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ABSTRACT:  

Computed Tomography (CT) is one of the most important imaging technique used in medicine for the diagnosis of internal abnormalities. Due to some phenomenon; 

noise signals are introduced which are modelled as additive White Gaussian Noise (AWGN). Introduction of noise deteriorates the quality of images by suppressing 

the anatomical information. This information is useful for correct interpretation of CT images. Hence it required to remove Gaussian noise from CT images. In this 

research paper, reduction of white Gaussian noise from Computed tomography is done. For this purpose; adaptive wavelet thresholding technique is used. Bivariate 

thresholding is example of soft thresholding technique and its performance is better than other thresholding techniques. To evaluate the performance of de-noising 

technique three most important parameters have been calculated viz. Power Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR) and Structural Similarity 

Index Measure (SSIM). 
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Introduction:  

Computed tomography is one of the most important medical images[1] which is used to diagnose any abnormality or disease in the internal body [2,3]. 

To take CT image; patient must take a radioactive liquid which is basically a dose of Barium Sulphate [4,5]. Its small amount is give orally because it 

may be harmful for the body. It is spread in the patient’s body and when X-ray radiation is imposed; it helps to create clear image of the internal organs. 

This type of CT images is called Low Dose CT (LDCT) images [6-8]. Due to low dose the quality of CT images is degraded as a result various types of 

noise signals are introduced which are modelled as AWGN[9-10]. It is additive in nature; i. e. noise signals are direct added to the pixel values of the 

original images. It affects almost all the frequency spectrum hence referred as white noise [11]. Its Probability Density Function (PDF) is Gaussian and 

bell shaped. Introduction of noise deteriorates the quality of CT images; as a result image information is affected; due to which false interpretation may 

be done by the radiologists [12-13]. Hence it is essential to remove AWGN from LDCT images [14-15]. However; it is almost impossible to remove 

noise from any images completely but it should be reduce to such an extent so that diagnosis purpose must be done properly[16]. Various techniques 

have been proposed to reduce AWGN from images; in which Wavelet based techniques give better results among many traditional techniques [17]. Fig. 

1.1 illustrates some noise free CT images taken from the public database.  

      

(a) (b) (c) 

Fig. 1.1 CT images 

If some amount of AWGN is introduced in these images than their quality are deteriorate. Noisy images are shown in fig. 1.2 
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(a) (b) (c) 

Fig. 1.2 Noisy CT images affected by AWGN 

Methodology:  

In this section; CT image de-noising using DTCWT is explained. Discrete wavelet transform (DWT) is one of the best tool for image processing. However 

DWT suffers from two major drawbacks viz. directionality and shift variance. These two problems can be overcome in DTCWT[12,17]. In this work; it 

is used for image de-noising. Image de-noising can be done simply by applying three simple steps: 

• In the first stage; DTCWT of the image is calculated which is affected by AWGN which gives signal coefficients and noisy coefficients. 

• In the second stage; noisy wavelet coefficients are modified by applying adaptive thresholding. In this work bivariate thresholding is used.  

• In third stage; inverse wavelet transform i.e. IDTCWT is calculated. As a result; de-noised image is obtained.  

Fig. 1.3 illustrates simplified block diagram of DTCWT based image de-noising method.  

 

 

 

 

Fig. 1.3 DTCWT based image de-noising method 

Below is the description of bivariate thresholding proposed by Sendur and Selesnick. It is an adaptive thresholding which exploits the statistical 

dependencies among wavelet coefficients[18]. Let; a CT image is taken from the database; represented by x(i, j). If noise n(i, j) is introduced in it then 

noisy image is represented by y(i, j). Since AWGN is additive in nature then; mathematically, 

y(i, j) = x(i, j) + n(i, j)                  (3.1) 

If wavelet transform of noisy image is taken then it contains both signal and noisy coefficients. Mathematically; 

W=X+N            (3.2) 

In the wavelet domain; noise problem may be considered as:  

y1k = w1k + n1k           (3.3) 

y1k = w1k + n1k             (3.4) 

By taking into account the statistical dependency between the coefficients and its parents. y1k & y2k  are the noisy observations of w1k  & y2k  and n1k  & 

y2k are noisy sample. In general; it can be written as: 

yk= wk +nk 

k=1…number of wavelet coefficients 
            (3.5) 

where  wk=(w1k, w2k), yk =(y1k, y2k), nk=(n1k, n2k) 

The standard MAP estimator for w given the corrupted observation 𝑦 is: 

Ŵ(𝑦) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑤
 𝑝𝑤|𝑦(𝑤|𝑦)                     (3.6) 

With some manipulations eq. (3.6) can be written as: 

Ŵ(𝑦) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑤
 𝑝𝑛(𝑦 − 𝑤). 𝑝𝑤(𝑤)                (3.7) 

For the coefficients and its parents proposed a non-Gaussian bivariate PDF given by: 
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                          (3.8) 

The marginal variance σ2   depends on coefficient index k . 

Using above two equations, MAP estimator of w1  can be given as: 

Ŵ1 =
(√𝑦1

2 + 𝑦2  
2 − √3 

𝜎𝑛
2

𝜎
) +

√𝑦1
2 + 𝑦2

2
 . 𝑦1 

            (3.9) 

Bivariate thresholding function. (g)+ is defined as:  

(𝑔)+ = {
0 𝑓𝑜𝑟 𝑔 < 0
𝑔 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.10) 

This estimator requires prior knowledge of 𝜎𝑛
2 and marginal variance σ2 for each coefficient. σ2 can be estimated using neighbouring coefficients while 

𝜎𝑛
2 can be estimated from noisy coefficients using robust median estimator[9]. 

𝜎𝑛
2 =  

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖)

0.6745
 𝑦𝑖  ∈ 𝑠𝑢𝑏𝑏𝑎𝑛𝑑 𝐻𝐻  (3.11) 

Fig. 3.1 illustrates the flow diagram of CT image de-noising.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 flow diagram of CT image de-noising 

In this technique; first of all CT images are taken from database. This image is noise free. Now some amount of AWGN is added in the noise free image; 

as a result noisy image is obtained. Now Wavelet based adaptive thresholding technique is applied. Dual Tree Complex Wavelet Transform (DTCWT) 

performs better than the conventional Discrete Wavelet Transform (DWT) hence it is used to take wavelet transform of noisy image[17]. After taking 

DTCWT of noisy image; adaptive thresholding technique is applied on the noisy images. In this project bivariate transform is used to remove noisy 

coefficients from the image. Now inverse DTCWT is taken to get de-noised image. To evaluate the performance of proposed technique; some parameters 

are calculated as discussed in result section. 

Results & Discussion: This section contains the results of proposed technique. Results are illustrated in the form of images, calculated parameters values 

and graphs. Three important parameters have been calculated viz. PSNRand SSIM.  Fig 4(a) to 6(a) are noise free images, fig. 4(b) to 6(b) are noisy 

images and 4(c) to 6(c) are de-noised images of CT image 1, 2 and 3 respectively.  
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Fig. 4.1 (a) Test image CT 1 (b) noisy image with 𝜎𝐴𝑊𝐺𝑁
2 =0.01 (c) de-noised image 

 

 
  

Fig. 4.2 (a) Test image CT 1 (b) noisy image with 𝜎𝐴𝑊𝐺𝑁
2 =0.03 (c) de-noised image 

 
  

Fig. 4.3 (a) Test image CT 1 (b) noisy image with 𝜎𝐴𝑊𝐺𝑁
2 =0.05 (c) de-noised image 

Table 4.1 PSNR values for CT test images for different values of AWGN 

Test 

Image 
PSNR 

AWGN Noise Variance (𝝈𝑨𝑾𝑮𝑵
𝟐 ) 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

CT 1 

Noisy PSNR 23.21 20.45 18.82 17.29 15.86 14.86 13.64 13.16 12.72 

Denoised PSNR 34.09 33.43 33.12 32.82 32.25 31.58 30.28 29.64 28.67 

CT 2 

Noisy PSNR 22.73 20.57 18.67 16.78 15.95 14.95 13.74 13.18 12.74 

Denoised PSNR 34.64 34.15 33.75 33.51 32.77 31.54 30.86 29.57 27.89 

CT 3 

Noisy PSNR 23.14 21.16 18.67 16.89 15.91 14.79 13.87 13.25 12.85 

Denoised   

PSNR 
34.49 34.24 33.47 33.08 32.25 31.21 30.59 29.12 27.83 

Table 4.2 SSIM values for CT test images   for different values of AWGN  

Test 

Image 
SSIM  

AWGN Noise Variance (𝝈𝑨𝑾𝑮𝑵
𝟐 ) 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

CT 1 

Noisy SSIM 0.67 0.52 0.45 0.42 0.36 0.35 0.31 0.33 0.28 

De-noised SSIM 0.91 0.89 0.87 0.83 0.82 0.78 0.76 0.76 0.74 

CT 2 

Noisy SSIM 0.66 0.60 0.35 0.35 0.33 0.32 0.32 0.25 0.25 

De-noised SSIM 0.92 0.87 0.82 0.83 0.81 0.77 0.77 0.75 0.72 

CT 3 

Noisy SSIM 0.62 0.43 0.35 0.32 0.28 0.22 0.23 0.24 0.20 

De-noised SSIM 0.91 0.81 0.84 0.82 0.79 0.74 0.73 0.74 0.59 

Plots between noise variance and PSNR and SSIM are plotted for CT 1 image which are illustrated in fig. 4 and 6 respectively.  
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Fig 4.4 PSNR values for noisy and de-noised test image CT 1 

 

Fig. 4.5 SSIM values for noisy and de-noised test image CT 1 

From these two graphs it is clear that Adaptive wavelet technique gives higher PSNR and SSIM values. This technique reduces not only effect of AWGN 

but retains image information also. 

Conclusion:  

From the above discussion and performance evaluation parameters it is clear that; adaptive wavelet thresholding technique suppresses AWGN from CT 

images. It also retains image information which is very important feature to diagnose diseases or internal body structures. CT images are very useful in 

medicine for the study of internal organs. Introduction of noise may affect the diagnosis process done by the radiologists. Any misinterpretation may 

mislead the doctors and further treatments.  This technique can be used to de-noise other medical images also but it is important to study about those 

imaging systems and noise introduced in those images; then only image de-noising may be done by the proposed technique.   
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