

## **International Journal of Research Publication and Reviews**

Journal homepage: www.ijrpr.com ISSN 2582-7421

# Hahn Banach Theorem And Its Applications

## Chetna Rani Gupta

Assistant Prof. in Mathematics, Multani Mal Modi College, Patiala

#### ABSTRACT:

One of the most significant theorems in functional analysis is the Hahn-Banach theorem. It has several uses in various areas of mathematics, including partial differential equations and optimization, in addition to the subject itself. This paper provides a thorough and understandable demonstration of the theorem along with a few examples of its applications

Keywords: Hahn-Banach Theorem, Functional, Normed Linear Space

### 1. Introduction

The Hahn-Banach theorem for every normed space and its applications are covered in this paper. The theorem states that by maintaining norms, any continuous linear functional on a subspace can be extended to the entire space. Among many other areas, it can be applied to game theory, convex programming, duality theory, and control theory.[3]

## 2. Hahn-Banach Theorem [1] [2] [5]

If p is a functional defined on U, and U is a linear subspace of a Normed linear space V, then p can be extended to a functional  $p_0$  on the whole space V in such a way that

 $p_0(t) = p(t)$  for all  $t \in U$  and  $||p_0|| = ||p||$ 

First, do the following to obtain the result, which is required to prove the theorem.

If p is a functional defined on U, and U is a linear subspace of a Normed linear space V if  $t_0$  be a vector not in U and if  $U_0 = U + \{t_0\} = \{u + \alpha t_0, u \in U, \alpha \text{ is real number}\}$  is a linear space spanned by U and  $t_0$  Consequently, a functional  $p_0$  defined on  $U_0$  can be obtained by extending the functional p such that  $||p_0|| = ||p||$  [2] [5]

#### Proof: Case 1

Let V be a real linear space with norms.

Since  $t_0$  be a vector not in U, that is  $t_0 \notin U$ 

Then each vector z (say) of U can be uniquely expressed as  $z = u + \alpha t_0$  where  $u \in U$ 

Define  $p_0$  on  $U_0$ 

$$p_0(z) = p_0(u + \alpha t_0)$$

 $= p_0(u) + \alpha p_0(t_0)$ 

$$= p(u) + \alpha r_0$$

Where  $r_0 = p_0(t_0)$  and  $p_0(u) = p(u)$  for all  $u \in U$ 

Clearly  $p_0$  is a linear extension of p over U

Now remain to show that  $||p_0|| = ||p||$ 

That is  $||p_0|| \ge ||p||$  and  $||p_0|| \le ||p||$ 

First, show that  $||p_0|| \ge ||p||$ 

Now  $||p_0|| = \sup \{ |p_0(t)| : u \in U_0 , ||x|| \le 1 \}$  $\geq \sup \{ |p_0(t)| : u \in U , ||x|| \le 1 \}$  $= \sup \{ |p(t)| : u \in U , ||x|| \le 1 \}$ = || p ||Thus  $||p_0|| \ge ||p||$ Also show that  $||p_0|| \leq ||p||$ For this choose a real number  $r_0$  in such a way so that  $||p_0|| = ||p||$ [Since between two real numbers a, b (say) there always exists a real number  $r_0$  (say) such that  $a \le r_0 \le b$ ] For this purpose, proceed as follows If  $u_1$ ,  $u_2 \in U$  then  $p(u_1) - p(u_2) = p(u_2 - u_1)$  $\leq |p(u_2-u_1)|$  $\leq ||p|| ||(u_2-u_1)||$  $= || p || || (u_2 + t_0) - (u_1 + t_0 ||)$  $\leq ||p|| ||(u_2+t_0)|| + ||p|| ||(u_1+t_0||)$  $-p(u_1) - ||p|| (||u_1 + t_0||) \le -p(u_2) + ||p|| (||u_2 + t_0||)$ Which holds for all  $u_1$  ,  $u_2 \in U$  $\sup\{-p(u') - ||p|| (||u' + t_0||)\} \le \inf\{-p(u') + ||p|| (||u' + t_0||)\}$ Take  $a = \sup\{-p(u') - ||p|| (||u' + t_0||)\}$  and  $b = \inf\{-p(u') + ||p|| (||u' + t_0||)\}$ Then  $a \le b$  and a, b are real numbers so can choose  $r_{0,}$  a real number such that  $a \le r_0 \le b$  for all  $a, b, r_0$  $\sup\{-p(u') - ||p|| (||u' + t_0||)\} \le r_0 \le \inf\{-p(u') + ||p|| (||u' + t_0||)\}$ Let  $z = u + \alpha t_0$  where  $u \in U$  where  $z \in U$ Take  $u' = \frac{u}{\alpha}$   $\alpha \neq 0$  $\sup\left\{-p\left(\frac{u}{a}\right) - ||p||\left(||\frac{u}{a} + t_0||\right)\right\} \le r_0 \le \inf\left\{-p\left(\frac{u}{a}\right) + ||p||\left(||\frac{u}{a} + t_0||\right)\right\}$ When  $\alpha > 0$  then  $r_0 \leq - p\left(\frac{u}{\alpha}\right) + ||p|| \left(||\frac{u}{\alpha} + t_0||\right)$  $r_0 \leq -\frac{1}{\alpha}p(u) + \frac{1}{\alpha}||p|| (||u + \alpha t_0||)$  $\alpha r_0 \leq -p(u) + ||p||(||u + \alpha t_0||)$  $p(u) + \alpha r_0 \le ||p|| (||u + \alpha t_0||)$  $p(u) + \alpha p_0(t_0) \le ||p|| (||u + \alpha t_0||)$  $p_0(u) + \alpha p_0(t_0) \le ||p|| (||u + \alpha t_0||)$  $p_0(u + \alpha t_0) \le ||p|| (||u + \alpha t_0||)$  $p_0(z) \le ||p|| (||u + \alpha t_0||)$ for all  $z \in U_0$ When  $\alpha < 0$  then 
$$\begin{split} r_0 &\geq -p\left(\frac{u}{\alpha}\right) - ||p|| \left(||\frac{u}{\alpha} + t_0||\right) \\ r_0 &\geq -\frac{1}{\alpha}p(u) - \frac{1}{|\alpha|}||p|| \left(||u + \alpha t_0||\right) \\ r_0 &\geq -\frac{1}{\alpha}p(u) + \frac{1}{\alpha}||p|| \left(||u + \alpha t_0||\right) \end{split}$$

 $p(u) + \alpha r_0 \le ||p|| (||u + \alpha t_0||)$ 

```
p(u) + \alpha p_0(t_0) \le ||p|| (||u + \alpha t_0||)
```

 $p_0(u) + \alpha p_0(t_0) \le ||\, p||\, (||u + \alpha t_0||)$ 

 $p_0(u + \alpha t_0) \le || p || (||u + \alpha t_0||)$ 

 $p_0(z) \le ||p|| ||z||$  for all  $z \in U_0$ 

#### Therefore, for all $\alpha \neq 0$

 $p_0(z) \le ||p|| ||z||$  for all  $z \in U_0$ 

Replace z by -z in the above equation

 $p_0(-z) \le ||p|| ||-z||$ 

 $-p_0(z) \le ||p|| ||z||$ 

 $|p_0(z)| \le ||p|| ||z||$  for all  $z \in U_0$ 

 $\sup\{|p_0(z)| : ||z|| \le 1\} \le ||p|| ||z|| \text{ for all } z \in U_0$ 

 $||p_0|| \le ||p||$ 

Therefore  $||p_0|| = ||p||$ 

#### Case 2:

Let V be a Complex Normed Linear Space

If the scalars are restricted to real numbers, Complex Linear Space can be regarded as a real linear space.

If q and w be real and imaginary parts of p then

p(t) = q(t) + i w(t) for all  $t \in U$ 

#### Claim: q and w both are linear functional on U

Since P is linear so clearly q and w both are linear

#### So, Now show that both q and w are continuous on space M

Since

 $|q(t)| \le |p(t)|$ 

 $\sup_{||t|| \le 1} \{|q(t)|\} \le \sup_{||t|| \le 1} \{|p(t)|\}$ 

 $||q|| \le ||p||$ 

Also  $|w(t)| \le |p(t)|$ 

 $\sup_{||t|| \le 1} \{|w(t)|\} \le \sup_{||t|| \le 1} \{|p(t)|\}$ 

$$||w|| \le ||p||$$

Both q and w are bounded being p is bounded

So both q and w are continuous on U

Therefore both q and w functional being linear and continuous on U

So by case 1

Both q and w cab be extended to a real valued functional  $q_0$  and  $w_0$  on real space  $U_0$  such that

 $||q_0|| = ||q||$  And  $||w_0|| = ||w||$ 

Now as p(t) = q(t) + i w(t) for all  $t \in U$ 

For simplification, it is better to express P(t) in terms of q(t) only

Replace t by it

$$p(it) = q(it) + i w(it)$$

Also

$$p(it) = ip(t)$$
$$= i(q(t) + iw(t))$$

$$= i(q(t) + i^2 w(t))$$
$$= iq(t) - w(t)$$

$$q(it) + i w(it) = i q(t) - w(t)$$

Equate real and imaginary part

$$q(it) = -w(t))$$
 and  $w(it) = q(t)$   
 $p(t) = q(t) + i w(t)$   
 $= q(t) - i q(it)$  for all  $t \in U$ 

Define  $p_0: U_0 \to \mathbb{C}$  complex number by

$$p_0(t) = q_0(t) - iq_0(it)$$
 for all  $t \in U$ 

#### Now to show that $p_0$ is an extension of, one has to show

(i)  $p_0(t) = p(t)$  for all  $t \in U$ 

(ii)  $p_0$  is linear as complex valued function on  $U_0$ 

$$p_0(\gamma t) = \gamma p_0(t)$$
 where  $\gamma = \alpha + i\beta$  and  $\alpha, \beta$  real numbers are

(iii)  $||p_0(t)|| = ||p(t)||$ 

#### (i) First to show $p_0(t) = p(t)$ for all $t \in U$

Since  $q_0(t) = q(t)$  and  $w_0(t) = w(t)$  all  $t \in U$ 

$$p_0(t) = q_0(t) - iq_0(t)$$

= q(t) - iq(t) = p(t)

### (ii) $p_0$ is linear as complex valued function on $U_0$

 $p_0(\gamma t) = \gamma p_0(t)$  where  $\gamma = \alpha + i\beta$  and  $\alpha, \beta$  real numbers are

$$p_0(t + x) = q_0(t + x) - iq_0(t + x)$$
  
=  $q_0(t) + q_0(x) - iq_0(it) - iq_0(ix)$   
=  $q_0(t) - iq_0(it) + q_0(ix) - iq_0(ix)$   
=  $p_0(t) + p_0(x)$ 

Claim:  $p_0(it) = ip_0(t)$ 

$$p_{0}(it) = q_{0}(it) - iq_{0}(i^{2}t) \text{ for all } t \in U$$

$$= q_{0}(it) - iq_{0}(-t)$$

$$= q_{0}(it) + iq_{0}(t)$$

$$= -i^{2}q_{0}(it) + iq_{0}(t)$$

$$= i(-iq_{0}(it) + iq_{0}(t))$$

$$= i(q_{0}(t) - iq_{0}(it))$$

$$= ip_{0}(t)$$

**Claim**:  $p_0(\gamma t) = \gamma p_0(t)$ 

Where  $\gamma \in \mathbb{C}$  complex number and  $\gamma = \alpha + i\beta$  where  $\alpha, \beta$  real numbers are

$$p_0(\gamma t) = p_0((\alpha + i\beta)t)$$
$$= p_0((\alpha + i\beta)t)$$
$$= p_0(\alpha t) + p_0(i\beta t)$$

| $= \alpha  p_0(t) + i\beta  p_0(t)$                              |                                                   |
|------------------------------------------------------------------|---------------------------------------------------|
| $= (\alpha + i\beta) p_0(t)$                                     |                                                   |
| $=\gamma p_0(t)$                                                 |                                                   |
| (iii) $  p_0(t)   =   p(t)  $                                    |                                                   |
| Since $p_0: U_0 \to \mathbb{C}$                                  |                                                   |
| For $t \in U_0$                                                  |                                                   |
| $p_0(t) = re^{i\theta}$ where $r \ge 0$                          | and $\theta$ is real                              |
| $ p_0(t)  =  re^{i\theta} $                                      |                                                   |
| $=  r  e^{i\theta}$                                              |                                                   |
| =  r                                                             | (since $ e^{i\theta}  = 1$ )                      |
| $=e^{-i	heta}p_0(t)$                                             |                                                   |
| $= p_0(e^{-i\theta}t)$                                           |                                                   |
| $\leq q_0(e^{-i\theta}t)$                                        |                                                   |
| $\leq  q_0(e^{-i\theta}t) $                                      |                                                   |
| $\leq   q_0   \   e^{-i\theta}     t  $                          |                                                   |
| $=   q_0    t  $                                                 | (since $ e^{i\theta}  = 1$ )                      |
| =   q     t                                                      | $(\text{since }   q_0   =   q   \text{ on } U_0)$ |
| $\leq   p   \mid   t  $                                          |                                                   |
| $\sup_{  t   \le 1} \{ p_0(t) :   t   \le 1\} \le   p       t  $ |                                                   |
| $  p_0   \le   p  $ and $p_0$ is bound                           | led                                               |
| Also $  p_0   \ge   p  $ already proved                          | 1                                                 |
| Hence $  p_0   =   p  $                                          |                                                   |
| Proof of Main Theorem [2] [5]                                    |                                                   |
| Let A be the collection of every possible ext                    | tension h of the linear functional p on every     |
| subspace such that $  h  =  p  $                                 |                                                   |
|                                                                  |                                                   |

By lemma there exists at least one extension  $p_0$  such that  $||p_0|| = ||p||$ 

A is non-empty

Let  $h_1$  and  $h_2 \in A$ 

Define a relation  $\leq$  on *A* as follows

 $h_1 \leq h_2 \text{ means } D_{h_1} \subseteq D_{h_2} \text{ and } h_1(t) = h_2(t) \text{ for all } t \in D_{h_1}$ 

where  $D_{h_1}$  is the domain of  $h_1$  and  $D_{h_2}$  is the domain of  $h_2$ 

The set of extensions of A is a partially ordered set, as may be readily shown

Let E be any subset of a set A that is totally ordered.

And let S be the union of all the functionals' domains in set E.

If  $h_1$  and  $h_2 \in E$  then either  $h_1 \leq h_2$  or  $h_1 \geq h_2$ 

If  $t \in D_{h_1}, D_{h_2}$  then  $h_1 = h_2$ 

Define  $\varphi: S \to \mathbb{C}$  by

 $\varphi(t) = h(t)$   $h \in E$  and  $t \in D_{h_1}$ 

So that  $\varphi$  is an extension of p

Also  $D_{\varphi} = S$  = be the union of all domains of all the functional in set *E* 

$$D_h \subseteq D_{\varphi}$$
 for any  $h \in E$ 

 $h \subseteq \varphi$  by defined relation

so that  $\varphi$  is the upper bound for the set *E* 

Therefore, it has been shown that A is partially ordered set in which every totally ordered subset E has an upper bound

According to Zorn's lemma Set A has a maximal element say  $p_0$ 

Now show that domain of  $p_0$  is the whole space V that is

$$D_{p_0} = V$$

Suppose, if possible  $D_{p_0}$  is proper subset of V

Therefore, there is an element  $t_0$  of V such that it does not belong to  $D_{p_0}$ 

 $M = D_{p_0} + \{ t_0 \}$  be a linear subspace spanned by  $D_{p_0}$  and  $t_0$ 

So, according to the lemma there exists an extension  $\omega$  on M of  $p_0$  such that

 $\omega(t) = p_0(t)$  for all  $t \in D_{p_0}$ 

And

Also

 $D_{p_0} \subseteq M = D_{\omega}$ 

 $p_0 \subseteq \omega$ 

 $||p_0|| = ||\omega||$ 

which contradicts itself

(since  $p_0$  is the maximal element)

Therefore  $D_{p_0} = V$ 

Hence, p can be extended to functional  $p_0$  such that

 $p_0(t) = p(t)$  for all  $t \in U$  and  $||p_0|| = ||p||$ 

#### 3. Applications

**3.1 Theorem:** [5] If V is a Normed linear space and  $t_0$  is a non-zero vector in V then there exists a functional  $p_0$  such that  $p_0(t_0) = ||t_0||$  and  $||p_0||=1$ . In particular if  $t \neq z$  where  $t, z \in V$  then there exists an  $p_0 \in V^*$  such that  $p_0(t) \neq p_0(z)$ 

**Proof:** Let U be a subspace spanned by  $t_0$ 

 $U = \{at_0: \alpha \ be \ any \ scalar\}$ 

= { $z: z = at_0: \alpha be any scalar$ }

Define  $p: U \to \mathbb{C}$  by

 $p(at_0) = |a|||t_0||$ 

To show p is functional, that is p is linear and continuous

#### (i) p is linear

Let  $z_1$  and  $z_2 \in U$  so that  $z_1 = at_0$  and  $z_2 = bt_0$  a, b be any scalars

Now for any scalars r and s

 $p(rz_1 + sz_2) = p(rat_0 + sbt_0)$  $= p((ra + sb)t_0)$ 

 $= (ra + sb)||t_0||$ 

 $= ra||t_0|| + sb||t_0||$ 

 $= r p(at_0) + sp(bt_0)$  $= rp(z_1) + sp(z_2)$  $p(rz_1 + sz_2) = rp(z_1) + sp(z_2)$ (*ii*) *p* is continuous  $|p(z)| = |p(at_0)|$  $= ||a|||t_0|||$  $= |a|||t_0||$ = ||z|| $|p(z)| = ||z|| \le 2||z||$ p is bounded so continuous Also  $||p|| = \sup \{|p(z)| : ||z||=1\}$  $= \sup \{ ||z|| : ||z||=1 \}$ = 1 Also (Take a = 1)  $p(t_0) = ||t_0||$ Therefore, by the Theorem the functional p can be extended to a functional  $p_0$  so that ||p|| = 1Since  $||p_0|| = 1$ In particular if  $t \neq z$  where  $t, z \in V$ 

then there exists an  $p_0 \in V^*$  such that

 $t - z \neq 0$ 

 $p_0(t-z) = |t-z| \neq 0$ 

$$p_0(t) \neq p_0(z)$$

3.2 Theorem: [5] If U be a closed linear space of a Normed linear space V and  $t_0$  is a vector not in V then there exists a functional  $p_0$  in V\*such that  $p_0(U) = 0 \quad p_0(t) \neq 0$ 

 $||p_0|| = ||p||$ 

**Proof:** Let U be a closed linear subspace of a Normed linear space V then  $V_{U}$  is Normed linear space with Norm defined as

 $||t + U|| = inf\{||t + u||, u \in U$ 

Define a map  $T: V \to V/_U$ 

By T(t) = t + U for all  $t \in V$ 

#### Show that T is a continuous linear transformation for which ||T|| < 1

## T is linear

so

Let  $z_1$  and  $z_2 \in U$  and a, b be two scalars

$$T(az_1 + bz_2) = (az_1 + bz_2) + U$$
  
=  $(az_1 + U) + (bz_2 + U)$   
=  $(az_1 + U) + (bz_2 + U)$   
=  $a(z_1 + U) + b(z_2 + U)$   
=  $aT(z_1) + bT(z_2)$   
 $T(az_1 + bz_2) = aT(z_1) + bT(z_2)$ 

T is Continuous

Thus

In particular choose u = 0

 $||T(t)|| \le ||t||$ 

T is bounded so continuous

Also

$$||T|| = \sup\{ ||Tt|| , t \in V ||t|| \le 1$$
$$\le \sup\{ ||t|| , t \in V ||t|| \le 1\} = 1$$

 $||T|| \leq 1$ 

**Claim**:  $T(t_0)$  is non zero vector in  $V/_U$  where  $t_0 \notin U$ 

If 
$$u \in U$$
 then  $u + U = U$   
 $T(u) = u + U$   
 $= U = \text{zero of } V/U$ 

Also  $t_0 \notin U$ 

$$T(t_0) = t_0 + U \neq U \text{ (zero of } V/U)$$

Therefore, 
$$T(t_0)$$
 is non zero vector in  $V/_{II}$  where  $t_0 \notin U$ 

(Since If V is a Normed linear space and  $t_0$  is a non-zero vector in V then there exists a functional  $p_0$  such that  $p_0(t_0) = ||t_0||$  and  $||p_0||=1$ )

there exists a functional p in  $V^*$  such that

$$p(t_0 + U) = ||t_0 + U|| \neq 0 \text{ and } ||p|| = 1$$
  
$$p_0 = poT: V \to \mathbb{C} \text{ or } \mathbb{R} \qquad (\text{since } T: V \to V/_U \text{ and } p: V/_U \to \mathbb{C} \text{ or } \mathbb{R})$$

Define  $p_0: V \to \mathbb{R}$  or  $\mathbb{C}$  by

$$p_0(t) = (poT)(t)$$
$$= p(T(t))$$
$$= p(t + U) \text{ for all } t \in V$$

Now show that  $p_0$  is functional on V

$$p_0(az_1 + bz_2) = p_0(az_1 + bz_2 + U)$$
  
=  $p_0(az_1 + U) + p_0(bz_2 + U)$   
=  $ap_0(z_1 + U) + bp_0(z_2 + U)$   
=  $ap_0(z_1) + bp_0(z_2)$   
 $p_0(az_1 + bz_2) = ap_0(z_1) + p_0T(z_2)$ 

#### $p_0$ is continuous on V

p is bounded being functional so  $p_0$  is also bounded and therefore continuous on V

#### Now to show that

 $p_0(U) = 0$  and  $p_0(t) \neq 0$ 

 $p_0(u) = p(T(u)) = p(u+U) = 0$  for all  $u \in U$  so that

$$p_0(U)=0$$

and  $p_0(t_0) = p_0(T(t_0))$  where  $t_0 \notin U$  $= p_0(t_0 + U) \neq 0$  $= ||t_0 + U|| \neq 0$  Thus  $p_0(t_0) \neq 0$ 

**3.3 Theorem:** [5] If U be a closed linear space of a Normed linear space V and  $t_0$  is a vector not in U if d is the distance from  $t_0$  to U then show that there exists a functional  $p_0$  in V\*such that such that  $p_0(u) = 0$  for all  $u \in U$ ,  $p_0(t_0) = 1$  and  $||p_0|| = \frac{1}{d}$ 

Proof: First show the required result is true for P and then apply Hahn Banach Theorem

Consider the space

 $U_0 = U + \{t_0\} = \{u + at_0, t_0 \notin U \text{ and a is any scalar}\}$ 

Cleary  $U_0$  is subspace of V every element  $u \in U_0$  is uniquely expressible as  $z = u + at_0$ 

Define  $p: U_0 \to \mathbb{R}$  or  $\mathbb{C}$  by

p(z) = a such that |p(z)| = |a|

Clearly p is linear

 $p(u) = (u + 0 t_0) = 0$  for all  $u \in U$ 

 $= \inf \{ ||u - t_0||, u \in U \}$ 

$$p(t_0) = p(0 + 1.t_0) = 1$$

 $||p|| = \frac{1}{d}$  where d is the distance from  $t_0$  to  $U, t_0 \notin U$ 

$$\begin{aligned} ||p|| &= \frac{1}{d} = \sup \{ |p(z)| \qquad ||z|| \le 1 , z \in U_0 \text{ and } z \ne 0 \} \\ &= \sup \{ \frac{|p(z)|}{||z||} \qquad ||z|| \le 1 , z \in U_0 \text{ , and } z \ne 0 \} \\ &= \sup \{ \frac{|a|}{||u+at_0||} \qquad ||z|| \le 1 , z \in U_0 \text{ , and } z \ne 0 \} \\ &= \sup \{ \frac{|a|}{|a| ||_a^2 + t_0||} \qquad ||z|| \le 1 , \frac{z}{a} \in U \text{ , } z \in U_0 \text{ , and } a \ne 0 \} \\ &= \sup \{ \frac{|a|}{||-(-\frac{z}{a})+t_0||} \qquad ||z|| \le 1 , \frac{z}{a} \in U \text{ , } z \in U_0 \text{ , and } a \ne 0 \} \\ &= \{ \frac{1}{||n|} + \frac{1}{||u-y||} \qquad y = \frac{z}{a} \in U \text{ , } z \in U_0 \text{ , and } z \ne 0 \} \\ &= \frac{1}{d} \end{aligned}$$

(since  $U \subset U_0$ )

Therefore p a functional on  $U_0$  such that p(u) = 0 for all  $u \in U$ ,  $p(t_0) = 1$  and  $||p|| = \frac{1}{d}$ 

So by Hahn Banach theorem p can be extended to a functional  $p_0$  in  $V^*$  such that

$$p_0(u) = p(u)$$
 for all  $u \in U_0$  and  $||p_0|| = ||p||$ 

 $||p_0|| = \frac{1}{d}$  (since  $||p_0|| = ||p|| = \frac{1}{d}$ )

 $p_0: V \to \mathbb{C}$  is extension of  $p: U_0 \to \mathbb{C}$ 

 $p_0(u) = 0$  for all  $u \in U$ 

 $p_0(u) = p(u)$  for all  $u \in U_0$ 

When  $t_0 \in U_0$ 

 $p_0(t_0) = p(u) = 1$  $p_0(t_0) = 1$ 

Hence, if U be a closed linear space of a Normed linear space V and  $t_0$  is a vector not in U if d is the distance from  $t_0$  to U then there exists a functional  $p_0$  in V\*such that such that  $p_0(u) = 0$  for all  $u \in U$ ,  $p_0(t_0) = 1$  and  $||p_0|| = \frac{1}{d}$ 

### 4. Conclusion:

For linear functionals, this theorem is a crucial extension theorem. The current state of functional analysis would be different if this theorem hadn't been established. By expanding the Hahn-Banach theorem's applicability, future studies can build on the groundwork established by this significant mathematical theorem.

#### **References:**

[1] Kesavan S (2009). S. Functional Analysis, Texts and readings in Mathematics (TRIM), 52, Hindustan Book Agency.

[2] Kreyszig (2011. Introductory Functional Analysis with Applications, Wiley India, 2011.

- [3] Narici L., Beckenstein E. (1997). The Hahn-Banach theorem: the life and times, Elsevier, Volume 7, Issue 2, Pages 193-211
- [4] Rudin (1973) .W. Functional Analysis, McGraw-Hill.
- [5] Simmons G.F.(2012). Introduction To Topology and Modern Analysis, Tata McGraw-Hill Education Private Limited