

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

"Comparative Design and Cost Analysis of Reinforced Soil (MSE) walls and RCC Cantilever Retaining walls"

Dipak Pawar¹, Divya Waghmode¹, Dhruva Nagrale¹, Saurav Baviskar¹, Yogesh Bafna², Dr. S. B. Randhavane³.

¹UG Student of Department of Civil Engineering, SVKM's Institute of Technology, Dhule, 424001, Maharashtra, India.

²Assistant Professor, Department of Civil Engineering, SVKM's Institute of Technology, Dhule, 424001, Maharashtra, India.

³ Head, Department of Civil Engineering, SVKM's Institute of Technology, Dhule, 424001, Maharashtra, India.

 $dipak.pawar074@svkmmumbai.onmicrosoft.com^{1}, divya.waghmode 38@svkmmumbai.onmicrosoft.com^{1}, divya.waghmode 38@svkmmumbai.onmicrosoft.com^{1$

dhruva.nagrale19@svkmmumbai.onmicrosoft.com1,

ABSTRACT:

This research presents a comparative analysis between Reinforced Cement Concrete (RCC) cantilever retaining walls and Reinforced Soil (RS) walls, also known as Mechanically Stabilized Earth (MSE) walls. The objectives are to analyse the design, cost estimation, and environmental impact of both walls. Retaining walls were designed for various heights (3.2 m to 6.4 m) using Limit State Design principles as per IS 456:2000 for RCC and BS 8006:2010 for RS walls. In RS walls, geogrids were used as a reinforcing element with segmental panel facings, whereas RCC walls required considerable quantity of cement and steel content, as well as shuttering and curing. According to the cost comparison, RS walls are 40.80% more cost-effective than RCC walls. In additionally, RS walls offer better performance in seismic zones, require less construction time, and are environmentally sustainable. This study concludes that RS walls are a cost-effective, durable, and environmentally sustainable. alternative to conventional RCC retaining walls, especially for infrastructure and highway projects.

Key words: Retaining wall, Reinforced soil, Geogrid, External Stability, Internal Stability.

Introduction:

Retaining walls play a crucial role in geotechnical and civil engineering by providing lateral support to vertical or near-vertical grade changes. They are widely used to prevent soil erosion, stabilize slopes, and create level surfaces on sloping ground, making them essential in both urban development and transportation infrastructure. The concept of reinforced soil, first proposed by Henri Vidal in 1969, served as the foundation for the constructions, demonstrating that the use of soil in conjunction with tensile reinforcing materials greatly improves stability and load-carrying capability (Vidal, 1969). Traditionally, Reinforced Cement Concrete (RCC) cantilever walls have been the preferred choice due to their high strength and reliability in withstanding lateral earth pressures. But there are several disadvantages to RCC walls. Their construction requires substantial quantities of high-energy materials such as cement and steel, which not only increases project costs but also contributes to a higher environmental footprint. Nowadays conventional retaining walls are replaced with Reinforced soil walls, also known as Mechanically Stabilized Earth (MSE) walls. These systems consist of compacted granular backfill reinforced with layers of geosynthetics, such as geogrids or geotextiles, to provide a stable mass that can effectively resist lateral earth pressures and durability while reducing the embodied energy and environmental footprint of retaining structures (Pisini et al., 2020). Reinforced Soil Retaining Walls have received an extensive amount of attention for their cost-effectiveness, versatility, and structural efficiency. The application of geosynthetics or metallic reinforcements in MSE walls provides enhanced stability and allows for design flexibility. Studies have shown that such systems perform well under various loading conditions, including seismic and differential settlements (Sarkar & Biswas, 2021). For rehabilitating and reconstructing the embankments of the study road, reinforced concrete and reinforced earth retaining walls were evaluated. After detailed design, cost, and time analysis, the reinforced earth retaining wall was found to be the most suitable and economical for road projects in Jordan. Geosynthetic walls are especially effective for high vertical cuts and have shown long-term stability in existing projects in Amman, with no visible damage or settlement (Al Rawi & Al Abade, 2017).

This research aims to provide a comprehensive comparison between Reinforced soil (MSE) walls and RCC cantilever retaining walls by evaluating their design approaches, material requirements, cost analysis, and overall structural behavior to assess which type of wall offers the most suitable solution for modern infrastructure requirements.

Methodology:

The main objectives of this research methodology are to design RS walls and RCC walls based on relevant design codes and to conduct a comprehensive cost estimation.

Design details:

The design of both Reinforced Soil walls and RCC cantilever retaining walls was carried out using Limit State Design principles, ensuring safety against both external and internal failure modes as per BS 8006:2010 for Reinforced soil walls and IS 456:2000 for RCC walls for design heights of 3.2 meter to 6.4 meter for the following parameters.

Soil Parameters

	Table 1	Soil Parameters		
	Cohesion (C)	Unit Weight (Y)	Angle of internal friction	
Soli Data	(kP <i>a</i>)	(kN/m^3)	(Ø)	
Reinforced fill Soil	0	18	320	
Retained Soil	0	20	320	
Foundation Soil	0	18	300	

External Loading,

- Dead Load Surcharge $DL = 13.20 \ kN/m^2$
- Traffic Surcharge $LL = 22 \frac{kN}{m^2}$
- Frictional Slab Load $SL = 8 \frac{kN}{m^2}$
- (assumed width of Frictional Slab is 1.60 m)

Seismic Parameters,

- Seismic Zone = II
- Max. Ground acceleration coefficient = 0.08
- Max. wall acceleration = 0.11

Design of Reinforced Soil Wall Namaste

- Design for External Stability: The effects of dead loads and other loads and forces acting on the structure should be considered when assessing external stability. To ensure external stability of a retaining wall, the design must satisfy three key criteria with their respective partial factor of safety (FS) of 1.5 against overturning, 1.4 against sliding, and 1.20 for bearing capacity failure:
- Overturning $(Mr / Mo \ge 1.5)$
- Mr = Resisting moment, Mo = Overturning moment.
- Sliding ((*Rv* tanØ)/*Rh*≥1.4)
- $\mathbf{R}\mathbf{v} =$ Vertical Load, $\mathbf{R}\mathbf{h} =$ Horizontal Load.
- Bearing Capacity Failure (*q_{allow}*/*q_{req}* ≥ 1.2)
- $q_{allow} =$ Ult. Bearing Capacity of foundation soil, $q_{req} =$ Req. Ultimate Bearing Capacity of soil.

Sr. Height of wall	Trial Length of Reinforcement	24.7	Yallow	ne can p	Provided length of	
NO	II (III)	B (m)				Tennorcement D (m)
1	3.2	3.0	5.43	3.519	3.146	3.5
2	4.0	3.3	5.22	3.216	3.030	4.10
3	4.8	3.8	5.33	3.074	3.023	4.8
4	5.6	4.4	4.87	2.762	2.863	5.20
5	6.4	4.9	4.86	2.639	2.839	5.8

Table 2. Factor of safety with respect to wall height for load combination A

Table 3. Factor of safety	with respect to	wall height for	· load combination	B
Twiel Length of				

Sr. No	Height of wall H (m)	Trial Length of Reinforcement B (m)		<u>Mallow</u>	ny tany	Provided length of reinforcement B (m)
1	3.2	3.0	3.62	5.575	1.649	3.5
2	4.0	3.3	3.48	4.806	1.645	4.10

3	4.8	3.8	3.55	4.479	1.684	4.8
4	5.6	4.4	3.25	3.806	1.628	5.20
5	6.4	4.9	3.25	3.567	1.641	5.8

Sr. Height of wall	Reinforcement		Y allow	ny tun p	Provided length of reinforcement B (m)	
NO	II (III)	B (m)				Tennorcement D (m)
1	3.2	3.0	14.39	10.810	5.702	3.5
2	4.0	3.3	12.11	9.520	5.019	4.10
3	4.8	3.8	11.20	8.781	4.689	4.8
4	5.6	4.4	9.47	7.780	4.224	5.20
5	6.4	4.9	8.88	7.275	4.026	5.8

Table 4. Factor of safety with respect to wall height for load combination C

(Minimum Trial Length = Greater of 0.7H & 3.0m, as per BS 8006:2010)

Design for Internal Stability: Internal stability checks ensure that the reinforcement layers within the Reinforcement soil zone are capable of resisting all imposed forces without failure. As per BS 8006:2010, internal stability is evaluated through two modes.

Tensile Rupture Check: This check ensures that the tensile force produced in each reinforcement layer due to earth pressure and surcharge loads does not exceed the long-term design strength of the geogrid.

Rupture check = $Td.Rc/fn \ge Tj$ Td = Tult/fm = Design strength of Reinforcement. Rc = Coverage ratio for geogrid (assumed Rc = 0.5) Fn = ramification factor = 1.10, Fm = Partial material factor = 1.714 Tensile force (Tj) = Tpj + Tsj Tpj = Tensile force due to vertical loads, Tsj = Tensile force due to strip/concentrated load.

 Pullout Resistance Check: Pullout checks ensure that the embedded length of reinforcement is sufficient to resist pullout under the applied tensile loads.

Pullout check = $Pj(\mu.Lej.(ffs.\gamma.Zj + ffs.DL)/(fp.fn)) \ge Tj$ Pullout Strength = $Pj(\mu.Lej.(ffs.\gamma.Zj + ffs.DL)/(fp.fn))$ Pj = Available total horizontal width of the top and bottom faces of reinforcement (geogrid), μ = Coefficient of friction between fill & reinforcement element (0.50), $Lej = (L - (H - hj) \times tan(45 - \varphi/2)),$ ffs = Partial factor for load combination as per BS 8006:2010,

fp = Partial factor for soil reinforcement.

Notes:

Γ

- The spacing ((Sv) provided for the uppermost layer and lowermost layer is 0.4 m, and for the intermediate layer is 0.8 m. (IRC: SP: 102–2014).
- Reinforcement layer is sequenced from bottom to top; layer no. 1 is the bottom layer.
- Zj is the height of the jth layer measured from top of levelling pad.
- T_{ulk} is the short-term peak tensile strength of the geogrid.
- TD is the long-term design strength of the geogrid.

	Table 5 Output for 6.4 m Wall for Reinforcement (Geogrid) Details at Each Layer							
n	zj	hj	Length of Reinf.	Tult		Type of		

Layer from bottom	<i>zj</i> (m)	<i>hj</i> (m)	Length of Reinf (m)	Tult (kN/m)	Td	Type of Geogrid	No. of Connection
1	0.40	6.00	5.80	250	145.86	SGU 250	2
2	1.20	5.20	4.90	250	145.86	SGU 250	2
3	2.00	4.40	4.90	200	116.68	SGU 200	2
4	2.80	3.60	4.90	180	109.13	SGU 180	2
5	3.60	2.80	4.90	150	90.95	SGU 150	2

6	4.40	2.00	4.90	120	72.76	SGU 120	2
7	5.20	1.20	4.90	100	60.63	SGU 100	2
8	6.00	0.40	5.30	80	48.50	SGU 80	2

Figure 1: Design detail of RS wall for height 3.2 M

Figure 2: Design detail of RS wall for height 4.0 M

Figure 3: Design detail of RS wall for height 4.8 M

• Design of R.C.C. cantilever wall with uniform surcharge by using limit state method as per IS 456:2000 for Materials M20 concrete and Fe415 steel.

Figure 6: Design detail of RCC wall for height 3.2 M

Figure 7: Design detail of RCC wall for height 4.0 M

Figure 8: Design detail of RCC wall for height 4.8 M

Figure 9: Design detail of RCC wall for height 5.6 M

Figure 10: Design detail of RCC wall for height 6.4

Cost Comparison of Reinforced soil (MSE) wall and RCC cantilever Retaining wall: To compare cost estimation of Reinforced soil wall and RCC cantilever wall, Wall height of 6.4 m is selected.

Cost Estimation of Reinforced Soil wall for height 6.4 M.

	Table 6 Geogrid consumption							
Grade	Length In M	bs	Rc	Connection	Consumption in (M ³)	Rate	Cost	
SGU 250	5.8	0.25	0.5	2	2.9	114.7	332.63	
SGU 250	4.9	0.25	0.5	2	2.45	114.7	281.015	
SGU 200	4.9	0.25	0.5	2	2.45	101.2	247.94	
SGU 180	4.9	0.25	0.5	2	2.45	91.5	224.175	
SGU 150	4.9	0.25	0.5	2	2.45	81.6	199.92	
SGU 120	4.9	0.25	0.5	2	2.45	71.6	175.42	
SGU 100	4.9	0.25	0.5	2	2.45	64.1	157.045	
SGU 80	5.3	0.25	0.5	2	2.65	55.3	146.545	
TOTAL CON	SUMTION =				20.25		0	
PER M^2 CON	SUMTION =				3.164		1764.69/-	

	Table 6 Geogrid consum
--	------------------------

Table 7 Consumptions of Concrete and Steel for Facing panel

2. PANEL TYPE	AREA IN (M ²)	CONCRETE IN (M ³)	WEIGHT OF STEEL IN (kg)	REMARK
TA2	1.486	0.26748	5.69	
AL4	3.2	0.576	15.433	As per Papel
AL4	3.2	0.576	15.433	referred by
AH4	3.2	0.576	24.109	RSE
BH2	1.732	0.31176	13.122	INFRA
TOTAL	12.818	2.3072	73.787	PVT.
PER METER CONSUMPTIOM	6.409	1.15362	36.89	

Table 8. Abstracting

SR. NO	DESCRIPTION	GRADE	UNIT	CONSUMPTI ON	RATE PER UNIT	TOTAL AMOUNT	REMARK
1	CONCRETE	M35	M ³	1.15	7300	8421.43	RATE AS PER
2	STEEL	FE500	kg	36.89	72	2656.33	PRICING
3	GEOGRID	AS PER DESIGN	M ²	20.25	1764.69	1764.69	
CUMUL	ATIVE RATE PER 1 MTR	12842.45/-	·				
4	ADD 5% FOR CONTIMG	642.12/-					
GRAND	TOTAL					13484.57/-	

Cost Estimation of RCC cantilever retaining wall for height 6.4 M.

Table 9 Steel Consumption

SR. NO	BAR	DIA	SPACING IN MM	NUMERS	LENGTH IN M	TOTAL LENGTH IN (M)	WEIGHT IN (KG)	REMARK
1	STEM			•			·	WEIGHT=
	MAIN	20	130	8	6.4	51.2	126.42	$\left(\frac{\Psi}{4\pi^2}\right) \times TOTAL$
	DIST	10	180	36	1	36	22.22	LENGTH
2	HEEL SLA	AB	•	•			•	
	MAIN	16	170	6	2.3	13.8	21.8	
	DIST	10	130	18	1	18	11.11	
3	TOE SLAI	В	•	•			•	
	MAIN	16	300	4	1.65	6.6	10.43	
	DIST	10	130	13	1	13	8.02	
4	SHEAR K	EY	•	•			•	
	MAIN	16	170	6	1.45	8.7	13.75	1
	DIST	10	130	11	1	11	6.79]
TOTAL STEEL CONSUMPTION IN kg =220.55								·

Table 10 Concrete Consumption

SR.NO	PARTICULARS OF ITEM	NO	LENGTH IN M	BREATH IN M	HEIGHT IN M	QUNTITY IN M ³	REMARK
	R.C.C WORK 1:2:4						
							STEM LENGTH=

1	STEM	1	1	0.35	5.9	2.065	6.4-0.5
2	BASE SLAB	1	1	3.5	0.5	1.75	
3	SHEAR KEY	1	1	0.45	0.4	0.18	
TOTAL CO	NTITY IN M ³ =	3.995					

Table 11 Abstracting									
SR.	PARTICULARS OF	GRADE	UNIT	QUANTITY	RATE PER UNIT	TOTAL	REMARK		
NO	ITEM					AMOUNT			
1	CONCRETE	M20	M ³	3.995	5500	21972.5	AS PER		
2	STEEL	FE415	kg	220.553	72	15879.8	MARKET		
CUMULATIVE RATE PER 1 MTR LENGTH 3'							RATES		
3	ADD 5% FOR CONTIMGENCIES & WORK CHARGED ESTABLISHMENT 1892.62/-								
GRAND TOTAL = 39744.94/-									

Result and Discussion:

Cost Comparison between R.C.C. Cantilever Retaining Wall and Reinforced Soil (MSE) Wall for per 1 Meter Length.

Table 12 Cost Analysis

COST COMPARISON								
SR.NO	1	2	3	4	5			
DESIGN HEIGHT IN MTR	3.2	4	4.8	5.6	6.4			
RSE WALL	6008.7/-	7799/-	9508.7/-	11806/-	13485/-			
R.C.C WALL	12543/-	17924/-	24301/-	31314/-	39745/-			
% COST DIFFERENCE	48%	44%	40%	38%	34%			
AVERAGE	40.80%	40.80%						

Graph 1: Cost Analysis between RSE Wall and RCC Wall

According to cost analysis, the construction cost of a Reinforced soil (MSE) wall is **40.80%** less than that of R.C.C cantilever retaining wall. Because of this, the geosynthetic reinforced soil wall is more economical and cost-effective for large-scale infrastructure projects.

Conclusion:

According to cost analysis, the construction cost of a Reinforced Soil (MSE) wall is approximately 40.8% lower than that of a conventional RCC cantilever retaining wall. RS walls offer environmental benefits through reduced carbon emissions and material use, and their flexibility makes them ideal for seismic zones and uneven terrains. Because of this, the geosynthetic reinforced soil wall is more economical and cost-effective for large-scale infrastructure projects.

This study concludes that RS walls are a cost-effective, environmentally sustainable, and construction-friendly alternative to RCC retaining walls. Their adoption should be encouraged in infrastructure projects where applicable, without compromising safety, durability, or performance standards.

REFERENCES:

- 1. Design Codes
- 2. IRC: SP: 102-2014 (Guidelines for design and construction of Reinforced Soil wall and Slopes)
- 3. BS 8006:2010 for Static calculation
- 4. IS 456:2000 For RCC wall
- 5. H. Vidal, The Principle of Reinforced Earth. Bureau d'Etudes de la Terre Armée, Paris, France, 1969.
- 6. Pisini, S., Thammadi, S., & Shukla, S. K. (2020). Sustainability study on geosynthetic reinforced retaining wall construction. Proceedings of the Indian Geotechnical Conference.
- Sarkar, A., & Biswas, P. R. (2021). Design of reinforced soil retaining wall to support hill slope. International Journal of Research in Engineering and Science (IJRES), 9(7), 19–50.
- Al Rawi, S. M., & Al Abade, H. F. (2017). Comparison between reinforced concrete and reinforced earth retaining walls for road projects. Journal of Engineering, 23(4), 127–139.
- 9. Xiong, Chuanxiang, et al. "Study on active earth pressure of narrow backfill of balance weight retaining wall under translational displacement mode." Developments in the Built Environment 18 (2024): 100430.
- 10. , Chuanxiang, et al. "Study on active earth pressure of narrow backfill of balance weight retaining wall under translational displacement mode." Developments in the Built Environment 18 (2024): 100430.
- Nalawade, R. D., & Nalawade, D. R. (2008, October 1–6). Stability and cost aspects of geogrid reinforced earth wall of flyover. Paper presented at the 12th International Conference of the International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India