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A B S T R A C T 

Dengue Hemorrhagic Fever (DHF) is an endemic disease that is a major health problem in Indonesia. This study aims to optimize clusters in identifying factors 

that affect the number of dengue cases based on districts/cities in West Java Province in 2022 using Clusterwise Linear Regression (CLR) method. CLR is a method 

of clustering data into clusters based on the characteristics of regression parameters. Model parameter estimation is carried out using the maximum likelihood 

method and the best model optimization is carried out with the minimum Akaike Information Criterion (AIC) to determine the optimal number of clusters. The 

results of the study stated that the best model consists of three clusters. Cluster 1 consists of 11 districts/cities which are influenced by the factors of population 

growth rate, number of hospitals, number of health centers; Cluster 2 consists of 8 districts/cities which are influenced by the factors of population growth rate, 

number of hospitals, number of flood disasters, number of health centers, percentage of decent sanitation; and cluster 3 consists of 8 districts/cities which are 

influenced by the factors of population growth rate, number of hospitals, number of flood disasters, percentage of decent sanitation. The value of the determination 

coefficient in cluster 1 was 90.95736%; cluster 2 is 71.21607%; and cluster 3 is 91.40601%. This indicates that cluster optimization using CLR with AIC can 

improve the model's ability to better explain data variants. 
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INTRODUCTION 

Indonesia as one of the largest tropical countries in Southeast Asia is facing major health problems related to Dengue Hemorrhagic Fever (DHF) which 

affects all ages and spreads in various provinces. More than 80% of Indonesian children aged 10 years and above who live in urban areas have been 

infected with dengue (Elizabeth & Yudhastuti, 2023). WHO (2022) reports 390 million global dengue infections per year with 500,000 people requiring 

hospitalization. The number of dengue cases in Indonesia in 2022 was 143,184 people with the highest dengue cases in West Java reaching 36,594 people 

(Ministry of Health, 2022). The spread of this disease is influenced by Physical, social, and biological environmental factors (Oroh et al., 2020).   

The linear regression analysis approach is often used to identify which factors affect the spread of dengue disease. The results of the analysis obtained 

were less than optimal because this method was not able to estimate the model that indicated the presence of clusters in the data (Putri, 2015). A method 

that can be applied to solve this problem is Clusterwise Linear Regression (CLR). CLR is a combination of cluster and regression techniques that can 

identify hidden structures in data with previously unknown clusters. CLR aims to determine the best model by identifying the hidden structures in the 

data that make up clusters. The best model can be demonstrated by using the minimum Akaike Information Criterion (AIC) value on each number of 

clusters formed. AIC is a criterion in model selection that balances the goodness of fit model based on the estimated maximum likelihood with the number 

of parameters used in the model (Utama & Hajarisman, 2021).  

Several previous studies on clustering methods in handling various cases have been conducted. Ikbal (2024) uses the K-means Clustering algorithm to 

group areas with dengue case rates based on gender in West Java. The results of the study show that the region can be grouped into three clusters, namely 

high, medium, and low clusters with evaluation using the Davies-Bouldin Index. Meylisah et al. (2023) applying Clusterwise Linear Regression Modeling 

to analyze the poverty level in Indonesia. This study found three optimal clusters based on AIC and BIC (Bayesian Information Criteria) criteria. The 

first cluster identified the percentage of electricity users, the number of small and micro industries, and the number of tourist villages as significant factors 

affecting poverty; The second cluster shows the number of tourist villages as the dominant factor; The third cluster highlights the percentage of electricity 

users and the percentage of villages with mining and quarrying.  

Based on these studies, there has been no study that identifies the factors that affect the number of DHF cases using the Clusterwise Linear Regression 

approach. This study presents a novelty by clustering districts/cities in West Java Province based on the factors that affect the number of DHF cases using 

the CLR method optimized with AIC and knowing the factors that affect the number of dengue cases in each cluster effectively and accurately. 

http://www.ijrpr.com/
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LITERATURE REVIEW 

Regression is a statistical method used to analyze the extent to which the relationship between two or more variables affects each other. This method 

determines the strength of relationships, interaction patterns, and the direction of influence between dependent variable and independent variable (Ghozali, 

2021). In general, regression models can be expressed in the following forms: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑘𝑋𝑖𝑘 + 𝜀𝑖         (1) 

with Yi the dependent variable for observation to-i, Xik the independent variable to-k for observation to-i,  βk the regression coefficient value to-k, and 

εi the observation error to-i. 

Based on the regression model in Equation (1), if there are n many observations, then the regression modeling for each observation to-i is as follows: 

𝒀 = 𝑿𝜷 + 𝜺           (2) 

with 𝐘 vector of dependent variable, 𝛃 vector of regression parameter, 𝐗 matrix of observations for independent variable, and 𝛆 vector of error which are 

assumed to be identical, independent, and normally distributed with mean 0 and constant variance σ2. 

Classical assumption testing includes normality test, homokedasticity test, non-autocorrelation test, and non-multicollinearity test. 

1. Normality Test 

The normality test is used in regression analysis to determine whether the error value follows the normal distribution (Ghozali, 2021).  

Hypothesis: H0: 𝐹𝑛(𝑥) = 𝐹0(𝑥) error data are normally distributed 

  H1 : 𝐹𝑛(𝑥) ≠ 𝐹0(𝑥) error data are not normally distributed 

Significance Level: 𝛼 = 5% 

Test Statistics:  

𝐷 = 𝑠𝑢𝑝 (|𝐹𝑛(𝑥) − 𝐹0(𝑥)|)         (3) 

with D maximum value for all values of x, 𝐹𝑛(𝑥) cumulative distribution function of the data sample, 𝐹0(𝑥) cumulative distribution function of theoretical 

data.  

Test criteria: if 𝐷 >  𝐷(𝑛,𝑎)or significance value  𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then  H0 rejected. 

2. Homoskedasticity Test 

According to Ghozali (2021), homoskedasticity occurs if there is the same variance from an observation error to another observatin, namely E(εi) = σ2 

for i = 1, 2, ..., n. 

Hypothesis: H0 : 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = ⋯ = 𝜎𝑛

2 = 𝜎2  (homokedasticity occurs) 

  H1 : there is at least one   𝜎𝑖
2 ≠ 𝜎2(no homocedasticity) 

Significance Level: 𝛼 = 5% 

Test Statistics: 

𝐿𝑀 = 𝑛𝑅2                                     (4) 

with R2 coefficient determination, LM following Chi Square distribution (χα,k
2 ). 

Test criteria: if 𝐿𝑀 > 𝜒𝛼,𝑘
2  and 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

3. Non-Autocorrelation Test 

Autocorrelation refers to the correlation between observations in one interrelated variable. According to Ghozali (2021), explained that this test is very 

suitable for use in resecarch involving data with a total of ≤ 100.  

Hypothesis: H0 : 𝜌 = 0 (no autocorrelation) 

    H1 : 𝜌 ≠ 0 (autocorrelation) 

Significance Level: 𝛼 = 5% 

Test Statistics: 

𝐷𝑊 = 
∑ (𝜀𝑖−𝜀𝑖−1)2𝑛

𝑖=2

∑ 𝜀𝑖
2𝑛

𝑖=1

          (5) 
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Test criteria: 

0 < DW < dL   (H0 rejected, there is positive autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 

dL < DW < dU   (No conclusion) 

dU < DW < 4-dU   (H0 accepted, there is no autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒  >  𝛼 

4-dU < DW < 4-dL   (No conclusion) 

4-dL < DW < 4  (H0 rejected, there is negative autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒 <  𝛼 

4. Non-Multicollinearity Test 

The Multicollinearity test was performed to check the correlation between the independent variables in the regression model. In an ideal model, there 

should be no significant correlation between independent variables (Ghozali, 2021).  

Hypothesis: H0 : 𝑉𝐼𝐹𝑗 = 0 (no multicollinearity) 

   H1 : 𝑉𝐼𝐹𝑗 ≠ 0 (multicollinearity) 

Test Statistics: 

𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2          (6) 

with  𝑉𝐼𝐹𝑗 Variance Inflation Factor of the independent variable to-𝑗, 𝑅𝑗
2coefficient of determination of the independent variable to-𝑗, and 𝑗 = 1,2, … , 𝑘 

(𝑗 order of the independent variable and 𝑘 total independent variable). 

Test criteria: if 𝑉𝐼𝐹𝑗 > 10 then 𝐻0 rejected. 

Hypothesis testing is used to assess the accuracy of regression models in estimating actual values. This hypothesis test consists of two types, namely the 

F test and the t test. 

• F Test 

The F test aims to test whether the equation of the regression model can simultaneously explain the effect of the independent variable on the dependent 

variable (Ghozali, 2021). 

Hypothesis: H0 ∶  𝛽𝑗= 0 (linear regression model does not fit)  

   H1 ∶  𝛽𝑗≠ 0 for at least one, 𝑗 = 1,2, … , 𝑘 (regression model fit)  

Significance Level: 𝛼 = 5% 

Test Statistics: 

𝐹ℎ𝑖𝑡𝑢𝑛𝑔 =  
𝐾𝑇𝑅

𝐾𝑇𝐺
            (7) 

Test criteria: if 𝐹ℎ𝑖𝑡𝑢𝑛𝑔 > 𝐹𝑡𝑎𝑏𝑒𝑙(𝐹(𝛼,𝑘,𝑛−𝑘−1)) or 𝑃𝑣𝑎𝑙𝑢𝑒  < 𝛼 then 𝐻0 is rejected. 

• T Test 

According to Ghozali (2021), the t-test functions to test the significance of each parameter coefficient separately to determine the extent of the influence 

of each independent variable on dependent variable individually. 

Hypothesis: H0 ∶  𝛽𝑗= 0, 𝑗 = 1,2, . . , 𝑘 (parameter coefficients are not significant)  

        H1 ∶   𝛽𝑗≠ 0,  𝑗 = 1,2, … , 𝑘 (parameter coefficients are significant)  

Significance Level: 𝛼 = 5% 

Test Statistics: 

𝑡𝑗 =
�̂�𝑗

𝑆𝑒 (�̂�𝑗)
         (8) 

where 𝑆𝑒(�̂�𝑗) =  √𝑣𝑎𝑟(�̂�𝑗)  or can use the 𝑃𝑣𝑎𝑙𝑢𝑒. 

With �̂�𝑗 regression coefficient of β on independent variable to-𝑗, 𝑆𝑒(�̂�𝑗) standard error of regression coefficient �̂�𝑗. 

Test criteria: if |𝑡𝑗| > 𝑡𝑡𝑎𝑏𝑒𝑙 (𝑡(𝛼/2,𝑛−𝑘−1)) or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

The coefficient of determination is in the interval between zero and one (0 ≤ 𝑅2≤ 1) which can be  𝑅2expressed by the one obtained from the following 

formula: 

𝑅2 =  
𝐽𝐾𝑅

𝐽𝐾𝑇
= 1 −

𝐽𝐾𝐺

𝐽𝐾𝑇
          (9) 
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The following are the categories of 𝑅2values according to Chin (1998). 

Table 1 - Category R2. 

𝐑𝟐 𝐕alue Category 

0,67 ≤ 𝑅2 ≤ 1 Strong 

𝟎, 𝟑𝟑 ≤ 𝑹𝟐 < 𝟎, 𝟔𝟕 Moderate 

𝟎, 𝟏𝟗 ≤ 𝑹𝟐 < 𝟎, 𝟑𝟑 Weak 

0 ≤ 𝑅2 < 0,19 Very weak 

Clusterwise Linear Regression (CLR) is a clustering method based on the characteristics of regression parameters in which clusters are randomly 

initialized to produce a regression model large enough to achieve convergence. The CLR method was first introduced by Späth through an exchange 

algorithm with the formation of a number of partitions as many as 𝐾 and corresponding 𝜷𝒄 parameters so that the number of squares of the error calculated 

on all clusters is minimized by: 

𝑀𝑖𝑛 𝑍 =  ∑ ||𝑿𝒄𝜷𝒄 − 𝒀𝒄||2𝐾
𝑐=1             (10) 

The existence of the solution 𝜷𝒄 is rank 𝑿𝒄 = 𝐽. The conditions required for this is 𝑛𝑐 ≥ 𝐽 which mean 𝑛 ≥ 𝐾𝐽, where 𝑛𝑐 is the number of observations 

in cluster. The general model of the CLR is as follows: 

𝒀𝒄 = 𝑿𝒄𝜷𝒄 + 𝜺𝒄            (11) 

with 𝒀𝒄 dependent variable vector on cluster to-𝑐, 𝑿𝒄 observation matrix for the independent variable on cluster to-𝑐, 𝜷𝒄 regression coefficient vector on 

cluster to-𝑐, 𝜺𝒄 the error vector for the observation on cluster to-𝑐, and 𝑐 = 1,2, …, K (𝑐 the sequence of clusters and 𝐾 the number of clusters). 

Estimation of the parameters of the model shown in the Equation (11) by using the maximum likelihood (DeSarbo & Cron, 1988). Likelihood equation 

for random sample consisting of 𝑛 free subjects, namely: 

𝐿 = ∏ [∑ 𝜆𝑐(2𝜋𝜎𝑐
2)−1/2𝐾

𝑐=1 𝑒𝑥𝑝 [
−(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
2 ]]𝑛

𝑖=1          (12) 

Based on Equation (12), the likelihood equation can be linearized using the 𝑙𝑛 likelihood equation as fellows: 

𝑙𝑛 𝐿 = ∑ 𝑙𝑛𝑛
𝑖=1 [∑ 𝜆𝑐(2𝜋𝜎𝑐

2)−1/2𝐾
𝑐=1 𝑒𝑥𝑝 [

−(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
2 ]]          (13) 

Equation (13) is maximized to obtain an estimate  𝜆𝑐, 𝜎𝑐
2, 𝛽𝑗𝑐with constraints: 

0 ≤ 𝜆𝑐 ≤ 1; ∑ 𝜆𝑐 = 1𝐾
𝑐=1 𝜎𝑐

2 > 0          (14) 

The placement of each observation is carried out through posterior estimation on the observations to each cluster 𝑐 (�̂�𝑖𝑐) after obtaining the initial value 

of the estimate 𝜆𝑐, 𝜎𝑐
2, 𝛽𝑗𝑐 which are calculated by: 

�̂�𝑖𝑐 =
𝜆𝑐𝑓𝑖𝑐(𝑦𝑖|𝑋𝑖𝑗,�̂�𝑘

2,𝛽𝑗𝑐)

∑ 𝜆𝑐𝑓𝑖𝑐(𝑦𝑖|𝑋𝑖𝑗,�̂�𝑘
2,𝛽𝑗𝑐)𝐾

𝑐=1
            (15) 

Partitions in the CLR method can be formed with the following rules: 

a. Put 𝑖 to a cluster 𝑐 if �̂�𝑖𝑐 > �̂�𝑖𝑙 for all  𝑙 ≠ 𝑐 = 1,2, … 𝐾 

b. Probability function 𝑙𝑛 with constraint in Equation (14): 

𝛷 = ∑ 𝑙𝑛[∑ 𝜆𝑐𝑓𝑖𝑐(𝑦𝑖|𝑋𝑖𝑗
𝐾
𝑐=1 , 𝜎𝑐

2, 𝛽𝑗𝑐)] − 𝜇(∑ 𝜆𝑐 − 1𝐾
𝑐=1 )𝑛

𝑖=1         (16)  

The maximum likelihood stationary equation is obtained by equalizing the first-order partial derivative of the ln likelihood function to a parameter 

𝜆𝑐, 𝜎𝑐
2, 𝛽𝑗𝑐 equal to zero, as follows: 

𝜕𝛷

𝜕𝜆𝑐
= ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝑓𝑖𝑐(∗) − 𝜇 = 0          (17) 

𝜕𝛷

𝜕𝜎𝑐
2 = ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝜆𝑐

𝜕𝑓𝑖𝑐(∗)

𝜕𝜎𝑐
2 = 0          (18) 

𝜕𝛷

𝜕𝛽𝑗𝑐
= ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝜆𝑐

𝜕𝑓𝑖𝑐(∗)

𝜕𝛽𝑗𝑐
= 0          (19) 

with 𝑓𝑖𝑐(∗) that is 𝑓𝑖𝑐(𝑦𝑖|𝑋𝑖𝑗 , 𝜎𝑐
2, 𝛽𝑗𝑐). 

The estimation 𝜇 is done by multiplying the two sides of Equation (17) with 𝜆𝑐 and adding them in whole 𝑐 so that the equation is: 

∑
∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾

𝑐=1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 − 𝜇 ∑ 𝜆𝑐

𝐾
𝑐=1 = 0           (20) 

∑ 1 − 𝜇. 1 = 0

𝑛

𝑖=1

 



International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 5011-5021 June 2025                                     5015 

 

 

𝑛 − 𝜇 = 0 

�̂� = 𝑛             (21) 

The estimate  𝜆𝑐is obtained by multiplying the two sides of Equation (17) with 𝜆𝑐 so that the equation is as follows: 

∑
𝜆𝑐𝑓𝑖𝑐(∗)

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 − 𝜆𝑐𝜇 = 0           (22) 

∑ �̂�𝑖𝑐

𝑛

𝑖=1

− 𝜆𝑐𝑛 = 0 

�̂�𝑐 =
∑ �̂�𝑖𝑐

𝑛
𝑖=1

𝑛
            (23) 

Estimation 𝜎𝑐
2 and 𝛽𝑗𝑐 obtained from the definition �̂�𝑖𝑐  in Equation (15) and restating Equations (18) and (19), the equation is: 

𝜕𝛷

𝜕𝜎𝑐
2 = ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝜆𝑐

𝜕𝑓𝑖𝑐(∗)

𝜕𝜎𝑐
2 = 0          (24) 

𝜕𝛷

𝜕𝛽𝑗𝑐
= ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝜆𝑐

𝜕𝑓𝑖𝑐(∗)

𝜕𝛽𝑗𝑐
= 0         (25) 

Estimation of these parameters can be done using the two-stage E-M algorithm. E-stage is used to obtain the estimated value of 𝜆𝑐 and �̂�𝑖𝑐 from Equations 

(15) and (23), while M-stage is used to obtain the estimated value for 𝛽𝑗𝑐 and 𝜎𝑐
2. The M-stage, expansion is required on Equations (24) and (25): 

𝜕𝛷

𝜕𝜷𝒄
= ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 𝜆𝑐(2𝜋𝜎𝑐

2)−1/2 × 𝑒𝑥𝑝 [
−(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
2 ] .

2(𝑦𝑖−𝑿𝒊𝜷𝒄)𝑿𝒊

2𝜎𝑐
2 = 0  

𝜕𝛷

𝜕𝜷𝒄
= ∑ �̂�𝑖𝑐(𝑦𝑖 − 𝑿𝒊𝜷𝒄)𝑿𝒊

𝑛
𝑖=1 = 0           (26) 

Based on Equation (26), the following estimates of 𝜷𝒄 is obtained: 

�̂�𝒄 = (∑ �̂�𝑖𝑐𝑿𝒊
𝑛
𝑖=1 𝑿𝒊

′)−1(∑ �̂�𝑖𝑐𝑦𝑖𝑿𝒊
𝑛
𝑖=1 )          (27) 

The estimate 𝜎𝑐
2 is obtained after the previous steps are taken, namely: 

𝜕𝛷

𝜕𝜎𝑐
2 = ∑

1

∑ 𝜆𝑐𝑓𝑖𝑐(∗)𝐾
𝑐=1

𝑛
𝑖=1 [𝜆𝑐𝑒𝑥𝑝 [

−(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
2 ] (−1/2(2𝜋𝜎𝑐

2)−3/22𝜋) + 𝜆𝑐(2𝜋𝜎𝑐
2)−1/2𝑒𝑥𝑝 [

−(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
2 ]

1/2(𝑦𝑖−𝑿𝒊𝜷𝒄)2

𝜎𝑐
4 ] = 0    

𝜕𝛷

𝜕𝜎𝑐
2 = ∑ �̂�𝑖𝑐 [

−1

2𝜎𝑐
2 +

(𝑦𝑖−𝑿𝒊𝜷𝒄)2

2𝜎𝑐
4 ]𝑛

𝑖=1 = 0         28) 

From Equation (28), thus obtained:  

�̂�𝑐
2 =

∑ �̂�𝑖𝑐
𝑛
𝑖=1 (𝑦𝑖−𝑿𝒊𝜷𝒄)2

∑ �̂�𝑖𝑐
𝑛
𝑖=1

            (29) 

A model is said to be good if it meets the requirements, namely having minimum AIC value. AIC values can be formulated as follows (Rizalul et al., 

2017): 

𝐴𝐼𝐶(𝐾) = 2𝑛(𝐾) − 2𝑙𝑛 [𝑚𝑎𝑥𝐿(𝐾)]           (30) 

with 𝑛(𝐾) number of effective parameters where 𝑛(𝐾) = 𝐽𝐾 + 2𝐾 − 1,  𝐿(𝐾) maximum likelihood, 𝐽 number of regression parameters (𝑘 total 

independent variables and  𝐾number of clusters). 

 

CLR hypothesis testing uses maximum likelihood a follow: 

Hypothesis:  H0∶  𝛽𝑗𝑐= 0  

            H1∶  𝛽𝑗𝑐≠ 0, with =1,2, ..., and =1,2, ..., K𝑗𝑘𝑐 

Significance Level: 𝛼 = 5% 

Test Statistics: 

𝑍 =
𝛽𝐾−𝐵𝐾

√𝑓𝐾𝐾
−1

      (31) 

with 𝛽𝐾 are the estimated coefficients of maximum likelihood in 𝐾 cluster, 𝐵𝐾 are value of the actual population parameter in 𝐾 cluster, and 𝑓𝐾𝐾
−1 element 

of the asymptotic covariance matrix in 𝐾 cluster. 

The test criteria used is that if |𝑍| > 𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼/2)  or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 is rejected. 

RESEARCH METHOD 

The data source used in this study came from the Central Statistics Agency of West Java Province. The observation units in this study are 27 districts or 

cities in West Java Province in 2022. To process the data, this study utilizes RStudio and QGIS software. The variables used were the number of DHF 

cases as variable 𝑌 (people), population growth rate as variable 𝑋1 (% per year), number of hospitals as variable 𝑋2 (unit) number of flood disasters as 

variable 𝑋3 (time), number of health centers as variable 𝑋4 (unit), and percentage of proper sanitation as variable 𝑋5 (%). To process the data, this study 

utilizes RStudio and QGIS software. The cluster variable design analyzed in this study is presented in Table 2. 
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Table 2 - Cluster Variable Design 

District/City 𝒀 𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 

1. 𝑌1 𝑋1,1 𝑋1,2 𝑋1,3 𝑋1,4 𝑋1,5 

2. 𝒀𝟐 𝑿𝟐,𝟏 𝑿𝟐,𝟐 𝑿𝟐,𝟑 𝑿𝟐,𝟒 𝑿𝟐,𝟓 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

27. 𝑌27 𝑋27,1 𝑋27,2 𝑋27,3 𝑋27,4 𝑋27,5 

The research procedures were carried out through the following steps: 

1. Input variable data for each district/city in West Java Province. 

2. Describe the data using descriptive statistics. 

3. Perform regression model specifications: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 

4. Predict the parameters of the regression model. 

5. Perform a classic assumption test. 

6. Conducting hypothesis testing in the form of F test and t test. 

7. Evaluate the model with the coefficient of determination. If the regression model produced is not good, it is indicated that there are groups in 

the data, so that Clusterwise Linear Regression (CLR) analysis is then carried out. 

8. Standardize data because variables have different units. 

9. Specifies the number of clusters () that are possible.𝐾 

10. Retrieve the initial value for the estimation �̂�𝑐, �̂�𝑗𝑐, �̂�𝑐
2. 

11. Calculate �̂�𝑖𝑐 using Equation (15). 

12. Calculate estimates �̂�𝑐 using Equation (23), �̂�𝑗𝑐 using Equation (27), �̂�𝑐
2 with Equation (29).  

13. Calculating the ln likelihood value of probability with Equation (16). 

14. Determine if the iteration results have converged. If not, proceed to the next iteration and repeat steps 10 through 13 until they converge. 

15. Determine the optimal number of clusters using the minimum AIC value. 

16. Define the members and model assumptions in each cluster.  

17. Perform hypothesis testing and evaluation of the formed model.  

18. Perform cluster profiling. 

RESULTS & DISCUSSION 

Descriptive statistics in this study were carried out to find out the initial picture of the condition of each research variable, which is presented in Table 3. 

Table 3 - Descriptive Statistics. 

Variabel Min Mean Max Skewness Kurtosis Standard Deviation 

𝑌 15,00 92,41 310,00 1,467 4,624 74,766 

𝑿𝟏 0,410 1,301 1,860 -0,408 2,599 0,378 

𝑿𝟐 1,00 14,63 53,00 1,526 4,471 13,425 

𝑋3 0,000 7,185 30,000 1,501 5,284 7,000 

𝑋4 10,00 40,78 101,00 0,833 3,685 21,393 

𝑋5 45,80 73,58 96,21 -0,443 1,918 14,963 

The linear regression model formed according to Equation (1) is: 
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𝑌 = 450,7847 − 63,3853𝑋1 + 2,1844𝑋2 + 2,1616𝑋3 − 2,5810𝑋4 − 2,9653𝑋5 + 𝜀 

Classical assumption testing must be met before performing linear regression analysis and hypothesis testing. This aims to ensure that the regression 

model used is free of assumption deviations and produces valid estimates. 

1. Normality Test 

Hypothesis: H0: Fn(x) = F0(x) error data are normally distributed 

              H1 : Fn(x) ≠ F0(x) error data are not normally distributed 

Significance Level: α = 5% 

Test Statistics:  

𝐷 = sup(|𝐹27(𝑥) − 𝐹0(𝑥)|) = 0,097204; 𝑃𝑣𝑎𝑙𝑢𝑒 = 0,7376 

The value of 𝐷(𝑛,𝛼) is obtained from the Kolmogorov-Smirnov (K-S) table with 𝛼 = 5% and 𝑛 = 27 so that the value 𝐷(27,0.05) is 0.254. 

Test criteria: if or 𝐷 >  𝐷(𝑛,𝑎) significance value  𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

Decision and Conclusion: H0 accepted because the value  𝐷 <  𝐷(27,0.05) = 0,097204 < 0,254 or the value 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼 = 0,7376 > 0,05 so the error data 

is normally distributed. 

2. Non-Multicollinearity Test 

Hypothesis: H0 : 𝑉𝐼𝐹𝑗 = 0 (no multicollinearity) 

              H1 : 𝑉𝐼𝐹𝑗 ≠ 0 (multicollinearity) 

Test Statistics: 

𝑉𝐼𝐹1 =
1

1−𝑅1
2 =1.243473;  𝑉𝐼𝐹2 =

1

1−𝑅2
2 =1.602682;  𝑉𝐼𝐹3 =

1

1−𝑅3
2 =2.527059;  𝑉𝐼𝐹4 =

1

1−𝑅4
2 =3,284812;  𝑉𝐼𝐹5 =

1

1−𝑅5
2 =1.317664 

Test criteria: if 𝑉𝐼𝐹𝑗 > 10 then 𝐻0 rejected. 

Results and Conclusions: 𝐻0 accepted because the value 𝑉𝐼𝐹1 for the variable 𝑋1 is 1.243473 < 10; 𝑉𝐼𝐹2 for the variable 𝑋2 is 1.602682 < 10; 𝑉𝐼𝐹3 for 

the variable 𝑋3 is 2.527059 < 10; 𝑉𝐼𝐹4 for the variable 𝑋4 is 3.284812 < 10; 𝑉𝐼𝐹5 for the variable 𝑋5 is 1.317664 < 10 so there is no multicollinearity. 

3. Homoskedasticity Test 

Hypothesis: H0 : σ1
2 = σ2

2 = σ3
2 = ⋯ = σn

2 = σ2  (homokedasticity occurs) 

             H1 : there is at least one   σi
2 ≠ σ2(no homocedasticity) 

  Significance Level: α = 5% 

Test Statistics:  

𝐿𝑀 = 𝑛𝑅2 = 10,801; 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.05548 

From the table Chi Square (𝜒𝛼,𝑘
2 ) with 𝛼 = 5% and 𝑘 = 5, the value 𝜒0.05,5

2 = 11,070. 

Test criteria: if LM > χα,k
2  and 𝑃𝑣𝑎𝑙𝑢𝑒 < α then H0 rejected. 

Decision and Conclusion: H0 accepted because the value 𝐿𝑀 < 𝜒0.05,5
2  = 10.801 < 11.070 or the value 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼 = 0,05548 > 0,05 so there is 

homokedasticity occurs. 

4. Non-Autocorrelation Test 

Hypothesis: H0 : ρ = 0 (no autocorrelation) 

               H1 : ρ ≠ 0 (autocorrelation) 

  Significance Level: α = 5% 

Test Statistics:  

𝐷𝑊 =  
∑ (𝜀𝑖−𝜀𝑖−1)2𝑛

𝑖=2

∑ 𝜀𝑖
2𝑛

𝑖=1

= 2,1349; 𝑃𝑣𝑎𝑙𝑢𝑒 = 0,5565 

From Durbin Watson's table with 𝛼 = 5%, 𝑛 = 27, and 𝑘 = 5. The values dL = 1,0042 and dU = 1,8608. 

Test Criteria: 

0 < DW < dL   (H0 rejected, there is positive autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 
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dL < DW < dU  (No conclusion) 

dU < DW < 4-dU  (H0 accepted, there is no autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒  >  𝛼 

4-dU < DW < 4-dL  (No conclusion) 

4-dL < DW < 4  (H0 rejected, there is negative autocorrelation) and 𝑃𝑣𝑎𝑙𝑢𝑒 <  𝛼 

Results and Conclusions: H0 accepted because the value of dU (1.8608) < DW (2.1349) < 4-dU (2.1392) or value 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼 = 0,5565 > 0,05 so there is 

no autocorrelation. 

There are two types of hypothesis tests, namely simultaneous hypothesis tests (F test) and partial hypothesis tests (t test). 

• F Test 

Hypothesis:  H0 ∶  𝛽𝑗= 0 (linear regression model does not fit)  

                H1 ∶  𝛽𝑗≠ 0 for at least one, 𝑗 = 1,2, … , 𝑘 (regression model fit) 

  Significance Level: 𝛼 = 5% 

Test Statistics:  

𝐹ℎ𝑖𝑡𝑢𝑛𝑔 =  
𝐾𝑇𝑅

𝐾𝑇𝐺
= 3,372; 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.02162 

𝐹𝑡𝑎𝑏𝑒𝑙(𝐹(𝛼,𝑘,𝑛−𝑘−1)) obtained from the distribution table F with 𝛼 = 5%, 𝑛 = 27, and 𝑘 = 5 so that the value of 𝐹(0.05,5,21) = 2,68. 

Test criteria: if 𝐹ℎ𝑖𝑡𝑢𝑛𝑔 > 𝐹𝑡𝑎𝑏𝑒𝑙(𝐹(𝛼,𝑘,𝑛−𝑘−1)) or 𝑃𝑣𝑎𝑙𝑢𝑒  < 𝛼 then 𝐻0 is rejected.  

Decision and Conclusion: 𝐻0 rejected because the value of 𝐹ℎ𝑖𝑡𝑢𝑛𝑔 > 𝐹𝑡𝑎𝑏𝑒𝑙 (𝐹(0.05,5,21))  = 3,372 > 2,68 or value 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 = 0,02162 < 0,05 can be 

concluded that the linear regression model fits so that the independent variables simultaneously have an influence on the dependent variables. 

• T Test 

Hypothesis:  H0 ∶  𝛽𝑗= 0, 𝑗 = 1,2, . . , 𝑘 (parameter coefficients are not significant) 

              H1 ∶   𝛽𝑗≠ 0,  𝑗 = 1,2, … , 𝑘 (parameter coefficients are significant) 

Significance Level: 𝛼 = 5% 

Test Statistics: Based on Table 4, the results of Equation (8) are obtained as follows: 

Table 4 - Partial Parameter Significance Test Results. 

Variabel Estimation Std. Error 𝒕𝒊 𝑷𝒗𝒂𝒍𝒖𝒆 

𝑋1 -63,3853 35,8635 -1,767 0,091691 

𝑿𝟐 2,1844 1,1458 1,906 0,070371 

𝑿𝟑 2,1616 2,7594 0,783 0,442162 

𝑋4 -2,5810 1,0295 -2,507 0,020458 

𝑋5 -2,9653      0,9322   -3,181 0,004497 

𝑡𝑡𝑎𝑏𝑒𝑙 (𝑡(𝛼/2,𝑛−𝑘−1) obtained from the distribution table t with 𝛼 = 5%, 𝑛 = 27, and 𝑘 = 5 so that the value is 𝑡(0.025,21) = 2,07961. 

Test Criteria: if |𝑡𝑗| > 𝑡𝑡𝑎𝑏𝑒𝑙 (𝑡(𝛼/2,𝑛−𝑘−1)) or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

Decision and Conclusion: H0 rejected for the independent variable  𝑋4 and  𝑋5 because  |𝑡𝑗| > 𝑡𝑡𝑎𝑏𝑒𝑙 (𝑡(0.025,21)) so that partially there is influence on the 

dependent variable 𝑌. 

The Adjusted R-squared value shows that 𝑅2 is 0.3133 or 31.33% which means that 31.33% of the variance in the 𝑌 variable can be explained by the  𝑋 

variable, while the remaining 68.67% is influenced by other factors outside this research model. According to Chin (1998), this value of 𝑅2 is classified 

as a weak category. The increase in values was analyzed using the Clusterwise Linear Regression method assuming that the observation data formed 

clusters that must be separated so that the best regression model is obtained with 𝑅2 which is close to 1.  

Further analysis need standardization using Z-score values because the data used has different units. The CLR method is used to generate the best model 

when the observational data forms clusters. The conditions required to confirm the existence of the Clusterwise Linear Regression method are 𝑛 ≥ 𝐾𝐽 =

27 ≥ 𝐾 × 6 = 𝐾 ≤ 4,5 so that the number of possible clusters is 𝐾 = 2,3,4. The best model is indicated by the minimum AIC value at each number of 

clusters formed. The value of the Akaike Information Criterion can be presented in Table 5. 
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Table 5 - Akaike Information Criterion (AIC). 

𝑲 AIC 

2 35,69484 

3 -6,88821 

4 13,76395 

From Table 5, the best model is obtained in cluster 𝐾 = 3 with a minimum AIC value of -6.88821 so that there are 3 optimal number of clusters. 

The results of the Clusterwise Linear Regression analysis show that: 

1. Cluster 1 has a cluster size of 11 districts/cities which include Bogor, Sukabumi, Cianjur, Garut, Tasikmalaya, Majalengka, Subang, Bogor City, 

Cirebon City, Depok City, and Cimahi City. The models formed are: 

𝑍𝑌 = −0,25914452 − 0,20649973𝑍1 + 0,65275533𝑍2 + 0,02853121𝑍3 −  0,43474849𝑍4 − 0,04465134𝑍5 + 𝜀    

Hypothesis:  H0∶  𝛽𝑗𝑐= 0  

              H1 ∶  𝛽𝑗𝑐≠ 0, with 𝑗 =1,2, …, 𝑘 and 𝑐 = 1,2, …, K 

Significance Level: 𝛼 = 5% 

Test Statistics: Based on Table 6, the results of Equation (31) are obtained as follows: 

Table 6 - Results of Cluster 1 Parameter Significance Test. 

Variabel Estimation Std. Error 𝒁 𝑷𝒗𝒂𝒍𝒖𝒆 Results 

𝑋1 -0,207343    0,039274 -5,2794 1,296 × 10−7 H0 rejected 

𝑿𝟐 0,654259    0,063664 10,2767 < 2.2× 𝟏𝟎−𝟔 𝐇𝟎 rejected 

𝑿𝟑 0,027990    0,052860   0,5295 0,5964     H0 Accepted 

𝑋4 -0,433882    0,054377 -7,9792 1,473× 10−5 H0 rejected 

𝑋5 -0,045363    0,047073 -0,9637     0,3352     H0 Accepted 

Test criteria: if |𝑍| > 𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼/2) atau the value 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼/2) obtained from the distribution table Z with 𝛼 = 5%, it can be seen that the value is 𝑍𝛼/2  = 1,96 so that in cluster 1 for the standardized 

independent variable 𝑍1, 𝑍2, and 𝑍4 there is an influence on the model because the value of |𝑍| > 𝑍𝛼

2
  or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼, while 𝑍3 (number of flood disasters) 

and 𝑍5 (percentage of feasible sanitation) there is no influence on the model because the value of |𝑍| < 𝑍𝛼

2
  or 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼. 

The Adjusted R-squared value in cluster 1 shows that 𝑅2 is 0.9226919 means that 92.26919% of the dependent variable variant can be explained by the 

independent variable, while the remaining 7.7308% is influenced by other factors outside the research model. 

2. Cluster 2 has a cluster size of 8 districts/cities which include Cirebon, Sumedang, Purwakarta, Bekasi, West Bandung, Pangandaran, 

Bandung City, and Banjar City. The models formed are: 

𝑍𝑌 = 0,155009675 − 0,723833960𝑍1 + 0,222176937𝑍2 + 0,412007591𝑍3 − 0,689087285𝑍4 − 0,561149757𝑍5 + 𝜀  

Hypothesis:  H0∶  𝛽𝑗𝑐= 0  

              H1 ∶  𝛽𝑗𝑐≠ 0, with 𝑗 =1,2, …, 𝑘 and 𝑐 = 1,2, …, K 

Significance Level: 𝛼 = 5% 

Test Statistics: Based on Table 7, the results of Equation (31) are obtained as follows: 

Table 7 - Results of Cluster 2 Parameter Significance Test. 

Variabel Estimation Std. Error 𝒁 𝑷𝒗𝒂𝒍𝒖𝒆 Results 

𝑋1 -0,7237422   0,0032299 -224,074 < 2.2× 10−6 H0 rejected 

𝑿𝟐 0,2219725   0,0044238    50,177 < 2.2× 𝟏𝟎−𝟔 𝐇𝟎 rejected 

𝑿𝟑 0,4113756   0,0087822    46,842 < 2.2× 10−6 H0 rejected 

𝑋4 -0,6887045   0,0091041   -75,648 < 2.2× 10−6 H0 rejected 

𝑋5 -0,5606493   0,0071777   -78,110 < 2.2× 10−6 H0 rejected 
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Test criteria: if |𝑍| > 𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼/2) atau the value 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

Conclusion:  𝑍𝑡𝑎𝑏𝑒𝑙(𝑍𝛼/2) obtained from the distribution table Z with 𝛼 = 5%, it can be seen that the value of  𝑍𝛼/2  = 1,96 so that cluster 2 for all 

standardized independent variables (𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5) there is an influence on the model because |𝑍| > 𝑍𝛼

2
  or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼. 

The Adjusted R-squared value in cluster 2 shows that 𝑅2 is 0.7121607 means that 71.21607% of the dependent variable variants can be explained by 

independent variables, while the remaining 28.7839% is influenced by other factors outside the research model. 

3. Cluster 3 has a cluster size of 8 districts/cities which include Bandung, Ciamis, Kuningan, Indramayu, Karawang, Sukabumi City, Bekasi City, 

and Tasikmalaya City. The models formed are:  

𝑍𝑌 = 0,25620603 + 0,20057410𝑍1 + 0,54183874𝑍2 − 0,19021501𝑍3 + 0,02441280𝑍4 − 1,42951940𝑍5 + 𝜀  

Hypothesis testing in cluster 3 

Hypothesis:  H0∶  𝛽𝑗𝑐= 0  

    H1 ∶  𝛽𝑗𝑐≠ 0, with 𝑗 =1,2, …, 𝑘 and 𝑐 = 1,2, …, K 

Significance Level: 𝛼 = 5% 

Test Statistics: Based on Table 8, the results of Equation (31) are obtained as follows: 

Table 8 - Results of Cluster 3 Parameter Significance Test. 

Variabel Estimation Std. Error 𝒁 𝑷𝒗𝒂𝒍𝒖𝒆 Results 

𝑋1 0,200588 0,025444    7,8834 3,185× 10−5 H0 rejected 

𝑿𝟐 0,541986    0,015890   34,1077 < 2.2× 𝟏𝟎−𝟔 𝐇𝟎 rejected 

𝑿𝟑 -0,190068    0,022634 -8,3975 < 2.2× 10−6 H0 rejected 

𝑋4 0,024408    0,042350    0,5763     0,5644     H0 Accepted 

𝑋5 -1,429686    0,028568 -50,0450 < 2.2× 10−6 H0 rejected 

Test criteria: if |𝑍| > 𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼/2) atau the value 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼 then H0 rejected. 

Conclusion: 𝑍𝑡𝑎𝑏𝑒𝑙 (𝑍𝛼

2
) obtained from the distribution table Z with 𝛼 = 5%, it can be seen that the value is 𝑍𝛼

2
 = 1,96 so that in cluster 3 for standardized 

independent variables 𝑍1 (population growth rate), 𝑍2 (number of hospitals), 𝑍3 (number of floods), and 𝑍5 (percentage of decent sanitation) there is an 

influence on the model because  the value of |𝑍| > 𝑍𝛼

2
  or 𝑃𝑣𝑎𝑙𝑢𝑒 < 𝛼, while 𝑍4 (number of health centers) has no influence on the model because of the 

value |𝑍| < 𝑍𝛼

2
  or 𝑃𝑣𝑎𝑙𝑢𝑒 > 𝛼. 

The Adjusted R-squared value in cluster 3 shows that 𝑅2 is 0.9140601 means that 91.40601% of the dependent variable variants can be explained by 

independent variables, while the remaining 8.594% is influenced by other factors outside the research model. 

Cluster profiling is represented by means of the average of each cluster that is formed. 

 

Fig. 1 – Clustering Result Map 
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Table 9 - Average Variables in Each Cluster 

Variabel Information Cluster 1 Cluster 2 Cluster 3 

𝑋1 Number of dengue cases 60,5 99 130 

𝑿𝟐 Population growth rate 1,29 1,30 1,31 

𝑿𝟑 Number of hospitals 12,1 16,4 16,4 

𝑋4 Number of flood disasters 8,91 5,62 6,38 

𝑋5 Number of health centers 43,9 37,2 40 

Description: Bold means highest value, Italic means lowest value 

Based on Table 9, cluster 3 has the highest average number of Dengue Hemorrhagic Fever (DHF) cases among other clusters. The high number of dengue 

cases in cluster 3 is indicated by low sanitation, a very high population growth rate, and a significant number of flood disasters. This condition makes 

cluster 3 a cluster that needs more attention from the Government and the Health Office. 

CONCLUSION 

Clustering districts/cities in West Java Province uses Clusterwise Linear Regression method with the minimum Akaike Information Criterion (AIC) value 

resulted three optimal clusters. Cluster 1 is 11 districts/cities which include Bogor, Sukabumi, Cianjur, Garut, Tasikmalaya, Majalengka, Subang, Bogor 

City, Cirebon City, Depok City, and Cimahi City. Cluster 2 is 8 districts/cities which include Cirebon, Sumedang, Purwakarta, Bekasi, West Bandung, 

Pangandaran, Bandung City, and Banjar City. Cluster 3 is 8 districts/cities covering Bandung, Ciamis, Kuningan, Indramayu, Karawang, Sukabumi City, 

Bekasi City, and Tasikmalaya City. The factors that affect the number of dengue cases in each cluster show that cluster 1 is influenced by a variables 

𝑍1, 𝑍2, 𝑍4 with a value 𝑅2 of 92.3%; cluster 2 is influenced by all standardized independent variables (𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5) with a value 𝑅2 of 71.2%; and 

cluster 3 is influenced by a variables  𝑍1, 𝑍2, 𝑍3, 𝑍5 with a value 𝑅2 of 91.4%. 
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