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A B S T R A C T 

Quadcopters are a type of unmanned aerial vehicles (UAVs) with four fixed-pitch propellers that have become part of the aviation industry. They are multivariable, 

highly coupled underactuated mechanical systems, and exhibit open loop instability. They are used in both military and civilian applications, including search and 

rescue, photography, reconnaissance, agriculture and so on. The use of quadcopter systems requires that they carry some payload to be able to carry out operations. 

Several control techniques including L_1adaptive controllers have been developed and deployed in order to meet certain performance and robustness requirements, 

however, in the event of loss of effectiveness (LOE) of the actuators, the stability of the system can no longer be guaranteed, leading to catastrophic failures. This 

is due to the nominal design approach of the L_1adaptive controller, which is not optimal. Although, several optimization techniques such as genetic algorithms 

and local best harmony search (lbest-HS) algorithms have been used to optimize the L_1adaptive controller, they do not guarantee global convergence of the 

solutions. This work investigated the use of linear matrix inequality (LMI)- based optimization to determine the controller parameters of the L_1adaptive controller 

with a view to increase performance and robustness of the controller to external disturbances and internal disturbances caused by LOE of the actuators. The results 

indicate that the quadcopter system can be able to maintain stability in the event of a 10% LOE in one of the actuators. Furthermore, the LMI-optimized controller 

has better performance compared to the nominal approach. 
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1. Introduction 

The quadcopter (or quadrotor) is an UAV with four fixed-pitched rotors, and has six degrees of freedom, making it an under-actuated system. It also 

exhibits open loop instability, making its control a challenging task. There are two basic configurations of the quadcopter; the ‘+’ configuration, and the 

‘x’ configuration. The ‘x’ configuration is considered to be more stable in terms of operations(Thu & Gavrilov, 2017). Due to its under-actuation, the 

control of the quadcopter becomes increasingly difficult in the event of a failure of any of the actuators. Quadcopters rely on four rotors for stability and 

manoeuvrability. However, if one of the rotors experiences a partial failure, it leads to a compromise of one of the degrees of freedom of the already 

under-actuated system which disrupts the stability and control of the quadcopter system. 𝓛𝟏 adaptive controller has the potential to increase stability and 

robustness of quadcopter systems because of the decoupled nature of the controller which allows for a trade-off between performance and robustness, 

this enables the realization of fast adaptation while maintaining robustness. 𝓛𝟏 adaptive control has been designed for fault-tolerant control of quadcopter 

systems with actuator loss, but can only maintain stability when the partial loss is not more than 24% (Xu et al., 2016), however, in the event of a total 

loss of a single actuator, the quadcopter system suffers catastrophic stability and robustness failure. This is because the parameters of the 𝓛𝟏 adaptive 

controller obtained from mathematical calculations using the 𝓛𝟏-norm conditions do not provide optimal performance of the controller (Maiti et al., 

2022), hence, the need to provide optimization techniques, which will increase its performance and robustness in the event of actuator faults of the 

quadcopter system. Linear Matrix Inequality (LMI)-based optimization has been applied to the optimization of the filter parameters only of the 𝓛𝟏 

adaptive controller (Hashim et al., 2017; Kim & Hovakimyan, 2014), however, the relaxation of non-linear constraints carried out in the formulation of 

the LMIs compromises the robustness of the controller.  

𝓛𝟏 adaptive controller has been designed and developed for stabilization of rotocrafts and quadcopter systems (Ahmed et al., 2009)(Michini & How, 

2009), however, the robustness of the control algorithm was not investigated under wind disturbances. (Michini & How, 2009) proposed an optimization 

approach linking both the performance and robustness of the controller to the design of the underlying filter, however, the non-convexity of the cost 

function acted to limit the complexity of the assumed form of the filter. The output feedback architecture of the 𝓛𝟏 adaptive controller was developed for 

quadcopter systems by (Thu & Gavrilov, 2017), and it was shown that the time delay margins were better compared to a model reference adaptive 

controller. However, the methodology presented was based on intuition, furthermore, the performance of the controller was not investigated under faulty 

conditions. (Gasparyan & Darbinyan, 2019) developed a framework for the development of a fault-tolerant control system for multirotor UAVs using 𝓛𝟏 

adaptive control. 

http://www.ijrpr.com/
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𝓛𝟏 adaptive controller based on nominal and degraded models, focusing on stability and performance was developed in (Souanef et al., 2023; Souanef & 

Fichter, 2015). The method employed a multiple-model 𝓛𝟏 adaptive control, which includes a minimal reference model and degraded models to maintain 

robustness against critical failures. The fault-tolerant properties of an 𝓛𝟏 adaptive controller for quadrotor vehicles were investigated, focusing on actuator 

faults only. The structure of the controller adopted included an inner-loop LQR controller for stability, and an outer-loop 𝓛𝟏 adaptive controller for 

robustness against actuator faults (Xu et al., 2016). The results obtained were compared to that of a fixed gain LQR with integral action controller based 

on the recovery performance to partial actuator failures in the rotors due to voltage loss, and the results indicated that the designed 𝓛𝟏 adaptive controller 

performed better. However, the nominal controller design approach can be made to increase robustness and performance by introducing an optimization 

approach. This is because according to (Maiti et al., 2022), the nominal approach to the controller design is not optimal, hence its performance can be 

improved by introducing optimization algorithms. 

Fault-tolerant control of quadcopter systems was carried out in (Beikzadeh & Liu, 2018; Fernández et al., 2017; Jafarnejadsani et al., 2017) using 𝓛𝟏 

adaptive control and the results compared to LQR and PID controllers. Optimization techniques were introduced but for only the filter design. The work 

of (Nguyen et al., 2020) focused on fault-tolerant control of quadcopter systems using 
H synthesis, which tracks the desired trajectory subject to 

actuator faults, and an adaptive augmentation controller. (Wu et al., 2023) developed an 𝓛𝟏 adaptive controller for quadcopter systems for both the 

rotational and translational dynamics. The uncertainties and disturbances ae lumped together as unknown, non-linear forces. The results indicate that the 

developed controller can accurately estimate unknown forces, and it outperforms baseline controllers with small tracking errors recorded. Adaptive sliding 

mode observer was also used to fault-tolerant control of quadcopter systems in (Dhahri & Naifar, 2023) (Chnib et al., 2023) (Khattab et al., 2024). 

Sufficient conditions for stability of the state estimation errors were developed using Lyapunov stability and 
H techniques. Those conditions were then 

articulated as linear matrix inequality (LMI) problems to determine optimal values of the controller parameters. The results obtained show the practical 

applicability of the proposed controller, however, the method has not been extended to 𝓛𝟏 adaptive control synthesis, which gives better robustness and 

performance. (Mao et al., 2024; Zhou et al., 2024) also designed an 𝓛𝟏 adaptive controller with a fault-tolerant mode for quadrotor system. However, this 

method of using the 𝓛𝟏 adaptation law is only applicable if the damage is within the actuator constraints. furthermore, the methodology adopted for the 

design is not optimal, and does not lead to an optimized controller. 

The aim of this research is to design and develop an LMI-based optimized fault-tolerant robust 𝓛𝟏 adaptive controller for quadcopter systems subjected 

to actuator faults 

2. Materials and Methods 

2.1 Quadcopter Dynamic Model 

Consider the quadcopter system presented in figure 1. The system is described by its inertial frame (
, ,  && &

) and the earth frame (
, ,x y z

). 

 

Figure 1: Quadcopter F450 showing the Earth Frame and the Inertial Frame 

The dynamic model equations of the quadcopter are presented in three sections; the translational motion dynamics, the rotational motion dynamics and 

the actuator faults dynamics (Nguyen & Hong, 2018). The translational and rotational motions of the quadcopter are described in equations (1) – (6). 

( (cos sin cos sin sin ) ) /z xx U K x m    = + −&& &
  (1) 

( (cos sin sin sin sin ) ) /z yy U K y m    = − −&& &
   (2) 

( (cos cos ) ) /z zz g U K z m = − + −&& &
   (3) 

( ( ) ) /yy zz T xxU I I J K I    = + − − −& &&& & &
     (4) 



International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 13218-13227 June 2025                                     13220 

 

 

( ( ) ) /zz xx T yyU I I J K I    = + − − −&& &&& &
    (5) 

( ( ) ) /xx yy zzU I I K I   = + − −&&& & &
  (6) 

where 
, ,x y z

 represent the three positions of the quadcopter, 
, ,xx yy zzI I I

 represent the moments of inertia along the 
, ,x y z

 directions, 

, , , , ,x y zK K K K K K  
 represent the drag coefficients, which depend on the flight conditions. TJ

 is the moment of inertia of each motor, while   

represents the angular velocity of the motors. m  is the total mass of the quadcopter system, 
, ,  

 are the roll, pitch and yaw Euler angles respectively. 

The four control inputs of the quadcopter according to (Nguyen & Hong, 2018) are presented in equation (7). 

1 2 3 4

4 2

3 1

1 2 3 4

( )

( )

zU F F F F

U F F L

U F F L

U





    

= + + +

= −

= −

= − + −
 (7) 

where 

2

i id =
 and 

2

i iF b=
 are the torque and thrust forces produced by the i-th motor, while b, d are positive constants depending on the density 

of air, radius of the propeller, number of blades and geometry. i  is the angular velocity of the i-th motor, and zU
 is the total thrust generated by the 

motors, 
, ,U U U  

 are the torques in the roll, pitch and yaw Euler angles respectively. L is the length of the arm of the quadcopter from the centre.  

2.2 Quadcopter Model with Rotor Faults 

The dynamic model of the quadcopter with rotor faults are presented in equations (8) – (13). 

( (cos sin cos sin sin ) ) /zf xx U K x m    = + −&& &
        (8) 

( (cos sin sin sin sin ) ) /zf yy U K y m    = − −&& &
              (9) 

( (cos cos ) ) /zf zz g U K z m = − + −&& &
     (10) 

( ( ) ) /f yy zz T xxU I I J K I    = + − − −& &&& & &
         (11) 

( ( ) ) /f zz xx T yyU I I J K I    = + − − −&& &&& &
   (12) 

( ( ) ) /f xx yy zzU I I K I   = + − −&&& & &
                    (13) 

where 
, , ,zf f f fU U U U  

 are the control inputs to the quadcopter system during faulty operations, which are described by equation (14). 

1 2 3 4

4 2

3 1

1 2 3 4

( )

( )

( )

zf f f f f

f f f

f f f

f f f f f

U F F F F

U L F F

U L F F

U d F F F F b







= + + +

= −

= −

= − + −
 (14) 

The fault model of the actuator can be presented in terms of the thrust generated due to partial or complete loss of effectiveness of the i-th rotor by 

equation (15).  

(1 )if i iF F= −
     (15) 

where 
0 1i 

 indicates that the i-th actuator’s level of loss of effectiveness. 

Substituting equation (14) into equations (8) – (13) yields equations (16) – (21). 

( (cos sin cos sin sin ) ) /z x xx U K x m     = + − +&& &
     (16) 

( (cos sin sin sin sin ) ) /z y yy U K y m     = − − +&& &
   (17) 

( (cos cos ) ) /z z zz g U K z m  = − + − +&& &
      (18) 



International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 13218-13227 June 2025                                     13221 

 

 

( ( ) ) /yy zz T xxU I I J K I      = + − − − +& &&& & &
      (19) 

( ( ) ) /zz xx T yyU I I J K I      = + − − − +&& &&& &
          (20) 

( ( ) ) /xx yy zzU I I K I     = + − − +&&& & &
       (21) 

where the unknown terms are given by equations (22) – (27). 

1 1 2 2 3 3 4 4(cos sin cos sin sin )( ) /x F F F F m         = − + + + +
   (22) 

1 1 2 2 3 3 4 4(cos sin cos sin sin )( ) /y F F F F m         = − − + + +
    (23) 

1 1 2 2 3 3 4 4cos cos ( ) /z F F F F m      = − + + +
        (24) 

4 4 2 2( ) / xxL F F I  = − −
   (25) 

3 3 1 1( ) / yyL F F I  = − −
   (26) 

1 1 2 2 3 3 4 4( ) / zzd F F F F bI    = − − + −
   (27) 

𝟐.  𝓛𝟏 Adaptive Controller Design for Quadcopter System 

ℒ1 adaptive control concept evolved from indirect model reference adaptive control to ensure robustness without compromising performance of a 

controlled system subjected to unmodelled dynamics, external disturbances and time-varying uncertainties (N. Hovakimyan & Cao, 2010). Figure 2 

shows the structure of the ℒ1 adaptive controller. It comprises of a low pass filter, which filters out oscillations from the control signal that may arise as 

a result of high adaptation gains, thus ensuring that the controlled system remains stable. It comprises of a predictor and adaptation laws to adapt unknown 

constants, and time varying uncertainties. 

 

Figure 2: ℒ1 Adaptive Controller Architecture 

For the quadcopter system described by the state equations given in equation (27) with open loop dynamics containing unknown constants, time varying 

uncertainties and time varying disturbances (Maiti et al., 2022) 

0 1 2( ) ( ) ( ( ) ( ) ( ) ( )

( ) ( )

L

T

x t A x t B u t t x t Bu t

y t C x t

  


= + + + +

=

&

 (28) 

Where 0

n nA 
is the open loop matrix for the system, 

n pB  is the input matrix, 
m nC  . 

According (N. Hovakimyan & Cao, 2010), the ℒ1 adaptive control signal is formulated from the adaptive estimates of the unknown constant, time varying 

uncertainties and time varying disturbances, and is given by equation (29).  

( )2
ˆ( ) ( ) ( ) ( )ud gu s kD s r s k r s= − −

 (29) 

Where 
ˆ ( )udr s

is the Laplace transform of equation (30). 

1

ˆˆˆ ˆ( ) ( ) ( ) ( ) ( )ud L
r t t u t t x t  


= + +

 (30) 



International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 13218-13227 June 2025                                     13222 

 

 

And k and kg are the pre-filter and feedforward gains respectively, while r(s) is the input to the system, and D(s) is a strictly proper stable transfer function. 

The D(s) is designed in such a way that it incurs a low-pass filter of strictly proper stable transfer function as presented in equation (31). 

( )

( )
( )

1 ( )

kD s
C s

kD s




=

+
 (31) 

The state feedback control law considered for the inner control loop of the quadcopter system is given by equation (32). 

1( ) ( )Tu t K x t= −
       (32) 

Where 
n mK  is the state feedback gain matrix which ensures that the quadcopter closed loop system matrix given in equation (33) is Hurwitz.  

0

T

mA A BK= −
       (33) 

The overall control law for the control system is given by equation (34) 

1 2( ) ( ) ( ), pu t u t u t= + 
       (34) 

Substituting (29) and (32) into (34) gives equation  

( )ˆ( ) ( ) ( ) ( ) ( )T

ud gu s kD s r s k r s K x s= − − −
       (35) 

Therefore, the model of the quadcopter system in closed loop with the ℒ1 adaptive control law can be written as presented in equation (36).  

( )1( ) ( ) ( ) ( ) ( )m L
x t A x t B u t t x t  


= + + +&

  (36) 

And the predictor model for the controller can be written as presented in equation (37). 

( )1

ˆˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )m L
x t A x t B u t t x t  


= + + +&

  (37) 

ˆ ˆ( ) ( )Ty t C x t=
       (38) 

4. LMI-based Optimization of Fault-Tolerant 𝓛𝟏 Adaptive Controller 

Figure 3 presents the block diagram of the ℒ1 adaptive control structure, which includes the inner loop stabilizing controller, and the outer loop robust 

controller. The low pass filter and the controller gain parameters are the static parameters tuned using the LMI-based parameter tuning, while the adaptive 

control law parameters are tuned using the concurrent LMI-based parameter tuning. 

 

Figure 3: LMI-based tuning of ℒ1 adaptive controller 

The objective of the optimization problem is to minimize the tracking errors between the desired trajectory and the actual outputs of the quadcopter 

system. It is also aimed at determining the optimal feedback gain parameters of the ℒ1 adaptive controller while improving the robustness and tracking 

capability of the quadcopter in the event of the loss of effectiveness of the actuators. Furthermore, the objective is also to minimize the control signal to 

prevent aggressive responses that can lead to instability of the system in the event of the loss of effectiveness. The optimization problem is a convex 

problem with LMI constraints, seeking the optimal values of the controller parameters and fault accommodation thresholds that satisfy the objectives and 

constraints. 

The candidate solution vector (CSV) for the LMI-based optimization is formed as presented in equation (39) 
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ˆˆ ˆ| | | | |g cZ k k    = 
   (39) 

where 
ˆˆ ˆ, , , , ,g ck k   

 are the pre-filter gain, feed-forward gain, adaptation gain, unknown constant, time-varying uncertainties and time varying 

disturbances respectively. 

The objection function based on the performance of the quadcopter system is expressed in equation (40). (Mousakazemi, 2021) showed that the ITAE is 

the most suitable for computing the performance index. 

( )( )
2

min

0

J e t dt



= 
     (40) 

where 
( ) ( ) ( )e t r t y t= −

is the error between the reference inputs and the outputs of the system, the objective function represents the cumulative 

squared tracking error over the time to infinity (Hashim et al., 2015, 2017). 

The goal of the optimization problem formulation is to minimize the upper bounds of the estimation error of the ℒ1 adaptive control parameters subject 

to the constraints stated below; 

1. Constraints of the ℒ1 adaptive control law, which is designed following the ℒ1 – norm conditions, to ensure fast adaptation and robustness 

against disturbances, unmodelled dynamics and time varying uncertainties. For the ℒ1 adaptive control, it is to be ensured that the adaptive 

law 
ˆ( )t

is bounded, and the overall system satisfies the ℒ1-norm bounded adaptive gain given in equation (41) 

1

ˆ( )
l

t 
    (41) 

where 


is the adaptation gain bound.  

This can be approximated using a dissipation inequality (Yin et al. 2020), and expressed in equation (42). 

0

ˆ ˆ( ) ( )Tt Q t dt  



       (42) 

This is expressed as an LMI as presented in equation (43). 

0

0
T

T

Q

A P PA PB

B P I



 − −
 

−         (43) 

2. The actuator saturation which constrains the control signal 
( )u t

 by ensuring that the it is bounded by the maximum specified value, this is 

expressed in equation (44). 

max( )u t u
       (44) 

This can be enforced and expressed as an LMI using an auxiliary matrix W as expressed in equation (45). 

2

max

0
T

W B

B u I

− 
 

−   (45) 

3. The stability constraint is derived using the Lyapunov stability. Consider the system given by equation (46), 

x Ax=&
       (46) 

where A is the system matrix and x are the system states. Consider the Lyapunov function expressed in equation (47), 

( ) TV x x Px=
       (47) 

( )V x
, which is real, continuous and has continuous first partial derivatives with 

( ) 0V x 
 for 0x  , then the derivative of 

( )V x
 along its 

trajectories should satisfy the expression in equation 

( ) ( ) ( )T T T T T T TV x Ax Px x PAx x A Px x PAx x A P PA x= + = + = +&
 (48) 

This can be expressed as presented in equation (49) 

( ) TV x x Qx=&
       (49) 
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where 
( )TQ A P PA− = +

. 

This can be expressed as an LMI as presented in equation (50). 

0

0

0
T

T

P

Q

A P PA Q PB

B P I





 + +
 

−   (50) 

Where 


 is the stability bound parameter to trade-off between performance and robustness. 

4. The low-pass filter is the key component of the ℒ1 adaptive controller as it separates the performance of the controller from its robustness by 

limiting the bandwidth of the control signal. Hence, the filter is defined by equation (51). 

1
( )

L
C s 

       (51) 

This can be formulated as an LMI as expressed in equation (52). Note that the detailed LMI design for the filter can be found in (Hovakimyan, 2013). 

2
0

TP C

C I

 −
 

−   (52) 

5. Results and Discussions 

The ℒ1 adaptive controller was designed to provide adaptation to failure and modelling uncertainties of the quadcopter system (Xu et al., 2016). The 

responses of the quadcopter under 10% loss of effectiveness in motor 2 were simulated, and the results were compared with that of the nominally designed 

ℒ1 adaptive controller. 

 

Figure 4: x-position Response to 10% LOE in M-2 

 

Figure 5: y-position Response to 10% LOE in M-2 
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Figure 6: z-position Response to 10% LOE in M-2 

 

Figure 7: Roll Response to 10% LOE in M-2 

 

Figure 8: Pitch Response to 10% LOE in M-2 

 

Figure 9: Yaw Response to 10% LOE in M-2 

It can be seen from  figure 4 – 6 that the position response of the LMI-optimized  controllers when a fault is introduced at 3s, the quadcopter hovers at  a 

steady state until the introduction of the fault, in which case, the displacement is observed in the positions. However, the LMI-optimized controller 
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provides a better response in terms of the tracking error and the robustness to the loss of effectiveness of the actuators. Furthermore, the performance in 

terms of the rise time, settling time and overshoot is improved in all cases. The actual trajectories of the x and y positions converge quickly to the desired 

positions even in the presence of actuator faults in one of the motors of up to 10% loss. 

The  attitude response of the quadcopter to actuator fault of 10% loss of effectiveness in motor 2 is presented in figures 7 – 9. It can be seen that the 

percentage overshoot in the roll response is reduced by 23%, while the settling time remains the same. This is as a result of the reduction in control effort 

due to the LMI-based optimization of the control parameters of the controller. Furthermore, the percentage overshoot of the pitch response is reduced by 

52%, but the settling time remains the same. The yaw response shows a reduction in the undershoot by 7.4%.  The stability of the quadcopter system is 

maintained in all cases even with the occurrence of a fault in one of the actuators. 

The LMI-based optimization of the ℒ1-adaptive controller improves efficiency of the control, and reduces energy consumption, however, solving LMIs 

can be computationally intensive, especially for multivariable, MIMO systems such as the quadcopter. This can lead to longer solution times and higher 

resource consumption. Furthermore, LMI-based optimization can be sometimes conservative due to the relaxation of non-linear constraints, which means 

that sometimes the solutions provided may not be the most optimum in terms of performance. 

6. Conclusions 

The quadcopter system, being a multivariable, multi-input-multi-output system with open loop instability requires a robust control system in the event of 

loss of effectiveness (LOE) of its actuators. 𝓛𝟏 adaptive controller design based on LMI optimization techniques provide an optimal control structure in 

terms of performance and robustness for the quadcopter system. The performance of the quadcopter system attitude and position responses can be 

improved by up to 20% in terms of the overshoot, and the system can be able to withstand up to 10% loss of effectiveness in any of the actuators. Further 

research will look at the performance of the controller due to sensor faults and estimation errors of the system dynamics. It will also consider the 

performance analysis of the controller when implemented on a physical quadcopter system.  
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