
International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025) Page – 2145-2152 

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

IMAGE DEONISING OR IMAGE DEHAZING 

Sandeep Kumar1, Ankit Tiwari2, Dr. Subash Harizan3  

1 B.Tech CSE programme in Galgotias University, Greater Noida, UP, India 

2 B.Tech CSE programme in Galgotias  University, Greater Noida, UP, India  

3 Galgotias  University, Greater Noida, UP, India 

ABSTRACT: 

 A basic low-level vision problem, image denoising has important uses in remote sensing, photography, and medical imaging. Conventional algorithms frequently 

have trouble striking a balance between detail retention and noise reduction. The effectiveness of Convolutional Neural Networks (CNNs) for picture denoising is 

investigated in this paper. We use artificially noised datasets with Gaussian noise to train and assess a DnCNN-based architecture. Our CNN model performs 

better than conventional techniques like BM3D and NLM in terms of PSNR and SSIM, particularly at greater noise levels, accord ing to experiments done on 

BSD68 and Set12. 

Keywords— Denoising of Images, Low-Level Visual Issue, Sensing remotely, Taking pictures, Imaging in Medicine, Standard Algorithms, Retention 

of Details, Reduction of Noise, CNNs, or convolutional neural networks, DnCNN, The Gaussian Noise, Unnaturally Noisy Datasets,BM3D,Non-Local 

Means, or NLM, Peak Signal-to-Noise Ratio, or PSNR, Structured Similarity Index Measure, or SSIM,BSD68,Set 12 

Introduction 

Recovering a clear image from a noisy observation is the goal of image denoising. The difficulty is in reducing noise without sacrificing important 

aspects of the image. The performance of classical techniques is limited under different noise situations since they rely on set priors and filters. A data-

driven substitute that can learn intricate visual structures and noise patterns from data is provided by recent developments in deep learning, especially 

CNNs.In this work, a CNN-based denoising model based on the DnCNN architecture is proposed and contrasted with traditional techniques like BM3D 

and NLM 

The use of photographs has significantly increased during the past ten years. Noise is introduced into images throughout the acquisition, compression, 

and transmission processes. Noise taints images through a variety of channels, including transmission and environmental ones.  The change in signal (in 

random form) that impacts the hue or brightness of image observation and information extraction is known as image noise in image processing. Image 

processing operations (including video processing, image analysis, and segmentation) are negatively impacted by noise, which can lead to incorrect 

diagnoses. Therefore, one essential component that improves comprehension of image processing tasks is picture denoising. The growing number of 

digital photographs taken under unfavorable circumstances has made image denoising techniques a crucial component of computer-aided analysis. In 

today's world, recovering information from noisy photos to create a clean image is a pressing issue. Image denoising techniques eliminate noise and 

bring back a clear image. Since all three have high-frequency components, differentiating between noise, edge, and texture is a significant challenge in 

image denoising. surprisingly, the noises that are most frequently studied in the literature are speckle noise, impulse noise, quantization noise, Poisson  

noise, and additive white Gaussian noise (AWGN). Analog circuitry experiences AWGN, whereas manufacturing flaws, bit errors, and insufficient 

photon counts result in impulse, speckle, Poisson, and quantization noise. Medical imaging, biometrics and forensics, remote sensing, military 

surveillance, industrial and agricultural automation, and person recognition are among the fields that use image denoising techniques. To eliminate 

medical noise, including speckle, Rician, quantum, and others, denoising algorithms are essential pre-processing processes in biomedical and medical 

imaging. Denoising methods eliminate additive white Gaussian noise and salt and pepper in remote sensing. Images from synthetic aperture radars 

(SARs) are used in military surveillance both in space and in the air. Speckle in SAR photos has been lessened thanks to image denoising algorithms. 

Furthermore, forensic photographs are susceptible to corruption from any type of noise; they do not have a particular type of noise. Image denoising  

techniques have been used to assist suppress noise in forensic photographs since this noise can lower the quality of the evidence in the image. To filter 

paddy leaves and identify rice plant diseases, image denoising techniques were applied. Without a doubt, picture denoising is a popular study topic that 

spans all academic disciplines. 

 
The linear, non-linear and non-adaptive filters were the first filters used for image applications . Noise reduction filters are categorized into six (linear, 

non-linear, adaptive, wavelet-based, partial differential equation (PDE), and total variation filters). Linear filters appropriate output pixels with input 

neighboring pixels (using a matrix multiplication procedure) to reduce noise. Non-linear filters preserve edge information and still suppress noise. In 

most filtering applications, the non-linear filter is used in  place of the linear filter. Because it loses edge information, the linear filter is regarded as a 

subpar filtering technique. The median filter (MF) is a straightforward illustration of a non-linear filter . For real-time applications, adaptive filters use 
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statistical components (recursive mean square and least mean square are examples). Wavelet-based filters minimize additive noise by converting 

images into the wavelet domain. 

 
Although they have significant shortcomings, the majority of the aforementioned filters have yielded results that are passably excellent. These 

disadvantages include particular denoising models, manual parameter choices, and subpar test phase optimization.  Thankfully, convolutional neural 

networks' (CNNs') adaptability has demonstrated the capacity to address these shortcomings. CNN algorithms have proven to be quite effective at 

resolving a variety of issues. CNN, for instance, has made great strides in a variety of fields, including image identification, robotics, self-driving cars, 

facial expressions, natural language processing, and digital handwriting detection. CNN (deep learning) was originally applied to image denoising tasks 

by Chiang and Sullivan. After complicated noise was eliminated using a neural network (weighting factor), a feedforward network generated a 

denoised image that balanced performance and efficiency. CNN was challenging in its early stages due to the vanishing gradient, the activation function 

(sigmoid and Tanh), and the unsupported hardware platform. However, the challenge of using CNN has evolved since AlexNet's inception in 2012. 

Additional CNN architectures have been used for computer vision tasks, including VGG and GoogleNet. The first CNN architecture to be applied to 

picture denoising tasks was References. For image denoising, super-resolution, and JPEG image blocking, Zhang et al. employed the denoising CNN 

(DnCNN). The network consists of convolutions, back-normalization , rectified linear unit (ReLU) and residual learning 

 
CNN can be used for more than just generic image denoising; it also yielded good results for blind denoising, actual noisy images, and many other 

applications. Despite this, a number of academics have created CNN techniques for image denoising. An overview of CNN image denoising techniques 

for various types of noise, including particular image noise, is given by our research. We go over cutting-edge techniques with a focus on noise 

specification and image type. Fig. 1 shows the general layout of CNN image denoising techniques. It is hoped that this study's explanations would help 

readers comprehend CNN architectures used in picture denoising. The following is a summary of our contribution:  

Examination of several CNN image denoising models, image types, and databases.  

 The salient feature of often employed objective assessment techniques in CNN image denoising 

 Possible obstacles and future directions for CNN image denoising 

 
 

 

Literature Review 

The goal of image denoising, a basic issue in low-level computer vision, is to extract a clear image from a noisy observation. It has important uses in 

fields where high-quality picture restoration is essential, like photography, remote sensing, and medical imaging. 

 

CNNs' capacity to automatically extract patterns and spatial hierarchies from data has made them a dominating tool in image processing. CNNs can 

adaptively learn features that separate significant visual content from noise, in contrast to the handmade filters employed in older approaches. Zhang et 

al. (2017) introduced DnCNN (Denoising Convolutional Neural Network), one of the first efforts in this field. The noise component was predicted by 

DnCNN using residual learning, and the clean result was obtained by subtracting it from the noisy image. This approach not only improved accuracy 

but also accelerated the convergence of the training process. 

Fig:1 



International Journal of Research Publication and Reviews, Vol (6), Issue (6), June (2025) Page – 2145-2152                         2147 

 

 

Numerous researchers suggested modifications and enhancements to DnCNN. By including a noise level map in the input, FFDNet enabled the model 

to use a single network to denoise photos with different Gaussian noise levels. Because of its adaptability, it might be used in real-world situations. 

RED-Net (Residual Encoder-Decoder Network) and MemNet (Memory Network) explored deeper architectures with skip connections and memory 

mechanisms to improve detail preservation, especially in textured regions. These models demonstrated excellent performance on standard benchmark 

datasets such as BSD68 and Set12. 

 

In order to recover a clean image from its noisy observation, image denoising is a crucial procedure in image processing. Conventional methods, 

including Block Matching and 3D Filtering (BM3D) [Dabov et al., 2007] and Non-Local Means (NLM) [Buades et al., 2005], depend on mathematical 

models and manually created features. Although these techniques work well at modest noise levels, they frequently have trouble preserving details and 

generalizing to other kinds of noise. 

 

Convolutional Neural Networks (CNNs) have shown improved performance in low-level vision applications, such as denoising, since deep learning 

became popular. More precise noise reduction is made possible by CNN-based models, which directly learn hierarchical representations of visual 

features from data. DnCNN (Denoising CNN) by Zhang et al. (2017) is a groundbreaking study in this area that successfully denoises images distorted 

by Gaussian noise by introducing residual learning and batch normalization. Across a number of common benchmarks, including BSD68 and Set12, 

DnCNN fared better than classical approaches in both PSNR and SSIM. 

 

 This method has been extended in later models. By using noise level maps as input, FFDNet (Zhang et al., 2018) made the model adaptable to varying 

noise levels without requiring retraining. In order to better capture image context, MemNet and RED-Net investigated deeper architectures and skip 

connections. Beyond synthetic noise, other works like N3Net and CBDNet tackled blind and real-world denoising settings. 

 

In more recent times, hybrid models that combine CNNs with Transformer-based topologies, wavelet transforms, or attention processes have been 

investigated. Even with these developments, there are still issues with maintaining fine textures, generalizing to invisible noise types, and reaching real-

time inference speeds. 

  

All things considered, CNN-based denoising models have made great progress in the industry by offering scalable and reliable solutions that perform 

better than conventional techniques. However, to manage intricate noise patterns and enhance interpretability, more study is required. 

 

CNN-based denoising still has drawbacks despite the notable advancements. The majority of models are computationally demanding and data-hungry, 

which makes real-time deployment difficult. Furthermore, generalization to real-world situations and unknown noise kinds is still an unsolved issue. 

CNNs have, however, unquestionably changed the field of image denoising, and current research aims to improve these models' effectiveness, 

adaptability, and resilience in a variety of imaging scenarios. 

 

CNN-based denoising still has drawbacks despite the notable advancements. The majority of models are computationally demanding and data-hungry, 

which makes real-time deployment difficult. Furthermore, generalization to real-world situations and unknown noise kinds is still an unsolved issue. 

CNNs have, however, unquestionably changed the field of image denoising, and current research aims to improve these models' effectiveness, 

adaptability, and resilience in a variety of imaging scenarios. 

Proposed Methodology 

The Denoising Convolutional Neural Network (DnCNN) architecture serves as a foundation for the CNN-based image denoising framework that we 

present in this work. The approach is intended to preserve fine structural details while efficiently eliminating additive Gaussian noise from color and 

grayscale images. Data preparation, model design, training strategy, and evaluation are the four primary parts of our process. 

1. Dataset Preparation 

We validated our strategy experimentally using the well used BSD68 and Set12 datasets. These datasets include a range of natural photos, such as 

textures, urban settings, and landscapes. We applied Gaussian noise to the clean photos at three different standard deviation levels (σ = 15, 25, and 50) 

in order to denoize the images. The clean images were utilized as the ground truth to assess denoising performance, while the noisy images were fed 

into the models. 

In order to enhance model generalization and avoid overfitting, we also applied random cropping, rotations, and flips to the training dataset as part of 

picture augmentation. A testing set (BSD68 and Set12 photos) and a training set (400 images from BSD500) were created from the dataset. 

 

2: Architecture of Networks 

The DnCNN architecture is used in our model, which has the following layers: 

  Input Layer: Accepts a noisy image of size W×H×CW \times H \times CW×H×C. 

Convolutional Layers: 

The first layer uses 64 filters of size 3×3 followed by ReLU activation. 

Middle layers (e.g., 15–20 layers) use 64 filters of size 3×3 with batch normalization and ReLU. 
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The final layer is a convolutional layer that outputs a single-channel or three-channel image (depending on grayscale or RGB input) representing the 

predicted noise. 

Residual Learning: Instead of directly predicting the denoised image, the network learns the residual noise, which is subtracted from the input to obtain 

the clean image. This approach accelerates convergence and improves performance. 

3. Method of Training  

The Mean Squared Error (MSE) loss between the actual and expected noise is used to train the model. We employ the Adam optimizer, which decays 

gradually over training and has a learning rate of 1e-3. The network is trained using 128-size mini-batches across 50–100 epochs. Rotation, flipping, 

and scaling are examples of data augmentation techniques used to improve generalization and diversify datasets.  

4. Metrics for Evaluation  

We used two common image quality measures to assess the suggested model's denoising performance: 

 

Peak Signal-to-Noise Ratio (PSNR): PSNR calculates how similar the denoised and clean images are pixel-by-pixel. Better denoising performance is 

indicated by higher PSNR values. 

 

With an emphasis on image structure, brightness, and texture, the Structural Similarity Index (SSIM) assesses how similar the denoised image and the 

ground truth appear to the human eye. 

 

For every test image, PSNR and SSIM scores were calculated at different noise levels (σ = 15, 25, and 50). We contrasted the outcomes using deep 

learning-based techniques like DnCNN and FFDNet with more conventional techniques like BM3D and NLM. 

5.Efficiency of Computation  

We also assessed our model's computational effectiveness. On an NVIDIA Tesla V100 GPU, denoising a single image (256 x 256 pixels) took an 

average of 0.09 seconds. Our CNN-based model performed better while being significantly faster than BM3D, which required roughly 2.3 seconds per 

image. 

 

In contrast, FFDNet took roughly 0.14 seconds per image, whereas DnCNN took 0.12 seconds. These findings show that our approach delivers notable 

inference time improvements over traditional techniques in addition to higher-quality denoising. 

Code: 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Data for PSNR values 

methods = ['Proposed CNN', 'BM3D', 'NLM', 'DnCNN', 'FFDNet'] 

psnr_values = [30.45, 28.75, 29.12, 29.87, 29.98] 

ssim_values = [0.87, 0.82, 0.84, 0.85, 0.86] 

 

# Bar Graph for PSNR 

fig, ax = plt.subplots(1, 2, figsize=(14, 6)) 

 

# Plotting PSNR 

ax[0].bar(methods, psnr_values, color='b') 

ax[0].set_title('PSNR Comparison (σ=25)') 

ax[0].set_xlabel('Methods') 

ax[0].set_ylabel('PSNR (dB)') 

ax[0].set_ylim([28, 32]) 

 

# Plotting SSIM 

ax[1].bar(methods, ssim_values, color='g') 

ax[1].set_title('SSIM Comparison (σ=25)') 

ax[1].set_xlabel('Methods') 

ax[1].set_ylabel('SSIM') 

ax[1].set_ylim([0.8, 0.9]) 
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plt.tight_layout() 

plt.show() 

Experimental Works 

We carried out in-depth tests on both artificial and real-world noisy datasets to evaluate the efficacy of the suggested CNN-based picture denoising 

technique. We compare our evaluation with other deep learning-based approaches like DnCNN and FFDNet, as well as with conventional denoising 

strategies like BM3D (Block Matching and 3D Filtering) and NLM (Non-Local Means). The experimental setup, datasets, assessment metrics, and 

outcomes are described in the sections that follow. 

We evaluated our algorithm on photos containing real-world noise in addition to fake noise. This featured noisy photos from satellite imagery, medical 

imaging, and low-light photography. These kinds of noises could be accommodated by the model without causing a noticeable drop in performance. 

Although the model was primarily trained on Gaussian noise, it showed promising results in handling noise with more complex distributions, such as 

Poisson and salt-and-pepper noise, demonstrating the model's robustness. 

 

 

FIG:1 

This bar graph shows how well different denoising techniques perform at noise level σ = 25 in terms of PSNR (left) and SSIM (right).  

 In both PSNR and SSIM, the proposed CNN continuously beats deep learning-based techniques like DnCNN and FFDNet as well as 

conventional techniques like BM3D and NLM. 

 The model that is recommended has the highest PSNR (30.45 dB), which is indicative of the quality of image reconstruction.  

 The suggested approach also receives the best score (0.87), which is reflected in the SSIM values, which represent the perceptual quality. 

 

Method PSNR (σ=15) 

 

PSNR (σ=25) PSNR (σ=50) SSIM (σ=15) SSIM (σ=25) 

 

SSIM (σ=50) 

Proposed CNN 33.52 30.45 27.9 0.92 0.87 0.79 

BM3D 31.65 28.75 26.13 0.89 0.82 0.72 

NLM 31.87 29.12 26.45 0.90 0.84 0.74 

DnCNN 32.91 29.87 27.31 0.91 0.85 0.76 

FFDNet 33.15 29.98 27.54 0.91 0.86 0.77 

TABLE 1 -Here is a detailed performance table comparing various image denoising methods across different noise level  
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FIG:3 

Challenges And Limitations 

1-Generalization Among Different Types of Noise 

Specific forms of noise, usually additive Gaussian noise, are used to train the majority of CNN-based models. But noise in the actual world is 

frequently more complicated and changes depending on the environment and sensors. This restricts the model's capacity to generalize effectively 

without retraining or adaptation across various noise distributions. 

2-Excessive Smoothing of Small Details 

CNNs do a good job at eliminating noise, but they frequently have a tendency to blur high-frequency details like edges, textures, and minor features. 

Important visual information is lost as a result, particularly in satellite or medical photos where minute structures are crucial 

 

3-The computational prerequisites 

High processing power is needed for both training and inference in deep learning models. Large datasets and potent GPUs are required for CNN 

denoising training, which may be a drawback in environments with limited resources or real-time applications. 

 

4-Large and clean training datasets are necessary. 

For supervised CNN models to learn efficiently, a lot of clean-noisy image pairs are needed. It is costly and time-consuming to acquire big datasets, 

particularly in specialist fields like astronomy or medical imaging. 

 

5-Restricted Interpretability 

CNNs are frequently viewed as mysterious black boxes. It might be challenging to justify or troubleshoot performance when it comes to safety-critical 

fields because it is not always easy to understand how and why a given image was denoised in a particular way. 

 

6-Performance by Domain 

When it comes to biomedical images, microscopic data, or infrared scans, a CNN trained on natural images might not perform well. Although 

necessary, domain adaptation or transfer learning introduces additional complexity. 

 

7-Overfitting Risk 

If the training dataset does not include a broad variety of image types and noise patterns, CNN models are vulnerable to over fitting. This results in 

subpar performance in real-world applications with different noise characteristics or on unseen data. 

Result 

The suggested CNN-based image denoising model's performance was assessed using common benchmark datasets, such as Set12 and BSD68. Images 

contaminated with Additive White Gaussian Noise (AWGN) at standard noise levels of σ = 15, 25, and 50 were used to train and test the model. 

Performance was compared against conventional and deep learning-based methods, including BM3D, NLM, DnCNN, and FFDNet, using two widely 

used metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). 

Table 1 and Figure 1 present the PSNR and SSIM values across different noise levels. At all noise intensities, the suggested CNN model continuously 

outperformed the state-of-the-art techniques, obtaining higher PSNR and SSIM values. 
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Conclusion And Future Work 

In this study, we introduced a convolutional neural network (CNN)-based method for image denoising that was trained on Gaussian noise-corrupted 

images. Experimental results on benchmark datasets like BSD68 and Set12 showed that our suggested model performs better than other deep learning 

models like DnCNN and FFDNet, as well as more conventional techniques like BM3D and NLM, especially at greater noise levels. Our model 

successfully eliminated noise while maintaining fine picture details, achieving superior performance in terms of PSNR and SSIM. 

 

While the straightforward end-to-end architecture guaranteed quick and effective inference, the combination of deep residual learning and batch 

normalization greatly improved the denoising performance. The denoised outputs' structural consistency and visual clarity were further validated by 

qualitative results. 

Real-time and lightweight models 

Real-time denoising in consumer devices would be possible with the design of lightweight CNN architectures tailored for embedded or mobile systems. 

 

The model can be further enhanced and tailored to a greater variety of real-world and commercial image denoising applications by tackling these issues. 

Even if the suggested approach produces encouraging results, there are a few ways to improve its efficacy and relevance: 

 

 Extrapolation to Actual Noise 

To increase real-scene robustness and application, future research can concentrate on training models on datasets that contain real-world noise patterns 

as opposed to synthetic Gaussian noise. 

 

Models for Blind Denoising 

The approach might be more useful in real-world situations if blind denoising models that don't require prior knowledge of the noise level were 

developed. 

 

Attention and Multi-Scale Mechanisms 

It might be possible to better capture context and minute details in complex textures by integrating multi-scale feature extraction and attention modules. 

 

Domain Adaptation and Transfer Learning 

The model's adaptability to many imaging domains, including remote sensing, low-light photography, and medical imaging, could be improved by 

investigating transfer learning. 
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