 

 

The first phase of evaluation involved measuring how effectively the autoencoder could detect anomalies in network traffic. The model was trained using 

only "BENIGN" traffic to learn normal patterns. A threshold was established at the 95th percentile of the reconstruction error distribution. 

The figure illustrates the reconstruction error distribution across normal and anomalous traffic. Most benign inputs stay below the threshold, while 

abnormal patterns (attacks) result in significantly higher errors. This separation demonstrates that the autoencoder reliably distinguishes unseen threats, 

making it ideal for zero-day attack detection in MEC systems. 

Classifier Accuracy Comparison (Attack Type Prediction) 

 

Once an input was flagged as anomalous, it was passed to the XGBoost classifier to identify the specific type of attack. The classifier was trained on 

several attack categories including DDoS, PortScan, WebAttack, Heartbleed, Botnet, and others. 

In tests using CICIDS2017 attack samples, the XGBoost model achieved: 
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Metric Score 

Accuracy 99.82% 

Precision 99.76% 

Recall 99.78% 

F1 Score 99.77% 

These high metrics confirm that the model was not only accurate in detection but also consistent across different attack categories. It accurately predicted 

the nature of malicious traffic, minimizing false positives. 

Dashboard Response Time & Visualizations 

 

The Streamlit dashboard displayed real-time attack classification within an average response time of 1.2 seconds per sample on standard hardware. The 

dashboard also visualized: 

• Real-time reconstruction error 

• Prediction confidence and probabilities 

• Attack distribution charts 

• History of recent traffic classifications 

The real-time feedback loop between backend inference and frontend visualization makes the system practical for deployment in smart transport hubs, 

vehicular networks, and traffic control systems. 

Conclusion: 

The evolution of intelligent transportation systems and Mobile Edge Computing (MEC) has opened the door to numerous real-time services but also 

introduced significant cybersecurity challenges. Through this project, we aimed to address those threats by developing a real-time anomaly detection 

system that is both robust and scalable. 

The proposed solution leverages a deep learning autoencoder to identify previously unknown threats based on reconstruction errors, removing the 

dependency on labeled datasets—a common limitation in traditional Intrusion Detection Systems (IDS). To further enhance its functionality, the system 

includes an XGBoost classifier to categorize detected anomalies into specific attack types, enabling more informed responses by network administrators. 

In addition to the backend intelligence, we built a responsive Streamlit-based dashboard to monitor traffic in real-time, visualize attack distributions, and 

allow manual testing—all contributing to ease of usability and operational transparency. 

The results from our evaluation using the CICIDS2017 dataset demonstrate the effectiveness of our hybrid approach. The autoencoder showed strong 

capabilities in detecting anomalies, while the XGBoost classifier delivered high accuracy in identifying known attacks. The system also maintained low 

latency (<2 seconds) for detection, ensuring its practical deployment in real-time environments. 
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By integrating deep learning, API-driven detection, and interactive visualization into a modular Dockerized environment, this project proves to be a 

significant step toward secure, scalable, and edge-compatible cybersecurity infrastructure for next-generation transportation networks. 

Future Enhancements: 

While the current implementation of the MEC Security System successfully demonstrates real-time anomaly detection using a combination of 

autoencoders and XGBoost classifiers, there is significant potential for further development and expansion. One major enhancement would be the 

integration of real-time traffic stream analysis, allowing the system to process data directly from live network sources such as packet capture tools or 

MEC-enabled gateways. This would transform the system from a simulated prototype into a fully deployable real-world solution. 

Additionally, the current use of autoencoders for anomaly detection could be extended by incorporating sequence-based models such as LSTM (Long 

Short-Term Memory) or GRU (Gated Recurrent Unit). These models can better analyze temporal dependencies in network traffic, which is especially 

useful for detecting sophisticated multi-stage or time-delayed attacks. On the usability front, the dashboard interface can be improved by adding role-

based access control and login mechanisms to restrict unauthorized access and ensure better system security. 

To make the system more intelligent over time, a feedback loop could be introduced, enabling semi-supervised learning. Here, administrator-labeled 

attack feedback could be used to continuously refine both the anomaly detection and classification models. Moreover, integration with external threat 

intelligence services, such as MITRE ATT&CK or VirusTotal, could provide enriched context for identified threats and assist in automated threat 

validation. 

Looking at deployment scalability, the system could be adapted for distributed MEC environments using container orchestration platforms like 

Kubernetes. This would allow the system to run across multiple edge nodes, with centralized control and failover mechanisms. Finally, improvements in 

data visualization—such as exportable reports, attack trend graphs, and time-based analytics—would help security personnel understand patterns more 

clearly. A cloud synchronization feature could also be added to aggregate data across deployments for broader situational awareness. 

These enhancements would significantly strengthen the system’s capabilities, making it a robust and intelligent security layer for modern transportation 

networks powered by Mobile Edge Computing. 
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