
International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 2278-2281 June 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

PR BOT: A Python-Based Email-to-Telegram Real-Time Notification

System

Rai Pooja Rajendra1, Prof. Shubhangi Vitalkar2

1Master of Computer Application, Trinity Academy of Engineering, Pune.
2Assistant Professor Master of Computer Application, Trinity Academy of Engineering, Pune.

ABSTRACT

In today’s fast-paced digital environment, timely access to critical information is essential. PR BOT is a Python-based automation tool designed to monitor unread

Gmail messages and send summarized notifications directly to a Telegram chat. By bridging the gap between traditional email communication and instant

messaging platforms, PR BOT ensures real-time awareness without requiring constant inbox monitoring. PR BOT connects securely to a Gmail account using

the IMAP protocol, retrieves unread messages, groups them based on sender or subject, and then formats these summaries into concise, readable messages using

Markdown. These summaries are forwarded to a designated Telegram chat via the Telegram Bot API. This approach saves time and ensures that important

communications are not missed.This project showcases the power of integrating multiple APIs and automation to build a lightweight, efficient, and scalable

notification system. It is ideal for professionals or teams who rely heavily on email for communication and need real-time awareness without manual effort.

Keywords: Email Automation · Telegram Bot · IMAP Protocol · Python · Real-Time Notification · Email Monitoring · Instant Messaging Integration ·

API Integration · PR BOT · Email Summarization · Inbox Automation · Telegram Notification System

1. Introduction

In many organizations and for individual professionals, critical alerts, updates, or requests are transmitted via email. However, busy users may overlook

urgent messages when they are not actively monitoring their inbox. Instant messaging (IM) platforms like Telegram provide push-based notifications,

allowing users to receive alerts on mobile or desktop devices in real time. PR BOT combines the ubiquity of Gmail with the immediacy of Telegram by

automatically retrieving unread emails and posting concise summaries to a Telegram chat.

Traditional email-to-SMS or email-to-IM services often involve paid gateways, complex configurations, or lack reliable grouping and summarization.

PR BOT is built entirely with open-source Python libraries and can be deployed on any machine or server with internet access. It continuously polls a

Gmail account via IMAP, checks for new unread messages, groups them logically (by sender or subject), and forwards human-readable summaries via

the Telegram Bot API.

2. Related Work

Over the past decade, multiple projects and commercial services have attempted to bridge email and instant messaging. Commercial gateways such as

Twilio SendGrid Inbound Parse and Zapier Email Parser + Telegram Integration provide reliable email-to-IM services but incur per-message costs and

often lack grouping capabilities. Open-source scripts like imap-notify and mail2push offer basic notification functionalities but do not natively support

IM platforms or summarization.

Various GitHub repositories demonstrate basic Email-to-Telegram bots that fetch and forward individual emails, but they often result in notification

overload due to the lack of logical grouping. Mailbot (Go) is efficient but less accessible to Python developers and lacks modular summarization. PR

BOT addresses these gaps by implementing configurable grouping, Markdown-formatted summaries, and a lightweight, token-based configuration file,

all within a cohesive Python package.

3. Nomenclature and System Requirements

Term Description

PR BOT Python-based Email → Telegram Notification System

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 2278-2281 June 2025 2279

IMAP Internet Message Access Protocol used for retrieving Gmail messages

SMTP Simple Mail Transfer Protocol (for optional outgoing acknowledgements)

API Application Programming Interface used to connect to Telegram

Markdown Lightweight markup syntax for formatting message summaries

Telegram Bot Automated chat interface used to deliver notifications

Email Monitoring Continuous checking of unread messages in the inbox

Notification Trigger Condition (e.g., new unread emails) that initiates alert to Telegram

Message Summarizer Module that compacts email headers and body snippets into concise text

Configuration File YAML/JSON file containing credentials, tokens, and polling parameters

Authentication Secure login to Gmail and Telegram Bot service

Polling Interval (Δt) Time in seconds between consecutive mailbox checks (default: 60 s)

Log File Local file (e.g., prbot.log) where runtime events and errors are logged

Token Secret key used to authenticate with the Telegram Bot API

1. Operating System: Any OS supporting Python 3.7+ (Windows 10, Ubuntu 20.04, macOS Catalina or later).

2. Software Dependencies:

 • Python 3.7+

 • imaplib, email, ssl, logging (standard libraries)

 • python-telegram-bot (≥ v13.0)

 • PyYAML (≥ v5.3) or json (built-in) for configuration parsing

 • schedule (optional) or custom loop for polling

3. Gmail Configuration: IMAP must be enabled; use App Password or allow Less Secure Apps.

4. Telegram Bot Setup: Create a bot via @BotFather, obtain Bot Token, add bot to target chat and send /start to retrieve chat_id.5. Hardware: Lightweight

server with ≥ 1 GB RAM, stable internet, < 50 MB disk space for code and logs.

4. Methodology

PR BOT consists of three main modules (illustrated in Figure 1):

• Email Client Module (ECM): Handles IMAP connection to Gmail, mailbox authentication, and retrieval of unread messages.

• Summarizer Module (SM): Parses email objects, extracts sender, subject, date, and body snippet, and generates Markdown-formatted summaries.

• Telegram Notifier Module (TNM): Connects to Telegram via the Bot API, sends summaries to the specified chat_id, and manages rate-limiting.

The workflow (see Figure 1) is as follows: Upon startup, PR BOT loads the configuration file (config.yaml), initializes logging, and authenticates with

Gmail and Telegram. It then enters a polling loop with interval Δt seconds. Each cycle, ECM issues an IMAP 'SEARCH UNSEEN' command. If unread

messages exist, the module fetches headers and the first N bytes of the body for each message. SM groups messages by sender or subject (as configured)

and creates a single Markdown summary per group. TNM dispatches these summaries to Telegram, splitting them into multiple messages if the 4096-

character limit is exceeded. Processed emails are marked as 'SEEN' to prevent duplicates, and the loop repeats.

International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 2278-2281 June 2025 2280

Figure 1. System Architecture Diagram Figure 2: Sample Telegram Notification

5. Results and Discussion

PR BOT was deployed on an Ubuntu 20.04 VM with Python 3.8 and tested with a Gmail account receiving controlled test emails. The following outcomes

were observed:

• Latency: With a polling interval Δt = 60 s, the best-case end-to-end latency was approximately 0.8 s, and the worst-case latency (email arriving just

after a poll) was approximately 61 s. The average latency measured over 100 tests was 30.5 s.

• Resource Usage: CPU utilization remained below 1% when idle, and memory footprint was approximately 45 MB. Disk I/O was minimal, limited to

log file writes.

• Grouping Efficiency: In a test scenario with 50 unread emails from 5 different senders, PR BOT generated only 5 summary messages (one per sender),

reducing notification volume by 90% compared to sending each email individually.

• Reliability: Over a 48-hour continuous runtime with simulated network interruptions, PR BOT automatically reconnected to IMAP after network

restoration and respected Telegram API rate-limit 'retry_after' directives. There were no crashes or lost notifications.

Table 1 summarizes key performance metrics.

Metric Value

Polling Interval (Δt) 60 s

Best-Case Latency 0.8 s

Worst-Case Latency 61 s

Average Latency 30.5 s

CPU Usage (Idle) < 1%

Memory Footprint ≈ 45 MB

Grouping Efficiency 90% reduction (50 emails → 5 messages)

Continuous Uptime 48 h without crashes

IMAP Reconnection Attempts Up to 3 (5 s, 10 s, 20 s backoff)

Telegram Rate-Limit Handling Respects 'retry_after' and retries automatically

International Journal of Research Publication and Reviews, Vol 6, Issue 6, pp 2278-2281 June 2025 2281

6. Conclusions

PR BOT demonstrates a lightweight, open-source solution for real-time email notifications via Telegram. By leveraging IMAP polling, Markdown

summarization, and Telegram Bot integration, it ensures users receive timely alerts without cluttering inbox checks. The grouping logic effectively

reduces notification volume by up to 90%, and performance evaluation confirms an average notification latency of 30.5 s with minimal resource usage.

PR BOT’s modular design allows for easy extension, including future enhancements such as IMAP IDLE support, advanced filtering, attachment

handling, multi-account support, and a web-based dashboard.

Overall, PR BOT provides an efficient and scalable framework for bridging email and instant messaging, meeting the needs of professionals and

organizations that rely on rapid information dissemination.

References

1. Beazley, D. “Python’s imaplib and email: Simplifying Email Processing,” Python Cookbook, 3rd ed., O’Reilly, 2019, ch. 16, pp. 345–372.

2. Russell, M. “Building a Telegram Bot in Python,” Real Python Blog, 2023. Available: https://realpython.com/python-telegram-bot/

3. Johnson, T. “IMAP IDLE vs. Polling: Trade-offs for Email Clients,” Email Systems Today, vol. 4, no. 1, pp. 45–52, 2021.

4. Ross, V. “Improving User Notification via Instant Messaging,” Proceedings of the 10th International Conference on Internet Protocols, pp. 87–95,

2024.

5. Telegram Foundation, “Telegram Bot API Documentation,” 2025. Available: https://core.telegram.org/bots/api

6. Emma, D.; Smith, A. “Automatic Email Summarization Techniques,” Journal of AI Research, vol. 15, no. 2, pp. 123–136, 2022.

