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ABSTRACT:  

Wavelet transform is a powerful analytical technique increasingly utilized for analysing non-stationary and transient signals. It decomposes a signal into two key 

components: approximations (low-frequency parts reflecting the average behaviour) and details (high-frequency parts capturing differential features). The 

Multiresolution Analysis (MRA) framework allows for adaptive resolution levels depending on the characteristics of the signal. A variant known as the Stationary 

Wavelet Transform (SWT) enhances the Discrete Wavelet Transform (DWT) by eliminating down-sampling; instead, it up-samples the filter by a factor of two at 

each decomposition level, thereby preserving translation invariance. The Locally Stationary Wavelet (LSW) process is particularly suited for examining non-

stationary datasets, such as financial time series, by breaking them down into distinct frequency bands using wavelets. In this study, the economic trends of India 

and Uttar Pradesh are forecasted using both general linear models and wavelet-based prediction methods. Historical economic data spanning 2004–05 to 2023–24 

serves as the input, and future projections are extended up to 2035–36 through analysis using the LSW process. The study highlights a notable and consistent rise 

in the economic growth of India and Uttar Pradesh, observed in the present and projected for the near future. 

Keywords: wavelet, India, Uttar Pradesh, Income, LSW, MRA 

1. Introduction 

Fourier transform is a widely used technique in spectral analysis, where functions are represented using trigonometric components of varying periods 

across different scales. It is a powerful analytical method with applications spanning mathematics, physics, and engineering. From a statistical perspective, 

computing the Fourier spectrum of a function is equivalent to fitting sine and cosine functions of different frequencies using the least squares method. 

This type of multiple regression with trigonometric functions is both elegant and straightforward. Since sine and cosine functions are orthonormal, the 

Fourier coefficients can be easily computed either as a summation in the discrete case or an integral in the continuous case. This entire procedure is 

referred to as Fourier transformation [1]. Fourier transform plays a fundamental role in several scientific disciplines. In fields such as optics, acoustics, 

and electronics, both the waveform and its spectral representation are physically observable and measurable. Instruments like oscilloscopes visually 

display optical or electrical waveforms, while the human ear directly perceives acoustical spectra. The waveform and its spectrum are mathematically 

linked through the Fourier transform, underlining its deep physical significance. Additionally, the theory behind phase contrast microscopes and frequency 

modulation detection circuits can both be explained through transformation concepts. A linear and time-invariant system responds harmonically to 

harmonic inputs at the same frequency, which further illustrates the practical utility of Fourier analysis [2]. 

Wavelet theory emerged in the early 1980s through interdisciplinary collaboration among mathematicians, engineers, and physicists. Unlike the relatively 

simpler domain of stationary signals, transient signals are more complex and varied. Wavelets provide a framework for analysing these signals by 

decomposing them into basic, localized elements at various positions and scales. This has proven especially effective in applications like image edge 

detection. In the discrete wavelet transform (DWT), filters (both high-pass and low-pass) are used to achieve variable time and frequency resolutions, 

with sub-sampling used to control scaling [3-4]. The input signal is repeatedly processed through these filters to extract information at multiple levels. 

2. Wavelet Transforms 

While the Fourier transform is effective for analysing time-invariant signals with finite energy, it does not offer information about how frequency 

components evolve over time in non-stationary signals. To address this, a windowing technique was introduced, where a time-localized window function 

is applied before performing the Fourier transform. This concept, introduced by Gabor in 1946, allows for the analysis of localized frequency content by 

sliding the window across the time domain and computing the transform at each position (Antoine, 2004). This approach is known as the Short-Time 

Fourier Transform (STFT) or Windowed Fourier Transform (WFT). However, according to the Heisenberg uncertainty principle, one cannot 
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simultaneously achieve high precision in both time and frequency. Therefore, a trade-off must be made: high-frequency components require finer time 

resolution, while low-frequency components benefit from better frequency resolution. This leads to the idea of analysing the signal in segments using 

short windows for high-frequency content and longer windows for low-frequency trends. Wavelets address this challenge by using functions that oscillate 

briefly and then decay, making them ideal for capturing both transient and long-duration features [5]. 

In essence, a wavelet is a localized, oscillatory function that captures signal characteristics over short intervals and then fades out, making it well-suited 

for analysing nonstationary and time-varying signals. For any two real numbers a and b, a wavelet function is defined as [6]: - 

                                                 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) = 𝑇𝑏𝐷𝑎𝜓                                                            (1) 

Putting 𝑎 = 2−𝑗 and 
𝑏

𝑎
= 𝑘, we get discrete wavelets as following: - 

                                                   𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘)                                                                     (2) 

where 𝑎 and 𝑏 are the dilation and translation parameter respectively. In this case, ψ(t) is a real-valued function, and the set of wavelets forms an 

orthonormal basis 

The continuous wavelet transform is the modified WFT and defined as: -  

                                                     𝑊𝑎,𝑏 = ∫ 𝑓(𝑡)
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) 𝑑𝑡                                                               (3) 

The discrete wavelet transform is defined as: - 

                                                      𝑊𝑗,𝑘 = ∫ 𝑓(𝑡)2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘) 𝑑𝑡                                               (4) 

2.1 Multiresolution Analysis (MRA):  

An MRA is a new recursive method to perform the discrete wavelet transforms [7-9]. It consists of a sequence 𝑉𝑗 : 𝑗 ∈  ℤ of closed subspaces of Lebesgue 

space 𝐿2(ℝ), a space of square integrable functions, satisfying the following properties: - 

1)  𝑉𝑗+1  ⊂ 𝑉𝑗  :  𝑗 ∈ ℤ 

2)  ∩𝑗∈ℤVj  = {0},  ∪𝑗∈ℤ =  𝐿2(ℝ) 

3)  For every 𝐿2(ℝ), 𝑓 (𝑡) ∈ 𝑉𝑗 ⇒ 𝑓(2𝑡) ∈ 𝑉𝑗+1,   

4) There exists a function 𝜙(𝑡)  ∈  𝑉0 such that {𝜙(𝑡 − 𝑘): 𝑘 ∈ ℤ} is orthonormal basis of 𝑉0. 

The function 𝜙(𝑡) is called scaling function of given MRA and property 3 implies a dilation equation as follows: - 

                                               𝜙(𝑡) = ∑ ℎ𝑘  √2𝑘∈𝑍 𝜙(2𝑡 − 𝑘)                                                               (5) 

Where hk is low pass filter and is defined as:       

 

                                                                       ℎ𝑘=(
1

√2
) ∫ 𝜙 (t)𝜙 (2𝑡 − 𝑘)

∞

−∞
𝑑𝑡                                                             (6) 

Now we consider 𝑊1  be orthogonal compliment of 𝑉1   in 𝑉0  i.e. 

                                                𝑉0= 𝑉1   ⊕ 𝑊1   

If  𝜓 ∈ 𝑊1 be any wavelet function then, 

                                                 𝜓(𝑡) = ∑ 𝑔𝑘𝑘∈𝑍 √2 𝜙(2𝑡 − 𝑘)                                                             (7)  

where 𝑔𝑘   =(−1)𝑘+1 ℎ1−𝑘   are high pass filters. In general, we can write, 

                                                    𝑉𝑗    = 𝑉𝑗+1    ⊕ 𝑊𝑗+1                                                                                       (8) 

But,                                          𝑉𝑗+1  = 𝑉𝑗+2   ⊕ 𝑊𝑗+2    

Therefore, 

                                                                                𝑉𝑗   = 𝑊𝑗+1   ⊕ 𝑊𝑗+2 ⊕ 𝑉𝑗+2    

                                                                                                . .        . . . .                . . 

                                                    𝑉𝑗    = 𝑊𝑗+1  ⊕ 𝑊𝑗+2   ⊕ 𝑊𝑗+3   ⊕............ 𝑊𝑗+𝑝 ⊕ 𝑉𝑗+𝑝                                     (9) 

where 𝑝 is any desired number representing the order of level of decomposition. 
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2.2 One dimensional (1D) wavelet transform:  

A function 𝑓 (that is for which ∫ |𝑓(𝑥)| 𝑑𝑥 < ∞
ℝ

) has a wavelet series expansion in vector space 𝑉𝑗, 

                    𝑓(𝑥) = ∑ 𝑎𝑗+𝑝,𝑘  𝑘∈ℤ 𝜙(𝑥 − 𝑘) + ∑ ∑ 𝑑𝑗+𝑝,𝑘  𝑘∈ℤ 𝜓𝑗+𝑝,𝑘
∞
𝑝=1 (𝑥)                               (10) 

It also follows that the sum ∑ 𝑎𝑗+𝑝,𝑘𝜙(𝑥 − 𝑘)𝑘∈ℤ  is the orthogonal projection of 𝑓 on the space 𝑉𝑗+𝑝  of square integrable functions that are constant on 

integer end point intervals [𝑘, 𝑘 + 1). For 𝑗 = 0, the sum ∑ ∑ 𝑑𝑗+𝑝,𝑘  𝑘∈ℤ 𝜓𝑗+𝑝,𝑘
∞
𝑝=1 (𝑥) adds the details required to obtain an approximation in the space 𝑉𝑝 

of square integrable functions that are constant on all intervals [10].  

If all such functions 𝑢 and 𝑣 are orthogonal (⟨𝑢, 𝑣⟩  =  0), then 𝑊𝑗  is the orthogonal complement of  𝑉𝑗 in 𝑉𝑗−1 (𝑉𝑗 ⊥ 𝑊𝑗) and the construction below will 

give the scaling function and mother wavelet of an orthonormal wavelet basis for 𝐿2((ℝ). By MRA, the orthogonal decomposition of 𝑝th level of space 

𝑉𝑗 is as following: -    

                                                𝑉𝑗 = 𝑉𝑗+𝑝⨁ ∑ 𝑊𝑗+𝑝
∞
𝑝=1  

A discrete signal is approximated in space of square summable sequences ℓ2(ℤ) as follows: - 

           𝑓[𝑛] =
1

√𝑀
∑ 𝑎[𝑗 + 𝑝, 𝑘]𝜙𝑗+𝑝,𝑘𝑘 [𝑛] +

1

√𝑀
∑ ∑ 𝑑[𝑗 + 𝑝, 𝑘]𝜓𝑗+𝑝,𝑘𝑘 [𝑛]∞

𝑝=1                        (11) 

Here 𝑓[𝑛],  𝜙𝑗+𝑝,𝑘[𝑛] and 𝜓𝑗+𝑝,𝑘[𝑛] are discrete functions defined in [0, 𝑀 − 1], totally 𝑀 points. Because the sets {𝜙𝑗+𝑝,𝑘[𝑛]}
𝑘𝜖ℤ

 and {𝜓𝑗+𝑝,𝑘[𝑛]}
 𝑘𝜖ℤ,𝑝𝜖ℤ+ 

are orthogonal to each other. The We wavelet coefficients can be obtained by taking the inner product as follows: -  

                                          𝑎[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗+𝑝,𝑘𝑛 [𝑛]                                                      (12)                                                                                 

                                           𝑑[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜓𝑗+𝑝,𝑘𝑛 [𝑛]                                                      (13)           

where  𝑎[𝑗 + 𝑝, 𝑘] and 𝑑[𝑗 + 𝑝, 𝑘] are called approximation and detailed coefficients respectively. From property of scaling function, 

𝜙𝑗,𝑘[𝑛] = 2𝑗 2⁄ 𝜙[2𝑗𝑛 − 𝑘] 

                                                      = 2𝑗 2⁄ ∑ ℎ𝑛′ [𝑛′]√2𝜙[2(2𝑗𝑛 − 𝑘) − 𝑛′] 

                                                      = 2(𝑗+1) 2⁄ ∑ ℎ𝑛′ [𝑛′] 𝜙[2(𝑗+1)𝑛 − 2𝑘 − 𝑛′] 

Let 𝑛′ = 𝑚 − 2𝑘, we have 𝜙𝑗,𝑘[𝑛] = 2(𝑗+1) 2⁄ ∑ ℎ[𝑚 − 2𝑘]𝜙[2(𝑗+1)𝑛 − 𝑚]𝑚 . Now the approximation coefficient,  

                                          𝑎[𝑗, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗,𝑘𝑛 [𝑛] 

                                                      =
1

√𝑀
∑ 𝑓[𝑛] 2𝑗 2⁄ 𝜙[2𝑗𝑛 − 𝑘]𝑛  

                                                      =
1

√𝑀
∑ 𝑓[𝑛] 2𝑗 2⁄

𝑛 ∑ ℎ[𝑚 − 2𝑘] 𝑚 √2𝜙[2𝑗+1𝑛 − 𝑚] 

                                                = ∑  𝑚 ℎ[𝑚 − 2𝑘] (
1

√𝑀
∑ 𝑓[𝑛] 2𝑗+1 2⁄

𝑛 𝜙[2𝑗+1𝑛 − 𝑚]) 

                                                      = ∑  𝑚 ℎ[𝑚 − 2𝑘] 𝑎[𝑗 + 1, 𝑛]                                                                                                       

                                                       = ∑  𝑛′ ℎ[𝑛′] ∗ 𝑎[𝑗 + 1, 𝑛], where  𝑘 ≥ 0. 

Similarly, for the detail coefficients, it is, 

                                            𝑎[𝑗, 𝑘] = 𝑔[𝑛′] ∗ 𝑑[𝑗 + 1, 𝑛], where  𝑘 ≥ 0.  

By taking 𝑗 = 0, we get, 

                                            𝑎[0, 𝑘] = ∑  𝑛′ ℎ[𝑛′] ∗ 𝑎[1, 𝑛] 

                                            𝑎[0, 𝑘] = 𝑔[𝑛′] ∗ 𝑑[1, 𝑛] where  𝑘 ≥ 0.  

2.3 Stationary Wavelet Transforms (SWT):  

In SWT, the same number of samples as the input is maintained at every decomposition level at decomposition of levels redundancy of in the wavelet 

coefficients exists. The SWT reconstructions result lower and error values and faster convergence compared to DWT [11]. This is achieved by SWT 

thresholding, which provides a translation-invariant basis. By SWT thresholding, a redundant decomposition can be obtained as follows: -  

�̃�
2𝑗
2𝑗𝑘+𝑝

= 〈𝑓(𝑡), 2𝑗 2⁄ 𝜙(2𝑗(𝑡 − 𝑝) − 𝑘)〉 

�̃�
2𝑗
2𝑗𝑘+𝑝

= 〈𝑓(𝑡), 2𝑗 2⁄ 𝜓(2𝑗(𝑡 − 𝑝) − 𝑘)〉 
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Where 𝑝 ∈ {0, …. 2𝑗− 1}. For decomposition level 𝑗𝑚, 2𝑗𝑚  different orthogonal bases are generated. Each path from the root of the tree to a leaf 

corresponds to the set of functions as follows: - 

                             {2𝑗 2⁄ 𝜓(2𝑗(𝑡 − 𝑝𝑗) − 𝑘)}⋃{2𝑗𝑚 2⁄ 𝜓(2𝑗(𝑡 − 𝑝𝑗𝑚
) − 𝑘)} 

Where 1≤ 𝑗 ≤ 𝑗𝑚, 𝑘 ∈ ℤ. form an orthogonal wavelet basis, resulting in a standard wavelet reconstruction.  

3. Locally stationary wavelet (LSW) prediction 

Every covariance-stationary process 𝑋𝑡 has a Cramer representation as follows: -  

                                                     𝑋𝑡 = ∫ 𝐴(𝜔)𝑒𝑖𝜔𝑡𝑑𝑧(𝜔)
𝜋

−𝜋
                                                  (14) 

Where 𝑑𝑧(𝜔) represents a stochastic process having orthonormal increments. Non-stationary processes represent a slow change over time of the amplitude 

𝐴(𝜔). In LSW process the amplitude 𝐴(𝜔) in the Cramer representation is replaced by a time varying quantity and the Fourier harmonics 𝑒𝑖𝜔𝑡 by non-

decimated discrete wavelets 𝜓𝑗,𝑘(𝑡): 𝑗, 𝑘 ∈ ℤ;  . Here 𝑗  and 𝑘  are the scale and location parameter respectively. Time-modulated (TM) process 𝑋𝑡,𝑇  is 

defined as follows: -  

                                                         𝑋𝑡,𝑇 = 𝜎 (
𝑡

𝑇
) 𝑌𝑡                                                                  (15) 

Where 𝑌𝑡  represents a zero-mean stationary process with variance one and the local standard deviation function 𝜎(𝑧) is Lipschitz continuous on (0, 1). 

Process 𝑋𝑡,𝑇 is locally stationary wavelet (LSW) if,  

i) The auto covariance function of 𝑌𝑡 is absolutely summable so that 𝑌𝑡 is an LSW with a time-invariant spectrum 𝑆𝑗
𝑌 

ii) The Lipschitz constants 𝐿𝑗
𝑋 = 𝐷. (𝑆𝑗

𝑌)
1 2⁄

 satisfy the Cramer representation, where 𝐷 is the Lipschitz constant.  

If above two conditions are satisfied, the spectrum 𝑆𝑗(𝑧) of 𝑋𝑡,𝑇 is expressed as follows: -  

𝑆𝑗(𝑧) = 𝜎2(𝑧) 𝑆𝑗
𝑌 

The general LSW processes are applicable to model processes whose variance and autocorrelation function both vary with time. The prediction operator 

can be expressed as in wavelet domain [12], 

                                                  𝑋𝑡,𝑇 = ∑ ∑ 𝑤𝑗,𝑘;𝑇  𝜓𝑗,𝑘(𝑡)𝑘∈ℤ
𝐽
𝑗=1 𝜉𝑗,𝑘                                        (16) 

Where 𝑇 = 2𝐽 and {𝜓𝑗,𝑘(𝑡)}
𝑗.𝑘

is a discrete non-decimated family of wavelets for 𝑗 = 1,2, … … 𝐽 = 𝑙𝑜𝑔2(𝑇) based on a mother wavelet 𝜓(𝑡) of compact 

support. Here 𝜉𝑗,𝑘 is a random orthogonal increment sequence with 𝐸 𝜉𝑗,𝑘 = 0 and 𝐶𝑜𝑣 (𝜉𝑗,𝑘 , 𝜉ℓ,𝑚) = 𝜉𝑗ℓ 𝜉𝑘𝑚. LSW processes are not uniquely determined 

by the sequence {𝑤𝑗,𝑘;𝑇}. For 𝑡 observations of non-stationary data 𝑋0,𝑇, 𝑋1,𝑇, 𝑋2,𝑇, … … . 𝑋𝑇−1,𝑇 of an LSW process, the general linear predictor 𝑋𝑡+ℎ,𝑇 

corresponding to ℎ-step ahead, is expressed as follows: - 

                                                     �̂�𝑡+ℎ,𝑇 = ∑ 𝑏𝑡+𝑠;𝑇
(𝑡)

𝑋𝑠,𝑇
𝑡−1
𝑠=0                                                       (17) 

Where the coefficients 𝑏𝑡+𝑠;𝑇
(𝑡)

 minimise the Mean Square Prediction Error (MSPE) defined as, 

𝑀𝑆𝑃𝐸(�̂�𝑡,𝑇 , 𝑋𝑡,𝑇) = 𝐸(�̂�𝑡,𝑇−𝑋𝑡,𝑇)
2
 

 That is, as 𝑇 → ∞ , allows us to fit coefficients 𝑏𝑡−𝑠;𝑇
(𝑡)

 with more accuracy. Here ℎ is the prediction horizon, we set 𝑇 = 𝑡 + ℎ. Let us consider the 

forecasting horizon ℎ = 1, so that T= 𝑡 + 1. The empirical wavelet coefficients in the wavelet domain in terms of prediction operator are defined as 

follows: - 

                                               𝑑𝑗,𝑘;𝑇 = ∑ 𝑋𝑡,𝑇, 𝜓𝑗,𝑘(𝑡)𝑇−1
𝑡=0                                                         (18) 

 for all 𝑗 = 1,2, … … … 𝐽 and 𝑘 ∈ ℤ. The one-step ahead predictor in terms of wavelet coefficients is defined as: -  

                                               �̂�𝑡+ℎ,𝑇 = ∑ ∑ 𝑑𝑗,𝑘;𝑇𝑘∈ℤ 𝑎𝑗,𝑘;𝑇
(𝑡)

 𝜓𝑗,𝑘(𝑡)𝐽
𝑗=1                                     (19) 

Where the estimated coefficients 𝑐𝑗,𝑘;𝑇
(𝑡)

 are such that they minimise the MSPE. This predictor is defined as a projection of 𝑋𝑡,𝑇 on the space having random 

variables and spanned by 𝑑𝑗,𝑘;𝑇;  𝑗 = 1,2, … … … 𝐽 and 𝑘 ∈ ℤ. Because of the redundancy of the non-orthogonal wavelet system  𝜓𝑗,𝑘(𝑡) the predictor has 

more than one solution {𝑐𝑗,𝑘
(𝑡)

} (and every solution corresponds to the same predictor in terms of the different linear combination of redundant functions 

{ 𝜓𝑗,𝑘(𝑡)}. Therefore, the wavelet predictor and the linear predictor can be expressed as follows: - 

                                               𝑏𝑡+𝑠;𝑇
(𝑡)

= ∑ ∑ 𝑐𝑗,𝑘;𝑇
(𝑡)

 𝜓𝑗,𝑘(𝑡) 𝜓𝑗,𝑘(𝑠)𝑘∈ℤ
𝐽
𝑗=1                                   (20) 

Due to the redundancy of the non-decimated wavelet system, a fixed sequence 𝑏𝑡+𝑠;𝑇
(𝑡)

 is expressed as the linear combination of more than one sequence 

𝑐𝑗,𝑘;𝑇
(𝑡+1)

. Therefore, the prediction work is carried out directly with the general linear predictor, and wavelet predictor is determined from above equation 

because linear predictor is a non-unique projection onto the wavelet domain [13].  
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4. Results and discussion 

The data of Indian and Uttar Pradesh economy from financial year 2004-05 to 2023-24 (Total 20 years) have been taken from website of Indian Climate 

and Energy Dashboard (Website- https://iced.niti.gov.in). 

  

Figure 1: Per capita income of India and U.P.  from year 2004-05 to 2023-24 

This data is decomposed up to level-1 using Haar wavelet transform. 

     

Figure 2: Wavelet decomposition of per capita income of India and U.P. 

The given data is extended up to year 2035-36 (Total 32 years) using locally stationary wavelet process [14-15].  

 

Figure 3: Predicted per capita income of India up to year 2035-36  

https://iced.niti.gov.in/
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Figure 4: Predicted per capita income of U.P. up to year 2035-36 

Some statistical parameters for the analysis of given and extended data are as follows: - 

Table 1: Statistical parameters for the given and extended data 

 

S. No. 

 

Parameter 

Given data Extended data 

India U. P. India U. P. 

1 Mean 6.509x104 3.128x104 8.997x104 4.303x104 

2 Standard Deviation 2.86x104 1.311x104 4.024x104 1.875x104 

3 𝐿1- norm 1.302x106 6.256x105 2.879x106 1.377x106 

4 𝐿2- norm 3.167x105 1.511x105 5.561x105 2.648x105 

 Skewness -0.254 -0.293 -0.266 -0.276 

 Kurtosis -1.562 -1.537 -1.113 -1.149 

 Correlation 0.998 0.998 

The approximation at highest scale value represents the trend or average behaviour of signal. The detail at each scale value represents the differential 

behaviour of the signal at each level. Figure 3 and 4 show an appreciable increasing trend of economic growth of India and Uttar Pradesh in near future. 

In the next years the trend in economic growth will also be maintained. The statistical parameters of present and future growth are given in table 1. The 

skewness represents asymmetry of data points about the mean value. The values of skewness are negative and low. The negative value of skewness 

represents that the data are skewed left. It indicates an increase in the economy of India and Uttar Pradesh. The kurtosis represents the peakedness of data 

points. The values of kurtosis are negative and low for both, which indicates the data is not much far distributed from mean value [16]. The values of the 

mean, 𝐿1- norm, and 𝐿2- norm indicate that the economy is likely to grow slightly faster than the current trend. The correlation represents the mode of 

dependence of two or more variables. The positive and high value of correlation coefficients indicates that the economic growth of India and Uttar Pradesh 

are linearly and strongly correlated.  

5. Conclusion 

The economic growth data of India and Uttar Pradesh from 2004–05 to 2023–24 exhibit periodic fluctuations over time with an increasing trend. The 

data is extended up to year 2035-36 with help of locally stationary wavelet analysis. Wavelet decomposition enables the separation of the signal into low 

and high-frequency components. The highest-level low-frequency component reflects the overall trend or average behaviour of the signal, while the high-

frequency components highlight short-term variations and fluctuations. The wavelet and statistical analysis suggest a modest increasing rate in economic 

growth of India and Uttar Pradesh in the near future. Overall, wavelet transform offers a clear and effective approach for modelling the economic 

behaviour of both regions. The alignment between wavelet-based analysis and statistical measures reinforces the consistency and reliability of the 

findings. 
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