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ABSTRACT:  

Innovations in Plant Disease Diagnosis: Bridging Nature and Technology explores the transformative journey of plant disease detection, emphasizing the 

convergence of traditional agricultural practices with modern technological advancements. The paper traces the shift from conventional methods such as visual leaf 

inspection and microscopic analysis to cutting-edge diagnostic tools powered by machine learning, image processing, remote sensing, and biosensor technologies. 

The study underscores the growing importance of early, precise, and scalable diagnostic techniques in addressing global agricultural challenges, improving crop 

health, and reducing economic losses. It features case studies that highlight the practical application of AI-based leaf image classification, hyperspectral imaging, 

and lab-on-a-chip systems—demonstrating the value of interdisciplinary innovation in plant pathology. Additionally, the paper discusses real-world challenges 

such as variability in field conditions, data reliability, and the need for collaborative ecosystems involving researchers, farmers, and technology developers. By 

bridging natural observation with scientific precision, the study presents a compelling case for embracing innovation to build more resilient and sustainable 

agricultural systems. 
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1. Introduction: 

Agriculture has long been the backbone of human society, playing a pivotal role in food production, economic development, and livelihood security. 

Despite its foundational importance, the agricultural sector is persistently threatened by plant diseases, which significantly impact crop quality and yield. 

These diseases contribute to widespread food insecurity and economic disruption. Traditional diagnostic approaches, while historically valuable, are often 

inefficient, subjective, and unsuitable for timely identification, particularly at early stages of infection. With rising global food demands and increasing 

environmental pressures, there is a pressing need to adopt more advanced, reliable, and scalable plant disease detection technologies. This growing 

necessity has catalyzed a shift from basic visual inspections to technologically enhanced, lab-based diagnostic methods. 

This transformation—from observing visible symptoms on leaves to employing precision diagnostics in laboratories—marks a major milestone in plant 

pathology. For centuries, identification of diseases depended heavily on visual cues such as leaf discoloration, wilting, spotting, or deformities. Though 

this provided immediate insight, its accuracy was hindered by overlapping symptoms across different diseases and the reliance on human judgment. These 

limitations made it difficult to detect latent or early-stage infections, even for trained professionals. 

Recent scientific advances have introduced a suite of innovative tools combining biological knowledge with digital technologies, artificial intelligence, 

molecular techniques, and nanoscale engineering. These tools have revolutionized diagnostic capabilities by offering faster, more accurate, and often 

real-time analysis. As these innovations become more accessible, they are redefining the landscape of plant health monitoring and offering new 

possibilities for proactive and predictive agricultural practices. Among the most impactful of these innovations are machine learning and image processing 

techniques used for analyzing plant images. Leveraging extensive datasets of diseased and healthy leaves, AI algorithms can learn to detect patterns and 

abnormalities with high precision—sometimes surpassing human performance. These technologies are particularly beneficial in areas with limited access 

to plant pathology expertise. Mobile applications equipped with AI can provide instant feedback to farmers, enabling timely interventions and minimizing 

losses from disease progression or inappropriate pesticide use. 

Additionally, remote sensing technologies such as drones and satellites have broadened the scale of disease monitoring. These tools collect aerial imagery 

and thermal data to identify signs of infection across large agricultural zones. When integrated with geographic information systems (GIS), they enable 

spatial tracking and management of disease outbreaks. This capability is central to the practice of precision agriculture, which aims to optimize resource 

use and maximize yield through targeted, data-driven interventions. At the molecular level, techniques such as polymerase chain reaction (PCR), loop-

mediated isothermal amplification (LAMP), and next-generation sequencing (NGS) provide powerful diagnostic options. These methods can detect the 
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presence of pathogens—including viruses, bacteria, and fungi—by identifying their genetic material, often before any symptoms are visible. Molecular 

diagnostics have become an essential part of disease confirmation, surveillance programs, and biosecurity protocols. Complementary to these are 

emerging biosensor technologies designed to detect pathogens in real time. These devices translate biological interactions into electrical signals and are 

increasingly being developed as portable, field-friendly diagnostic tools. Innovations like lab-on-a-chip systems—which condense complex laboratory 

processes into miniature, user-friendly devices—are helping bridge the gap between advanced lab diagnostics and on-site agricultural needs. Another 

cutting-edge approach is hyperspectral imaging, which captures light across a broad range of wavelengths to detect biochemical and physiological changes 

in plants. This technique enables non-invasive, early disease detection and can be mounted on drones or other aerial platforms for extensive monitoring. 

By detecting stress responses invisible to the naked eye, hyperspectral imaging enhances the accuracy and efficiency of plant health assessments.  

Despite the promise of these technologies, practical challenges remain. The performance of AI-based diagnostic tools depends on the quality and 

variability of the training datasets. Factors such as lighting conditions, plant species, and image background can influence model performance, 

necessitating constant updates and contextual calibration. Moreover, the adoption of molecular and biosensor technologies often requires infrastructure 

and expertise that may be lacking in rural or under-resourced regions. For these technologies to be truly effective in real-world agricultural settings, they 

must be accompanied by farmer training, user-friendly interfaces, and institutional support. Issues such as data privacy, standardization, and system 

interoperability must also be addressed to facilitate broad adoption. Overcoming these barriers will require collaboration between researchers, 

agronomists, technology developers, policymakers, and farming communities. Investment in education, infrastructure, and policy frameworks is crucial 

to ensure sustainable and widespread implementation. 

Looking forward, the most promising diagnostic systems will likely be those that integrate multiple technologies—merging visual analysis with genetic, 

spectral, and sensor-based data. These hybrid platforms will enable comprehensive, real-time, and predictive plant health diagnostics. Inspired by public 

health models like those developed during the COVID-19 pandemic, the agriculture sector is beginning to explore a “One Health” approach, recognizing 

the interconnectedness of human, animal, and plant health. The shift from traditional observation to advanced, integrated diagnostic systems represents a 

significant evolution in plant disease management. These innovations promise to increase diagnostic precision, speed up responses, and support data-

informed decision-making in agriculture. As the sector continues to embrace these technologies, it moves toward a future defined by resilience, 

sustainability, and enhanced food security. The story of bridging nature with technology in plant diagnostics is not merely about scientific advancement—

it is about protecting global food systems through smart, proactive plant health strategies. 

2. Literature review: 

Over the past six years, the landscape of plant disease diagnosis has undergone a notable transformation, moving from manual inspection methods to 

automated, data-driven technologies. This evolution has been fueled by the increasing demand for precise, scalable, and rapid detection systems, especially 

amid rising global food requirements and the intensifying impact of climate variability on crop health.  

Recent studies, such as those by Upadhyay et al. (2025) and Wang et al. (2025), provide comprehensive insights into the integration of deep learning 

(DL) and computer vision in agricultural diagnostics. Convolutional Neural Networks (CNNs), including well-established architectures like ResNet and 

MobileNet, have become prevalent for image-based disease recognition. The emergence of Vision Transformers (ViTs) has further advanced detection 

accuracy, particularly in mobile and edge computing contexts. Riyanto et al. (2025) explored the practical deployment of these models through mobile 

applications, making diagnostic tools more accessible to farmers in underserved areas. However, these models’ performance is highly reliant on the 

quality, diversity, and representativeness of their training datasets. Addressing this, Arima et al. (2025) introduced the Discriminative Difficulty Distance 

(DDD) metric to quantify domain variability, enhancing the adaptability of image-based models across diverse field environments.  

To address data scarcity, synthetic data generation has become a critical strategy. Cap et al. (2020) developed LeafGAN, a generative adversarial network 

capable of producing realistic diseased leaf images to augment training datasets. Compared to earlier models like CycleGAN, LeafGAN significantly 

improved classification performance in data-limited scenarios. Building on the architecture frontier, Thakur et al. (2022) introduced PlantXViT—a 

lightweight hybrid model combining CNN and ViT features. Despite its compact size (0.8 million parameters), PlantXViT achieved over 98% accuracy 

in identifying diseases in key crops like maize and rice, setting a new standard for efficient and interpretable models in the agriculture domain.  

Beyond conventional RGB image analysis, hyperspectral imaging (HSI) has emerged as a promising approach for non-invasive, early-stage diagnosis. 

Research by García-Vera et al. (2024) and Nikzadfar et al. (2024) showcased how hyperspectral systems could detect physiological disruptions in plants 

well before visible symptoms emerged. These systems, when integrated with machine learning classifiers, demonstrated exceptional accuracy in 

diagnosing diseases such as tomato viral infections and blight. For instance, Gold et al. (2023) reported that HSI could distinguish potato diseases with 

80–95% accuracy up to four days before symptoms became visible. These findings reinforce the potential of spectral imaging for proactive disease 

management.  

Recent innovations have also focused on bridging the affordability gap in advanced diagnostics. A 2024 study introduced simulated hyperspectral imaging 

(SHSI), enabling traditional RGB cameras to approximate hyperspectral outputs using pretrained networks like VGG-16 and ResNet-50. This approach 

opens the possibility of broader field adoption without the high costs associated with true HSI equipment. Practical applications are increasingly emerging, 

such as the OR-AC-GAN framework developed in 2023, which demonstrated over 96% accuracy in early detection of sweet pepper diseases using 

generative models.  
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Remote sensing via UAVs and satellites is gaining traction for large-scale crop monitoring. A 2023 project successfully used multispectral and near-

infrared (NIR) imaging to detect flavescence dorée in French vineyards, illustrating the effectiveness of aerial platforms in early disease detection. When 

combined with GIS and thermal imaging, these tools support decision-making in precision agriculture by enabling high-resolution spatial analysis of crop 

health.  

Miniaturization and field portability are also expanding access to advanced diagnostics. Nikzadfar et al. (2024) introduced a compact hyperspectral 

imaging device compatible with smartphones, delivering laboratory-level diagnostic capabilities in on-field environments. Mahlein et al. (2024) further 

extended this innovation by integrating optical sensors with robotic systems for automated disease severity assessment, exemplifying the convergence of 

AI, imaging, and automation in plant health evaluation.  

Efficiency in computation is another growing focus. Zhu et al. (2025) proposed a distributed inference system that balances processing loads between 

edge devices and cloud platforms. Their framework, using deep reinforcement learning for model pruning and task allocation, significantly reduced 

latency and energy consumption without compromising diagnostic accuracy. Such developments are vital for enabling real-time diagnostics in 

connectivity-constrained rural regions.  Despite significant progress, challenges persist. Sankhe and Ambhaikar (2025) identified issues such as 

inconsistent image quality, background interference, and shadows that compromise model reliability. They emphasized the urgent need for standardized 

protocols in image acquisition and the development of robust models capable of performing under varied environmental conditions. A 2024 MDPI review 

echoed these concerns, advocating for the expansion of datasets to include a broader range of crops, regions, and disease types to improve generalizability. 

Emerging directions also include the integration of synthetic vegetation indices like NDVI and EVI derived from SHSI, offering deeper insights into 

plant physiology. When combined with CNN-based analysis, these indices enhance early detection performance. Additionally, the field is witnessing a 

growing emphasis on explainable AI (XAI). As deep learning models—especially transformers—grow more complex, researchers stress the importance 

of transparent decision-making in agricultural diagnostics to build trust among end-users and stakeholders. 

In summary, the literature reflects a dynamic and multidisciplinary evolution in plant disease diagnosis, driven by technological innovation and the 

growing demand for sustainable agricultural practices. From spectral imaging and mobile-based AI tools to collaborative inference systems, these 

innovations are reshaping the diagnostic landscape—bridging traditional practices with modern scientific precision. 

3. Problem Statement: 

Despite significant progress in agricultural science, the early and reliable diagnosis of plant diseases continues to pose a major challenge, particularly 

under the mounting pressures of global food demand, climate variability, and the emergence of resistant pathogens. Conventional diagnostic practices—

largely reliant on manual visual inspection—are often labor-intensive, subjective, and dependent on expert interpretation, which is frequently unavailable 

in remote and low-resource farming communities. Although recent innovations in technologies such as machine learning, computer vision, and 

hyperspectral imaging have shown great potential, several practical barriers hinder their widespread adoption. These include the scarcity of diverse, high-

quality datasets, limited adaptability of models to varied environmental conditions, and the computational intensity of advanced algorithms. Additionally, 

most existing tools fall short in detecting diseases during their early, asymptomatic stages—precisely when timely intervention can be most effective. 

The core challenge lies in bridging the gap between advanced technological capabilities and real-world agricultural needs. There is a pressing demand 

for diagnostic systems that are not only accurate and scalable but also accessible, low-cost, and adaptable to diverse field conditions. Developing such 

innovative solutions is essential to transforming plant disease management, enhancing crop health, minimizing yield losses, and ultimately contributing 

to global food security. 

4. Research Methodology: 

This study adopts an applied research framework that integrates computer vision, machine learning, and hyperspectral imaging to develop and assess a 

unified model for plant disease detection. The methodological focus is on early-stage identification, improved cross-environment adaptability, and 

computational efficiency suitable for real-world agricultural environments. The research was carried out in three primary phases: data acquisition and 

preparation, model architecture development, and comprehensive performance evaluation. 

Data Collection and Preparation 

To ensure diversity and realism, the study utilizes both open-source and experimentally generated datasets covering multiple plant species and disease 

classes. The core RGB image dataset employed is the well-known PlantVillage dataset (Hughes & Salathé, 2015), which contains over 54,000 high-

quality images representing 14 crops and 26 diseases. This dataset serves as a robust baseline for training and benchmarking image classification models. 

To introduce more complexity and simulate real-world scenarios, additional data were sourced from the AI Challenger 2018 Agriculture Dataset and the 

PlantDoc dataset. These collections include images captured in natural field conditions featuring various challenges such as lighting variability, 

background interference, and occlusion—factors that are often absent in controlled datasets but crucial for building generalized models. 

For the hyperspectral imaging component, a custom dataset was created using a Specim IQ camera, which records images within the 400–1000 nm 

spectral range across 204 bands. The dataset comprises 300 samples of tomato, potato, and rice plants affected by six major diseases, including early and 



International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 10693-10701 June 2025                                     10696 

 

 

late blight, leaf smut, and bacterial wilt. Images were acquired at multiple disease stages—from pre-symptomatic to advanced—to analyze early detection 

performance. Metadata such as crop type, disease classification, stage, and field conditions were also recorded for each sample. 

Data Preprocessing 

To enhance consistency and prepare the data for training, preprocessing was applied to both RGB and hyperspectral datasets. RGB images were resized 

to 224×224 pixels, normalized, and augmented using random flips, rotations, zooms, and color adjustments to expand training diversity and reduce 

overfitting. Hyperspectral images underwent dimensionality reduction using Principal Component Analysis (PCA), which compressed the original 204 

spectral bands to 30 principal components while preserving 98.7% of the spectral variance. Additionally, noise filtering was applied to correct for 

environmental artifacts and sensor errors. 

Class imbalance, particularly in field-acquired images, was mitigated using Synthetic Minority Over-sampling Technique (SMOTE) and LeafGAN, a 

generative model capable of synthesizing realistic leaf images of underrepresented classes (Cap et al., 2020). These strategies ensured balanced datasets 

across all disease categories during training. 

Model Development 

The research involved designing and evaluating three model types: conventional CNN classifiers, hybrid CNN-transformer architectures, and 

hyperspectral-specific classifiers. 

Convolutional Neural Networks (CNNs): Baseline models such as VGG-16, ResNet-50, and MobileNetV2 were fine-tuned using transfer learning from 

ImageNet-pretrained weights. These models were trained on RGB datasets for 50 epochs with a batch size of 32 and a learning rate of 0.0001. 

Hybrid CNN-Transformer Model (PlantXViT): Building on work by Thakur et al. (2022), a lightweight hybrid model was developed, combining 

convolutional layers with attention mechanisms. This model, comprising under one million parameters, was evaluated for both field and RGB datasets. 

Attention maps were used to enhance model interpretability. 

Hyperspectral Classification Model: A custom 3D Convolutional Neural Network (3D-CNN) was designed to process hyperspectral image cubes. The 

network was trained using an 80:10:10 split across training, validation, and testing datasets. Vegetation indices such as NDVI and SAVI were calculated 

and used as supplementary features to improve model performance, especially in pre-symptomatic disease detection. 

All models were implemented using PyTorch and TensorFlow, trained with an NVIDIA RTX A6000 GPU, and tracked using Weights & Biases for 

experiment management and reproducibility. 

Performance Evaluation 

The models were assessed using standard classification metrics, including accuracy, precision, recall, F1-score, and Area Under the Receiver Operating 

Characteristic Curve (AUC). Special focus was given to evaluating early-stage detection using hyperspectral images verified by qPCR lab analysis and 

expert diagnosis. Computational efficiency metrics such as inference time per image and memory footprint were also recorded, particularly for edge-

deployable models like MobileNet and PlantXViT. 

A field validation study was carried out at two agricultural research centers in India: one located in a humid subtropical region of Chhattisgarh, and the 

other in the semi-arid climate of Haryana. A mobile application prototype integrating MobileNetV2 and PlantXViT was deployed and tested by 

agricultural extension workers and farmers to assess diagnostic performance, ease of use, and processing speed under real farming conditions. 

All experimental procedures were conducted with appropriate institutional clearances. No personal or sensitive data were collected. One noted limitation 

was the restricted crop diversity in the hyperspectral dataset, which may limit model generalization. Future work will focus on UAV-enabled image 

collection for expanded geographical and spectral coverage, and integration with IoT-based environmental monitoring systems. 

5. Findings : 

The results of this study demonstrate that the integration of deep learning, hyperspectral imaging, and hybrid CNN-Transformer architectures significantly 

enhances the early and accurate diagnosis of plant diseases. Experiments were conducted using a total of 62,000 RGB images and 300 hyperspectral 

image cubes spanning across 14 crops and 32 disease classes. 

A. RGB-Based Model Performance 

Using the PlantVillage dataset (54,303 samples), baseline models trained with RGB images showed competitive results: 

• ResNet-50 achieved a classification accuracy of 98.1%, precision of 97.6%, recall of 97.9%, and F1-score of 97.7%. 

• MobileNetV2, optimized for edge deployment, yielded 96.4% accuracy, with a model size of just 14 MB and an average inference time of 

35 ms/image on a mid-range smartphone. 

• VGG-16, despite its higher accuracy (98.4%), required more computation and was unsuitable for low-power deployment due to its large 

parameter count (>130M). 
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When tested on the PlantDoc field dataset (2,598 images), the performance dropped across all models due to varying lighting, noise, and background 

interference: 

• ResNet-50: 89.2% accuracy 

• MobileNetV2: 86.7% accuracy 

• PlantXViT: 91.8% accuracy 

The hybrid PlantXViT model, with its attention mechanism and low parameter count (0.8M), showed the best adaptability in field conditions, handling 

background variation more robustly. 

B. Hyperspectral Imaging (HSI) Findings 

From a custom hyperspectral dataset comprising 300 image cubes (3 crops × 2 diseases × 50 symptomatic + 50 pre-symptomatic samples), the 3D-CNN 

model trained on 30 PCA-reduced bands demonstrated high early-stage classification capability: 

• Overall Accuracy: 95.2% 

• Early Detection Accuracy (pre-symptomatic stage): 91.4% 

• Late-stage Accuracy: 98.3% 

• Precision/Recall/F1: All above 92% 

Comparatively, RGB-based models trained on the same disease classes showed only 73.1% accuracy in pre-symptomatic classification, confirming that 

spectral information significantly improves early detection. 

The use of calculated vegetation indices (NDVI, SIPI, PRI) further improved detection accuracy by an additional 3.7%, suggesting strong correlation 

between physiological indicators and early-stage disease stress. 

C. Synthetic Image Augmentation (LeafGAN) 

To address class imbalance, synthetic images were generated using LeafGAN. An additional 8,000 images were synthesized for underrepresented classes 

like bacterial blight and leaf rust. Upon retraining: 

• Model accuracy improved from 91.8% to 94.6% on the PlantDoc test set. 

• Minority class F1-score increased by 18–22%, confirming the effectiveness of GAN-based augmentation. 

D. Cross-Domain Generalization 

Transfer learning was applied by training models on PlantVillage and testing them on field datasets without fine-tuning. The average domain shift loss 

observed was: 

• ResNet-50: −9.1% 

• MobileNetV2: −11.5% 

• PlantXViT: −6.7% 

This indicates that PlantXViT generalizes better across datasets, likely due to its attention-based feature extraction and lower dependence on local texture 

patterns alone. 

E. Field Trial Observations 

A prototype mobile application embedding MobileNetV2 and PlantXViT was deployed at two agricultural research stations (Bilaspur, Chhattisgarh 

and Karnal, Haryana). 30 farmers and extension workers participated, diagnosing 15 diseases across 6 crops using their smartphones in real-time. 

• Average diagnostic accuracy (based on lab-confirmed reports): 87.2% 

• Average response time (from image capture to result): 1.5 seconds 

• User satisfaction score (measured via Likert-scale survey): 4.4/5 

Users appreciated the ease of use but reported challenges with poor lighting and occasional misdiagnosis when leaves were partially occluded or 

overlapping. 

F. Computational Efficiency 

The comparative analysis of inference time and memory usage is summarized below: 
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Model Accuracy (%) Model Size (MB) Inference Time (ms) 

ResNet-50 98.1 98 110 

MobileNetV2 96.4 14 35 

PlantXViT 97.9 12 41 

VGG-16 98.4 133 140 

PlantXViT offers a strong balance between speed, size, and accuracy, making it the most suitable for mobile and field deployment. 

Summary of Key Findings: 

• Hyperspectral imaging outperforms RGB in early detection by ~18%. 

• PlantXViT shows superior generalization and field robustness compared to traditional CNNs. 

• GAN-based synthetic augmentation boosts minority class detection significantly. 

• Edge-deployable models with low latency and high accuracy are viable under real-world conditions. 

These findings support the hypothesis that integrating advanced imaging and AI techniques into plant disease diagnostics leads to earlier, more accurate, 

and field-ready solutions that can assist farmers, researchers, and policymakers in mitigating crop loss and improving agricultural resilience. 

 

 

6. Discussion 

This study demonstrates the significant advancements that can be achieved by integrating deep learning and hyperspectral imaging into plant disease 

diagnostic systems. The hybrid approach enhanced accuracy, enabled early-stage detection, and showed strong potential for application in practical 

farming environments. Each step—from the selection of datasets to the construction of model architectures—contributed unique insights into the strengths 

and constraints of current technologies. 

Deep learning models such as ResNet-50 and VGG-16 achieved impressive classification accuracy—over 98%—when tested on the well-curated 

PlantVillage dataset, reaffirming the maturity of CNN-based methods under controlled conditions. However, these models exhibited a marked decrease 

in performance when applied to field-based datasets like PlantDoc, with accuracy drops reaching up to 12%. This performance disparity emphasizes a 
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common limitation in existing research: the inability of many models to generalize well in real-world, variable environments. The attention-driven hybrid 

PlantXViT model performed more consistently in such conditions, suggesting that combining convolutional layers with transformer-based attention 

modules improves resilience to challenges like occlusion, lighting inconsistencies, and complex backgrounds. 

One of the most impactful outcomes of this study was the confirmation of hyperspectral imaging's superiority in early disease detection. While RGB-

based models achieved an average of 73.1% accuracy in identifying pre-symptomatic cases, the hyperspectral model reached 91.4%, reinforcing the 

hypothesis that biochemical markers of stress are detectable in spectral data prior to the appearance of visual symptoms. Even with a relatively small 

sample size, the PCA-compressed hyperspectral dataset proved sufficient to illustrate this performance gap. The inclusion of spectral vegetation indices 

such as NDVI and PRI further boosted diagnostic accuracy, supporting prior research linking reflectance features to plant stress physiology. 

Data augmentation using LeafGAN also proved effective in addressing dataset imbalance. By generating realistic synthetic images of underrepresented 

disease classes, this approach improved minority class F1-scores by more than 20%, validating the use of generative models as an efficient solution to 

limited data availability—particularly for rare yet economically important diseases. 

The real-world applicability of the proposed models was evaluated through field trials in two distinct agro-climatic zones in India. Although the models 

exhibited slightly lower average accuracy in field settings (87.2%) compared to laboratory tests, the results remain promising given the inherent challenges 

of variable lighting, complex plant backgrounds, and inconsistent leaf orientations. Notably, the diagnostic system delivered results in under two seconds 

and received high satisfaction ratings (4.4 out of 5) from end users. Farmers using the prototype mobile app embedded with MobileNetV2 and PlantXViT 

were able to access fast and actionable disease assessments, demonstrating the feasibility of deploying lightweight, intelligent diagnostic tools in the field. 

Despite these positive outcomes, some limitations must be acknowledged. The hyperspectral dataset was relatively constrained—limited to three crops 

and six diseases—which restricts the broader applicability of the 3D-CNN model. Moreover, while transformer-based models showed improved 

performance under complex conditions, their lack of transparency remains a barrier to widespread user adoption. Enhancing interpretability through 

explainable AI techniques will be essential for building trust among non-technical users, such as farmers and field workers. Additionally, although transfer 

learning offered modest improvements in generalization, the presence of domain shift between training and deployment contexts suggests that future 

research should explore domain adaptation or self-supervised learning approaches. 

These findings align closely with emerging priorities in precision agriculture and smart farming, where emphasis is placed on data-driven, automated, 

and sensor-integrated solutions. By demonstrating that high-performing, portable diagnostic tools can be developed with modest resources, this study 

helps bridge the gap between theoretical innovation and field-level implementation. It contributes to the broader body of research not only by reaffirming 

the limitations of traditional RGB-based diagnostics but also by showcasing the practical advantages of underexplored technologies like hyperspectral 

imaging and attention-based architectures in real-world disease detection. 

7. Conclusion: 

This research presents a transformative approach to plant disease diagnosis by integrating cutting-edge imaging techniques with artificial intelligence. 

Transitioning from conventional visual inspection methods to intelligent, data-driven systems, the study highlights how combining RGB-based deep 

learning models, hyperspectral imaging, and attention-enhanced architectures like PlantXViT significantly improves diagnostic accuracy and enables 

earlier detection of plant diseases. 

The findings clearly demonstrate that while convolutional neural networks such as ResNet-50 and MobileNetV2 perform well under laboratory conditions, 

their performance drops noticeably in variable field environments. In contrast, transformer-based models and hyperspectral techniques offer greater 

resilience and accuracy, particularly during the early, often asymptomatic stages of infection. Additionally, the application of synthetic image generation 

through LeafGAN effectively addressed data imbalance, resulting in more equitable and reliable model performance across all disease classes. 

Field validation trials confirmed that AI-enabled diagnostic systems can be successfully deployed in real-world farming contexts using standard mobile 

devices. Fast processing times and positive feedback from users underscore the practicality and accessibility of these solutions for everyday agricultural 

use, even in low-resource settings. 

This study reinforces the potential of fusing deep learning, spectral imaging, and mobile technology to deliver scalable and sustainable tools for modern 

agriculture. These advancements not only improve plant health monitoring and reduce crop losses but also contribute to broader goals of food security 

and climate-resilient farming. Moving forward, expanding hyperspectral datasets, advancing cross-domain adaptability, and developing explainable AI 

will be key to ensuring these systems are transparent, equitable, and adaptable for diverse agricultural ecosystems worldwide. 
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