
International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

INVESTIGATING OBJECT-ORIENTED ANALYSIS AND DESIGN

PATTERNS ALONG WITH ASSOCIATED SOLUTIONS

Chukwudi Jeremiah Paul1, Onwe Festus Chijioke2

1 University of Bolton, UK

cjp2crt@bolton.ac.uk
2 University of Port Harcourt, Choba, Rivers State.

festus.onwe@uniport.edu.ng

ABSTRACT :

Design patterns in software engineering provide solutions to general design problems that improve both code reliability and versatility as well as maintenance

capabilities. The investigation explores structural, behavioral, and creational design patterns to determine their function in producing straightforward routes for

entity association implementation. Authors examine structural patterns because these designs illustrate the proper connections between objects and classes to design

extensive system frameworks. Pattern development emerges from entity communication patterns through behavioral pattern analysis. The deployment of this

communication improves through established patterns that simplify its implementation processes. The creational pattern group determines object creation methods

that establish proper development frameworks for project object implementation. Design patterns go through evaluation, which combines goal assessment with

analysis of code methods and technical specifications, as well as an assessment of how they address various design problems. This study examines how design

patterns should be chosen by performing comparative research that aligns with particular software requirements. Software development leads to efficient

programming outcomes because developers connect business requirements with technical solutions to create appropriate solutions from patterns.

Keywords: Object-Oriented Analysis, Design patterns

INTRODUCTION

Design Pattern in software engineering is a known, trusted answer to a common problem in software design. This is not an already-made design that can

be changed straight to code. It has to do with the interpretation or template of steps to resolve a problem that can be deployed in several different

conditions. Design Patterns play an important role in software development as they make provision for solutions to be reused for common design issues.

It supports scalability, maintainability, and efficiency of code by providing good approaches to solving the Problem. Software developers deploy these

accepted and standard practices to implement more code that is manageable and scalable. It gives standard terminology and is peculiar to specific problems

and scenarios.(Marinescu, 2002).

Patterns can’t be copied into the Program code, just as it happens with off-the-shelf functions. It is not a particular piece of written code but rather a

generally acceptable concept for resolving a specific problem in coding. You can follow the pattern information and develop a solution that is in line with

your program. Algorithms are most of the time confused with patterns because the two techniques explain solutions to a few known problems. The

algorithm provides a step-by-step way to follow and arrive at a specific goal and a pattern, as well as to implement a solution in a high-level description.

Implementation of the same pattern is added to the double different programs, which may end up not being the same. An example of an algorithm is some

ingredient for food preparation: The two have procedures to arrive at a goal. The objectives of this study are to give a clear understanding of design

patterns and discuss their functions in software quality and development efficiency improvement. It will identify the types of design patterns, discuss

each with its advantages and disadvantages, and highlight its limitations.(El Boussaidi and Mili, 2012)

REVIEW ON DESIGN PATTERN

“The idea of design patterns originated from Christopher Alexander, an architect who introduced patterns in his book "A Pattern Language" (1977). He

proposed that reusable architectural patterns could help design cities and buildings in a structured way”.(Dawes and Ostwald, 2017) . Software

development methodologies started to formalize during the 1970s while reusable solutions remained undeveloped that decade. The paradigm of object-

oriented programming (OOP) was developing through the creation of programming languages that included Simula (1967) and Smalltalk (1972). The

tested patterns of design, known as design patterns, function as proven solutions to software problems. Object-oriented methods are implemented in

design patterns to create dependable, reusable solutions that solve design-related issues. The main objective of design patterns is to implement extensible

approaches that control loose coupling. The use of design patterns brings about designs that reduce program components' interdependency while

improving their extension and maintenance capabilities. The improper system design that adds to implementation time becomes an issue disturbing the

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6738

system performance according to antipattern dictation. The scenarios with problems that are documented with their proposed solutions act as correct

documentation to aid developers to recognize and run away from errors and other design problems that impact performance.

Software designers use systematic solutions to handle frequent problems within software development which leads to better code clarity together with

improved maintainability and operational efficiency. Software developers employ design patterns as code-writing templates to create programs that

minimize time wastage and maximize clarity and system inspection capabilities. “In general, all software patterns can be classified as generative and non-

generative. Both generative and non-generative patterns could be classified to be design patterns, organization patterns, analysis patterns, etc., depending

on the aspect of software. Design patterns are the most known and used patterns today, as they are patterns in software engineering and reflect both low-

level strategies for the design of components in the system and high-level strategies that impact the design of the overall system”.(Tešanovic, 2005)

SIGNIFICANCE OF DESIGN PATTERNS

1. Code reusability enables developers to put a stop to needless development through established solutions addressing common software development

problems by using design patterns.

2. Using Design Patterns allows built software to grow through new functional abilities and increased efficient processing capabilities.

3. The architectural design enables developers to read and understand code by using standard terminology.

4. Existing solutions enable developers to prevent redundant work through their application of functional code to various problems, thus enabling code

reuse.

5. Design Patterns supply adaptable components for loose connections through their deployment of adaptable system components.

CREATIONAL DESIGN PATTERN

Creational design patterns in software engineering tend to deploy the object creation method, objects are being implemented in a condition suitable for

the project. The real nature of an object implementation may lead to problems in the design, or complexity may be added to the design. This issue is

solved by creational design patterns through handling the object creation. Any of the creational pattern types has its techniques, merits, and demerits. The

following are the five forms of creational design patterns.(Dhait et al., 2024)

 https://hyperskill.org/learn/step/16251

Figure 1: Types of Creational Design Pattern

FACTORY METHOD

Purpose – this pattern type implements the abstract class for an object creation that permits modification of object creation in subclasses. (Temaj, 2023)

Suitable Scenarios

✓ If the object implementation logic has to be centralized
✓ When a particular kind of object to be implemented is decided at runtime

Benefits

✓ It enhances the loose coupling between object creation and client code
✓ It supports scalability by approving new object types with no modification of already existing code

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6739

Figure2: Sample Class Diagram for Factory Method

ABSTRACT FACTORY

Purpose - Accepts using a method that creates other factories. This can be used further as a factory method.

Suitable Scenarios
✓ This is when concrete classes are not specified during multiple related object creation

✓ If multiple environments need to be supported by a system

Benefits
✓ Allows consistency between objects that are part of the same family

✓ Makes object implementation simple for complex applications

PROTOTYPE

Purpose - This has to do with copying a ready-made class to create a new one. The number of Subclasses that differ only in the technique they are

initialized with their objects.

Suitable Scenarios
✓ If object implementation is costly and needs to be reduced

✓ If similar attributes with instances are always being created by an application

Benefits
✓ In object implementation, overhead is reduced

✓ Object structures are reserved while supporting modification

 BUILDER

Purpose - allows the use of step-by-step methods to implement complex objects using simple objects.

Suitable Scenarios

✓ It is good when multiple optional components with complex objects are needed to be constructed
✓ When object creation needs to follow a step-by-step method

Benefits

✓ Code readability is enhanced by clearly explaining an object's construction
✓ Various configurations are used to handle object implementation

SINGLETON

Purpose - This is a creational pattern that implements one single instance of an object. in this process, a point of global access is created to this instance.

Suitable Scenarios

✓ When it enhances the connectivity of the database and configuration managers
✓ When it stops multiple instances of objects that influence system-wide operations

Benefits

✓ Memory is saved by stopping multiple unnecessary instances
✓ Grant global access point for steady object management

Class Diagram for Creational Design Pattern

In the creational design pattern, an object has to deploy instantiation to another object, while a class varies to the class that is instantiated by the use of

inheritance. For example, let us overlook many details of the exact components of a house and focus on how it is built. The house is said to be a set of

rooms. A room knows its neighbors, which may include another room, a door to another, or a wall. Only a few important parts of creating a house are

identified. The diagram below identifies the connection between these classes.

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6740

 Figure 3: Class Diagram of creational pattern

Code Implementation

MapSite

Enter()

House

addroom()

roomNo()

Wall

Enter()

Door

Enter()

Isopen

Room

Enter()

Setside()

Getside()

RoomNo()

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6741

Output

STRUCTURAL DESIGN PATTERN

This type of design pattern eases the design by pointing out an easy route to implement the relationship between entities. The interest in structural patterns

is to know how objects and classes are joined together to come out with large structures. Inheritance is been used in structural class patterns to join

interfaces. A better idea of whether we need to compose, inherit, or create and maintain any other relationships between components.(Fontana, Maggioni

and Raibulet, 2013)

ROLES OF STRUCTURAL DESIGN PATTERNS

✓ Complex structures are formed by joining objects in an efficient and flexible way

✓ In promoting loose coupling, dependencies are managed among classes

✓ Reusability is possible by allowing objects to be adapted without alteration of the code
✓ Maintainable object structures and scalability allow the system to be more adaptable

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6742

Figure 4: Types of Structural Design Pattern

 https://hyperskill.org/learn/step/17649

ADAPTER

Purpose - Looking at the name, you understand that it concerns joining objects with incompatible interfaces.(Harrer et al., 2008)

How it Supports Collaboration

✓ One interface is permitted to work with another by bridging incompatibility system

Figure5: Sample class Diagram for Adapter

 Bridge

Purpose - The Separation of abstraction and implementation of class, making it possible for their independent development, is supported through the
bridge.

How it Supports Collaboration

✓ Abstraction and implementation can be allowed to look different without depending on each other
Composite

Purpose – This has structured objects in a hierarchical method that permits the client to manipulate each of them

How it Supports Collaboration

✓ It supports the same method to manage individual objects and compositions

 Decorator

Purpose – This type of structural pattern improves object behavior with no original object alteration through the help of a special wrapper
How it Supports Collaboration

✓ Permits objects to acquire more features dynamically

Façade

Purpose – This makes available an interface for a complex set of objects(Ivanov and Sato, 2024)

How it Supports Collaboration

✓ An easy, unified interface is implemented for communication with complex systems
 Flyweight

Purpose – the number of objects is added in this pattern to help fit into storage by sharing and by using their common parts

How it Supports Collaboration

✓ An efficient Object shearing is guaranteed

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6743

 Proxy

Purpose – This makes a placeholder for another complex object available.

How it Supports Collaboration

✓ Underlying resources are given controlled and optimized access

Figure 6: Class Diagram for Structural Design Pattern

Example: Have a Coffee base class which we need to extend with Milk and Sugar features without touching its original structure.

Code Implementation

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6744

Output

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6745

BEHAVIORAL DESIGN PATTERN

 Behavioral design patterns. In this process, the patterns add flexibility in deploying this communication. This pattern follows the step that objects in an

object-oriented project have to be connected in a way that complex implementation can be avoided and user input can be nicely arranged. Loose coupling

techniques are deployed by the behavioral pattern to ensure flexibility and a good flow of information. In software engineering, when classes and objects

are weakly connected, it is called loosely coupled object-oriented software systems. Because of this weak connection between classes and objects it is

not as effective as those in tightly coupled systems. Being independent and reusable is possible for objects in loosely coupled systems because any change

made has a small impact on the existence of another(Pettit IV and Gomaa, 2006). The components of a behavioral design pattern are listed below

https://www.oodesign.com/behavioral-patterns/

 Observer Pattern

Purpose – provides one to many dependencies among objects, making sure that if an object changes its original state, all its connected dependents are

signaled(Monday and Monday, 2003)

How it facilitates Communication

✓ Support automated feedback across multiple parts with no direct dependencies

Figure 7: Class Diagram for observer design pattern

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6746

5.2 Strategy Pattern

Purpose – The family of algorithms is defined, and different classes are encapsulated, permitting objects to change algorithms dynamically

How it facilitates Communication

✓ permits objects to change character dynamically with no modification of the client code
Command Pattern

Purpose – Objects are encapsulated as requests, using operations to be queued, parameterized, or logged for undo features

How it facilitates Communication

✓ The sender is decoupled from the receiver by doing so. Flexible command execution is allowed

Interpreter Pattern

Purpose – Grammar is defined, and an interpreter is made available to implement the sentences in a particular Language
How it facilitates Communication

✓ A step-by-step technique to evaluate organized and structured expressions is provided

Class Diagram of Behavioral Design Pattern

The new design features a notification system that enables news agencies to broadcast the latest updates to numerous news readers through the system.

The system requires adaptive features for extensions while using a behavioral observer design pattern to manage relationships between news agencies

and their newsreaders

 Figure 8: class Diagram of Behavioral Design Pattern

Code Implementation

NewsAgency

-observers ()

-news: string

+registerObserver

+removeObserver

 +setNews

 +notifyObservers

Output to Console

NewsReader

-name: string

+update(news)

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6747

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6748

Output

COMPARATIVE ANALYSIS OF CREATIONAL, STRUCTURAL, AND BEHAVIORAL DESIGN PATTERNS

Characteristics and Purpose of Creational Design Pattern

The design pattern focuses on object implementation to achieve flexible and reusable code from existing implementations. The pattern enables the system

to be dependent on implementation but not on organizational presentation or object structure.(Jenila and Ranjana, 2011)

Strength
✓ The hidden complex instantiation logic provides encapsulation to developers.

✓ The environment modification enables developers to use objects (Flexibility)

✓ The decrease in dependency occurs when implementing concrete systems (Decoupling).
Weakness

✓ During setup and maintenance, there is always more complexity (Overhead)

✓ Code complexity may be multiplied by the factory and abstract factory (May lead to excess Abstraction)
Characteristics and Purpose of Structural Design Pattern

It focuses on organizing classes and objects to come out with huge structures while making sure of flexibility and efficiency in relationships.

Strengths
✓ Structures are made reusable and separate concerns (Enhance code maintainability)

✓ Memory and control access are controlled by flyweight and proxy (Improves performance)

✓ A system architecture can be managed (Scalability)
Weakness

✓ Unwanted indirection is caused by multiple layers (Increased Complexity)

✓ Execution can be slow due to additional processing caused by proxy and adapter
Characteristics and Purpose of Behavioral Design Pattern

The goal of this pattern group is to improve object communication using flexible methods that increase encapsulation in message transfers.

Strength
✓ Flexibility and modularity appear while determining objects and their mutual interactions

✓ The processing of decoupling logic supports reusable, maintainable code through its functionality.

✓ The application shows advancements in command patterns along with mediator and chain of responsibility patterns.
Weakness

✓ High usage of UML increases the number of both object layers and interactions

✓ The implementation of strategies combined with state along with observer could lead to runtime overhead during dynamic operations

Table 1: Comparative analysis of Design Pattern

 COMPARATIVE EVALUATION OF DESIGN PATTERNS

 Pattern Category Best suited for Strength Weakness

Creational It is good for the management of

lifecycle and object instantiation

In concrete implementations,

dependency is decreased

During setup and maintenance,

there is always more complexity

Structural Pattern Controls connections among

objects

Memory and control access are

controlled by flyweight and

proxy

Unwanted indirection is caused

by multiple layers

Behavioral The management of objects

during workflow functions

remains of utmost importance

In the process of decoupling

logic, reusable, maintainable

code is supported

Runtime overhead may be

introduced by state, observer,

and strategy due to dynamic

behavior

International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025), Page – 6737-6749 6749

CONCLUSION

The tested solutions that design patterns offer basic design problems constitute a fundamental aspect of software Engineering practice. Research focuses

on three different design pattern categories known as behavioral and creational as well and structural. This study lists design pattern realization examples

while identifying both their beneficial aspects and limiting features and particular traits. The implementation of entities becomes simpler through structural

design patterns by showing standard methods to link different entities.

Different patterns in this assessment show their unique set of advantages and drawbacks. Developers gain the capacity to identify superior design patterns

through understanding trade-offs which leads to superior software development results for their projects. Expertise in design patterns must be learned by

Software Engineers to create software systems that merge both scalability attributes with maintainability features. Modern software development

techniques need to apply Agile combined with DevOps practices to deliver maximum benefits in contemporary development.

REFERENCES

1. Dawes, M.J. and Ostwald, M.J. (2017) Christopher Alexander’s A Pattern Language: analysing, mapping and classifying the critical response.

City, Territory and Architecture, [Online] 4 pp. 1–14 Available from: https:// . [Accessed].

2. Dhait, S., Sapate, A., Gadge, A., Borkar, P., Badhiye, S. and Aher, U.B. (2024) Analysis Of The Best Creational Design Patterns In Software

Development. In: . , [Online] Available from: https:// . [Accessed].

3. El Boussaidi, G. and Mili, H. (2012) Understanding design patterns—what is the problem? Software: Practice and Experience, [Online] 42

(12), pp. 1495–1529 Available from: https://. [Accessed].

4. Fontana, F.A., Maggioni, S. and Raibulet, C. (2013) Design patterns: a survey on their micro‐structures. Journal of Software: Evolution and

Process, [Online] 25 (1), pp. 27–52 Available from: https:// . [Accessed].

5. Harrer, A., Pinkwart, N., McLaren, B.M. and Scheuer, O. (2008) The Scalable Adapter design pattern: Enabling interoperability between

educational software tools. IEEE Transactions on Learning Technologies, [Online] 1 (2), pp. 131–143 Available from: https:// . [Accessed].

6. Ivanov, M. and Sato, J. (2024) Façade Design Pattern Optimization Workflow Through Visual Spatial Frequency Analysis and Structural

Safety Assessment. Journal of Facade Design and Engineering, [Online] 12 (1), pp. 43–62 Available from: https:// . [Accessed].

7. Jenila, P.A. and Ranjana, P. (2011) Design pattern prediction techniques: A comparative analysis. In: . , [Online] Available from: https:// .

[Accessed].

8. Marinescu, F. (2002) EJB design patterns. ed. [Online] : Wiley New York. Available from: https:// . [Accessed].

9. Monday, P.B. and Monday, P.B. (2003) Implementing the Observer Pattern. Web Services Patterns: Java™ Platform Edition, [Online] , pp.

187–204 Available from: https:// . [Accessed].

10. Pettit IV, R.G. and Gomaa, H. (2006) Modeling behavioral design patterns of concurrent objects. In: . , [Online] Available from: https:// .

[Accessed].

11. Temaj, G. (2023) Factory design pattern. Source: https://www.researchgate.net/publication/350611051_ Factory_Design_Pattern.Retrieved

from, [Online] 28 pp. Available from: https:// . [Accessed].

12. Tešanovic, A. (2005) What is a pattern. Dr.ing.course DT8100 (prev.78901/45942/DIF8901) Object-oriented Systems, [Online], pp. Available

from: https:// . [Accessed].

https://www.researchgate.net/publication/350611051_

