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Abstract:  

Early and accurate detection of plant diseases is crucial for ensuring global food security and sustaining agricultural productivity. Traditional manual methods of 

diagnosis are time-consuming, costly, and often impractical for large-scale farming. Recent advances in machine learning and deep learning, particularly through 

image processing techniques, offer promising solutions for automatic disease detection[1]. This research presents a deep learning-based approach using transfer 

learning on CNN architectures—VGG-16, VGG-19, and ResNet-50—for the classification of plant leaf diseases. Among these, the ResNet-50 model achieved 

the highest accuracy and was integrated into a user-friendly web application to provide real-time disease identification and treatment recommendations. By 

leveraging annotated image datasets and optimizing model performance through data augmentation and fine-tuning, the system ensures robust and scalable 

results. This study not only enhances detection accuracy but also empowers farmers with actionable insights, contributing significantly to precision agriculture 

and sustainable farming practices. 

 

IndexTerms - Plant Disease Detection, Deep Learning, Transfer Learning, ResNet-50, Precision Farming. 

I. Introduction 

Agriculture remains a fundamental pillar of global economies, especially in developing nations where it serves as a primary livelihood for a significant 

portion of the population. However, plant diseases caused by pathogens such as fungi, bacteria, and viruses continue to pose a serious threat to crop 

yield, food security, and farmer income. Early and accurate identification of these diseases is essential to reduce crop loss and ensure sustainable 

agricultural productivity. 

 

Traditional plant disease detection methods rely heavily on expert visual inspection and laboratory-based diagnostic techniques, which are time-

consuming, labor-intensive, and often impractical for large-scale farming. In contrast, recent advancements in image processing and machine learning 

(ML) have enabled the development of automated systems capable of diagnosing plant diseases using leaf imagery. Among these, deep learning—

particularly Convolutional Neural Networks (CNNs)—has emerged as a powerful tool due to its ability to automatically extract and learn complex 

features from images. 

 

This study explores the application of deep learning models such as VGG-16, VGG-19, and ResNet-50 for detecting plant leaf diseases. Leveraging 

transfer learning and fine-tuning techniques on a curated dataset, the research aims to identify the most accurate and computationally efficient model. 

The chosen model is then integrated into a web-based application, allowing users—especially farmers—to upload leaf images and receive real-time 

diagnosis along with potential treatment recommendations.  Furthermore, the research addresses several critical challenges such as limited availability 

of labeled data, variations in image backgrounds, and different disease stages. Through extensive experimentation and performance evaluation, this 

work not only demonstrates the feasibility of CNN-based plant disease detection but also contributes a scalable and accessible solution to modern 

precision agriculture. 

 

To support the effectiveness of image-based plant disease diagnosis, several benchmark datasets have been developed, such as the PlantVillage dataset, 

which includes over 50,000 images spanning multiple crops and diseases. These datasets have facilitated the training and validation of deep learning 

models, enabling researchers to achieve impressive classification accuracies exceeding 95% in controlled settings. Nonetheless, practical deployment 

still faces challenges such as image noise, varying lighting conditions, and overlapping symptoms. Addressing these issues through data augmentation, 

preprocessing techniques, and robust model architectures is crucial for enhancing real-world performance and ensuring reliability in agricultural 

environments. 

 

http://www.ijrpr.com/
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II. LITERATURE SURVEY 

The increasing need for sustainable agriculture and global food security has driven significant research into automatic plant disease detection systems. 

Manual inspection of plant diseases is time-consuming, subjective, and not feasible for large-scale farming. Consequently, computer vision integrated 

with machine learning (ML) and deep learning (DL) techniques, particularly Convolutional Neural Networks (CNNs), has become an indispensable 

approach in precision agriculture. This section presents a thorough review of related works, highlighting the algorithms, datasets, image processing 

methods, and classification performance in the domain of plant disease detection. 

 

(A) Machine Learning and Deep Learning in Plant Disease Detection 

Traditional ML techniques like Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF) have 

been utilized in early studies. These models depend on manual feature extraction methods such as GLCM (Gray-Level Co-occurrence Matrix), color 

histograms, and texture descriptors, which are then passed to classifiers. 

 

However, the field saw a paradigm shift with the introduction of Convolutional Neural Networks (CNNs). CNNs automatically learn hierarchical 

features from images and outperform classical ML models in complex visual tasks. Researchers adopted custom CNN architectures or leveraged 

transfer learning, using pre-trained models like MobileNet, ResNet-50, VGG16, and InceptionV3, initially trained on ImageNet and fine-tuned on 

agricultural datasets. 

These approaches have been extensively surveyed and validated across multiple studies [2], [3]. 

 

Examples: 

• A hybrid AlexNet + SVM model reported 99.9986% validation accuracy on 38 disease classes. 

• The MRW-CNN model, trained from scratch, achieved 97.04% on maize, 97.06% on rice, and 98.08% on wheat datasets. 

• ResNet-50 and AlexNet were tested on 6,500+ images of maize and soybean, with ResNet achieving 97.41% accuracy in soybean 

classification shows in Table 1. 

 

These deep learning models not only reduce the dependency on domain-specific feature engineering but also enable scalable and real-time disease 

diagnosis. Moreover, the integration of these models into mobile or web platforms has made plant disease detection more accessible to farmers, even in 

remote regions.  

 

As a result, DL-based solutions are rapidly becoming the preferred choice for precision agriculture applications. Real-time implementations, such as 

those used for tomato and banana leaf disease detection, have demonstrated practical deployment with strong performance. 

 

            

                                                                                                                                           

 

(B)  Image Processing and Feature Engineering 

Accuracy of disease detection is influenced by the quality of input images and preprocessing techniques. Common steps include: 

• Image Preprocessing: Resizing, normalization, noise removal. 

• Image Augmentation: Rotation, flipping, brightness adjustment to reduce overfitting. 

• Segmentation: ROI or threshold-based methods like k-means. 

• Feature Extraction: GLCM, Color Moments (CM), Wavelet Transform, Texture Descriptors. 

In classical ML, features are handcrafted; CNNs automatically learn these features, providing better robustness. 

 

 

Model Testing Accuracy Plant 

MobileNet 96.28% Wheat 

Inception V3 96.20% Rice 

ResNet-50 97.41% Soybean 

Xception 97.28% Rice 

FIGURE 1. Accuracy comparison of traditional ML and DL 

models for plant disease classification 

Table 1 : Testing Accuracy of various CNN Architectures on Crop 

Types 
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(C)  Datasets and Data Collection Strategies 

Most literature relies on the PlantVillage dataset, which includes over 54,000 labeled images across 38 disease classes[5]. While valuable, it lacks real-

world variability. 

Custom datasets are being developed: 

• Joseph et al. created real-world image datasets for rice, wheat, and maize at different disease stages. 

• Over 6,500 soybean and maize images were collected under field conditions, covering Frogeye Leaf Spot, Powdery Mildew, Common Rust, 

etc. 

Models used an 80-20 train-test split and applied data augmentation to expand training data. 

 

(D)  Pre-trained Models and Transfer Learning 

Transfer learning reduces training time and boosts model accuracy. Pre-trained CNN models used include: shows in Table 2. 

These models are initially trained on large-scale datasets like ImageNet[4], which helps them learn robust and generalizable features. When fine-tuned 

on specific plant disease datasets, they achieve impressive accuracy even with limited training samples. Transfer learning also mitigates the need for 

high-end computational resources, making it a practical approach for deployment on edge devices or in resource-constrained environments. This 

technique is particularly valuable in agriculture, where annotated image datasets are often scarce and expensive to create. 

 

(E)  Novel Techniques and Advances 

Recent works explore Few-Shot Learning (FSL) and Meta-Learning to reduce dependency on large datasets. FSL models can learn from limited 

examples. 

Hyperspectral and thermal imaging are used for pre-symptomatic detection by identifying physiological changes before visible symptoms appear. 

Challenges include sensor cost and limited public datasets. 

III. RELATED WORKS 

Plant disease detection using artificial intelligence has attracted significant attention due to its potential to improve agricultural productivity. Early 

studies predominantly employed traditional machine learning (ML) algorithms such as Support Vector Machines (SVM), K-Nearest Neighbors (KNN), 

Decision Trees (DT), and Random Forests (RF). These models relied on handcrafted features like color histograms, texture descriptors (e.g., GLCM), 

and shape-based features. While useful for controlled environments, such methods lacked scalability when applied to heterogeneous field conditions, 

and their performance degraded under complex backgrounds and varied lighting. 

 

The emergence of deep learning, particularly Convolutional Neural Networks (CNNs), revolutionized the field by automating feature extraction and 

improving classification accuracy. CNNs such as AlexNet, ResNet-50, VGG16, and MobileNet, when trained or fine-tuned on agricultural datasets like 

PlantVillage, consistently achieved accuracies above 95%. For example, a hybrid AlexNet+SVM[5] model reported a validation accuracy of 99.9986% 

across 38 plant disease classes, demonstrating the potential of hybrid architectures. 

 

Transfer learning further accelerated progress by enabling the adaptation of pre-trained models, initially trained on large-scale datasets like ImageNet, 

to plant disease datasets with limited samples. Researchers explored fine-tuning strategies using models like InceptionV3, Xception, and DenseNet, 

resulting in improved detection rates, especially in crops like rice, maize, and soybean. 

 

Recent advancements include the use of few-shot learning (FSL) and hyperspectral imaging to tackle the data scarcity problem and improve early-stage 

disease detection. Models like the MRW-CNN, designed specifically for real-time agricultural tasks, achieved over 97% testing accuracy on multiple 

crop datasets. Additionally, techniques such as Grad-CAM visualization, attention mechanisms, and ensemble learning have been incorporated to 

enhance interpretability and robustness. 

 

However, most of the existing models are still tested primarily on lab-captured datasets with homogeneous backgrounds. Their performance in real-

world settings—featuring multiple overlapping leaves, soil noise, and variable illumination—remains a critical challenge. Bridging this lab-to-field gap 

continues to be a priority in ongoing research[6]. 

 

Model Technique Accuracy (%) Dataset 

       SVM Traditional ML 89.2 Handcrafted Features 

KNN Traditional ML 87.5 Handcrafted Features 

Decision Tree Traditional ML 85.0 Handcrafted Features 

AlexNet CNN (DL) 99.99 PlantVillage 

ResNet-50 CNN (DL) 97.41 Maize/Soybean 

MobileNet CNN (DL) 96.28 Wheat 

MRW-CNN Custom CNN 97.04 Maize/Rice/Wheat 

 

Table 2 : Evaluation of Machine Learning 

Techniques on Plant Disease Datasets 
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IV. PROPOSED WORK 

To overcome the limitations highlighted in existing literature, the proposed research introduces a custom lightweight CNN-based framework tailored 

for real-time plant disease detection under natural conditions. Unlike prior approaches trained mainly on curated datasets like PlantVillage, this model 

leverages field-collected images of maize, rice, and wheat crops at different growth and infection stages. 

 

(A) Field-Oriented Dataset and Preprocessing 

A custom dataset comprising real-life images captured in agricultural environments has been developed. It includes varying lighting conditions, 

occluded and overlapping leaves, and different disease progression levels—ranging from early symptoms to severe infections. To simulate natural 

variance, extensive data augmentation techniques such as rotation, flipping, brightness shifts, and cropping have been applied. Standard preprocessing 

steps like resizing and pixel normalization are used to maintain computational efficiency. 

 

(B) Model Architecture and Design 

Inspired by the MRW-CNN model, the proposed architecture is shallow yet expressive, ensuring high accuracy with reduced training complexity. The 

CNN model includes convolutional layers followed by ReLU activation, batch normalization, max pooling, and dropout regularization to avoid 

overfitting. The final classification is handled by a Softmax layer for multi-class output[7]. 

 

(C) Transfer Learning Evaluation 

To benchmark the custom model, popular pre-trained architectures like MobileNet and ResNet-50 are fine-tuned on the same dataset. These models are 

chosen for their balance between depth and efficiency, and allow for comparison in terms of training speed, parameter size, and overall accuracy. 

 

(D) Multi-Class Disease Detection 

The model is trained to classify multiple diseases including Leaf Blight, Rust, Bacterial Streak, and Mosaic Virus across different crops. The output 

layer of the network supports multi-class classification using a categorical cross-entropy loss function. Performance metrics include accuracy, 

precision, recall, F1-score, and confusion matrix analysis. 

 

(E) Model Evaluation and Field Applicability 

The system’s performance is evaluated on both validation and test sets using k-fold cross-validation. Field tests are also conducted using smartphone-

acquired leaf images to assess real-world usability. The classification results demonstrate strong generalization across varied lighting and background 

conditions[8],[9]. 

 

To interpret the model’s predictions and ensure reliability, Grad-CAM heatmaps are generated, highlighting regions influencing the decision. This 

interpretability enhances trust in the model's predictions, especially for critical early-stage disease identification. 

Additionally, a confusion matrix is plotted to visualize class-wise accuracy and misclassifications. As shown in Fig. 1, the matrix highlights high 

accuracy along the diagonal, especially in D1 and D8 classes (98.8%), indicating minimal confusion between disease types. Such performance 

reinforces the model’s effectiveness in multi-class scenarios. 

  
  

The model's robustness in noisy field environments, low computational footprint, and real-time inference capability make it suitable for deployment on 

mobile platforms. This work aims to provide a scalable, adaptable, and cost-effective AI solution for farmers, enabling early detection and timely 

intervention against crop diseases. By bridging the lab-to-field gap, it contributes meaningfully to precision agriculture and sustainable farming 

practices[10]. 

FIGURE 2. Confusion matrices of disease & healthy 

samples using targeted and output classes (D1) 

Bacterial Spot, (D2)Early Blight, (D3)Late Blight, 

(D4)Leaf Mold, 

(D5)Mosaic Virus,(D6)Septoria leaf spot,(D7) Yellow 

Curl Virus,(D8)Healthy Leaf. 
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V. RESEARCH METHODOLOGY 

The methodology section outlines the approach and techniques used to conduct the study. This includes the population and sample of the study, data 

and sources of data, study variables, and the analytical framework. The details are as follows: 

 

(A) Population and Sample 

The universe of the study consists of publicly available plant leaf image datasets representing various crops and disease types. One of the most 

comprehensive and widely used datasets in this domain is the PlantVillage dataset, which includes over 50,000 images of healthy and diseased leaves 

across multiple crop species such as tomato, potato, grape, and corn. This dataset serves as the population for this study.From this universe, a stratified 

sample of 10 crop species and their respective diseases was selected to ensure representation across different types of plant diseases (fungal, bacterial, 

viral). Approximately 30,000 images were used in total, divided into training, validation, and testing sets in the ratio of 70:15:15 to build and evaluate 

the deep learning models. 

 

(B) Data and Sources of Data 

The study relies entirely on secondary image data obtained from open-source agricultural datasets. The primary dataset used is the PlantVillage 

dataset, which was sourced from the official PlantVillage research repository hosted by Penn State University and other affiliated research institutions. 

The dataset includes images captured under controlled conditions and is labeled with disease names by agricultural experts. 

 

For validation of model robustness, additional plant disease image samples were gathered from real-world agricultural forums and online platforms, 

ensuring diversity in background, lighting, and resolution. All images were preprocessed using standard techniques such as resizing, normalization, and 

data augmentation (rotation, flipping, scaling) to improve generalization. 

The dataset was processed and analyzed using Python programming with libraries including TensorFlow, Keras, NumPy, OpenCV, and Matplotlib. 

 

(C) Study Variables 

The key variables in this study are categorized into two types: Input variables (independent) and output variables (dependent). 

 

  Input Variables (Independent): 

 

➢ Leaf images from various plant species. 

➢ Image features automatically extracted using Convolutional Neural Networks (CNNs). 

➢ Preprocessing parameters such as image resolution, normalization, and augmentation settings. 

 

  Output Variables (Dependent): 

➢ Disease classification label (e.g., Healthy, Bacterial Spot, Early Blight, etc.). 

➢ Model performance metrics including: 

▪ Accuracy 

▪ Precision 

▪ Recall 

▪ F1-Score 

▪ Inference time (for real-time application) 

These variables help in measuring and comparing the performance of different CNN architectures in accurately detecting plant leaf diseases. 

(D) Analytical Framework 

The analytical framework for this research involves the use of supervised learning techniques under the deep learning paradigm. The methodology 

consists of the following steps: 

1. Data Preprocessing: 

All input images were resized to a standard dimension (e.g., 224×224), converted to RGB, normalized, and augmented to enhance model 

generalization. 

2. Model Selection and Training: 

Three pre-trained CNN models were selected for comparative analysis: VGG-16, VGG-19, and ResNet-50. These models were fine-tuned 

using transfer learning, where initial layers were frozen and deeper layers were retrained on the dataset. 

3. Model Evaluation: 

Each model was evaluated using a holdout test set. Key evaluation metrics (accuracy, precision, recall, F1-score) were calculated and 

confusion matrices were generated to analyze misclassification patterns. 

4. Deployment Framework: 

The best-performing model was integrated into a web-based application, where users can upload leaf images and receive real-time disease 

predictions along with possible treatment suggestions. The system architecture includes: 

o Frontend (HTML/CSS/JavaScript) 

o Backend (Flask/Django with Python) 

o Trained deep learning model (served via TensorFlow/Keras) 
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5. Challenges Addressed: 

To handle practical limitations such as noise, lighting variation, and mixed symptoms, the study employed data augmentation, dropout 

regularization, and early stopping techniques during training. 

VI. RESULTS AND DISCUSSION 

Results of Descriptive Statics of Study Variables 
 

Variable Minimum Maximum Mean Std. Deviation Jarque-Bera test Sig 

Accuracy (%) 78.50 98.60 91.32 5.12 1.874 0.392 

Precision (%) 75.40 98.00 89.47 6.21 2.123 0.346 

Recall (%) 74.30 97.90 88.63 6.05 1.952 0.377 

F1-Score (%) 74.60 97.85 88.85 5.89 1.813 0.412 

Loss 0.11 0.57 0.23 0.14 2.001 0.367 

 

 

 

 

Table 3 presents the descriptive statistics of the model performance metrics used in this study, including Accuracy, Precision, Recall, F1-Score, and 

Loss. The mean accuracy achieved by the CNN-based models (VGG-16, VGG-19, ResNet-50) was 91.32%, with a standard deviation of 5.12, 

indicating stable performance across experiments. 

 

The maximum accuracy achieved was 98.60%, while the minimum was 78.50%, showcasing the effectiveness of deep learning techniques for plant leaf 

disease classification. Precision and Recall also showed consistent performance with mean values of 89.47% and 88.63% respectively. The F1-Score, a 

harmonic mean of Precision and Recall, averaged at 88.85%, confirming balanced predictions. 

 

Jarque-Bera tests were performed to assess the normality of each performance variable. At a 5% level of significance, all p-values are above 0.05, 

leading to the acceptance of the null hypothesis (H₀): the data is normally distributed. This normality supports the reliability of model evaluations. 

The results suggest that the trained CNN models generalize well on plant leaf datasets and maintain robustness across training and validation phases. 

These findings validate the feasibility of deploying such models in real-world agricultural diagnosis platforms, offering early and accurate plant disease 

detection to support precision agriculture. 
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