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ABSTRACT 

To develop a set of 16 dynamic gestures for real-time gesture identification, a custom dataset was created using convolutional neural networks and motion history 

images. At the same time, verbal input from human operators is processed by an improved open-source voice recognizer. A multi-threaded system design enables 

the simultaneous operation of gesture and speech recognition, sensor fusion, robot control, and user interface. The experimental evidence supports that multimodal 

communication increases usability, trust, and understandability, but we cannot ignore the potential negative implications, like overconfidence and distraction. A 

comprehensive review of the latest multi-modal fusion techniques for physical HRC (pHRI) indicates that accurate and real-time spatiotemporal data fusion across 

different sensory modalities is critical.  This research highlights the importance of using multi-modal interaction to develop safe, usable, and efficient collaborative 

robotic systems in industry.  

Keywords: Human–Robot Collaboration(HRC), Multi-Modal Interaction, Gesture and Speech Recognition, Physical Human–Robot Interaction (pHRI), 

Sensor Fusion Techniques 

Introduction 

Rapid developments in industrial automation and artificial intelligence have made human–robot collaboration (HRC) with improved interaction a major 

and expanding area of current research.. We present human-robot collaboration (HRC) design and development of a real-time, multi-modal HRC version 

that provides speech and gesture-based interaction. A dataset of the gestures has been created and openly shared. For gesture recognition, a convolutional 

neural network (CNN) was developed, making use of motion history images combined with advanced deep learning, and allowing real-time operation. 

An enhanced open-source speech recognition engine is also used to process human operator gestures and verbal commands.[1] 

The proposed system includes an innovative integration method that combines gesture and speech input with a custom-designed software interface that 

supports visualization and user interaction. The system architecture includes multi-threading to facilitate simultaneous data acquisition, gesture and speech 

acquisition, data processing, input fusion, robot control, and user interface updates. This fully integrated system demonstrates the efficacy and feasibility 

of the proposed approaches, with experimental validation of the methods. 

Industrial collaborative robots, often called "cobots," are designed to work with people within shared workspaces.[2] Human collaborators typically apply 

social behaviors learned while collaborating with other humans (e.g., applying speech, gestures, facial expressions, and gaze) when interacting with non-

human agents (robots). Allowing cobots to reciprocate social behaviors with similar social signals will also facilitate intuitive and more efficient 

collaboration. Cobots can signal information via three fundamental modalities: visual, acoustic, and mechanical forms of communication. Visual channels 

may involve lights, text, and expressive gestures as forms of feedback. Acoustic signals (e.g., speech or audio cues) can potentially complement visual 

communications but are poorly suited to portraying social signals in noisy industrial environments.[19] Mechanical communication, such as providing 

haptic information, is available, but it requires specialized hardware. Any social signals from visual, acoustic, or mechanical channels must be easily 

detectable by human operators without extensive specialized training. Previous research on multi-modal signals in HRC has defined social cues for 

collaborative robots by concentrating on visual modalities and varying degrees of anthropomorphism.[3] Robots have been working on repetitive and 

high-load motions for a long time in manufacturing, thus providing them with access to inexpensive, user-friendly automation, and contributing to small 

and medium-sized business growth. Cobots have entered increasingly unstructured and dynamic environments, and the necessity of intelligent real-time 

collaboration is growing. HRC permits humans and robots to leverage their unique abilities (robot accuracy and endurance versus human flexibility, 

situational awareness, and cognitive skills), which augments productivity, flexibility, and overall efficiency. 

 However, effective collaboration necessitates that cobots operate in safe and intuitive ways in shared spaces. It requires a higher perceptual understanding 

for example knowing objects or human actions, and most of the papers and reviews focus on wearable robotics, generic HRC processes, or even systems 

based on just one modality such as solely vision or use of tactile, but little consideration has been given to the way systems can utilize information from 

multiple modalities in HRC.[4],[5] 

http://www.ijrpr.com/
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Objective 

The main goal of this research is to develop and implement a real-time, multi-modality human–robot collaboration (HRC) system that combines dynamic 

gesture recognition with speech recognition, to enable real-time communication and collaboration between humans and collaborative robots (cobots) in 

industrial contexts.[1] To achieve seamless gesture recognition, we created a set of 16 dynamic hand gestures and a new dataset. The gesture recognition 

uses Convolutional Neural Networks (CNNs) and motion history images to create a real-time, robust gesture recognition system, while an improved, 

open-source speech recognition engine is used to interpret verbal commands. 

The use of multi-threading functionality available in the system is a distinctive aspect of this research plan, having gesture recognition, speech recognition, 

sensor data fusion, robotic actions and the GUI all simultaneously running, lends itself to much more natural interaction, effective workflows, and allows 

us to bypass some limitations associated with unimodal systems.[3] Furthermore, the research has outlined the necessity for multi-modal fusion methods 

for even greater impacts to safety, usability, and user trust in the often high-stakes and dynamic industrial settings. The performance of the system was 

verified in lab tests that demonstrated that verbal and visual modalities will rapidly improve the adaptability and reactivity of cobots. In conclusion, this 

work was a step towards the evolution of collaborative robotic systems that are safe, intelligent, and user-friendly. 

Problem Statements:- 

1. Human-robot communication (HRC) systems do not allow real-time integration of gesture and speech to facilitate effective information 

transfer. 

2. Any single-sensor (single-modality) system cannot provide an accurate and reliable perception of the perceived actions in physical human-

robot interactions. 

3. Low-anthropomorphic industrial robots cannot properly express social cues and thus limit the understanding of humans.[2] 

4. In physical human-robot interactions, multi-modal fusion methods are inconsistent and not standard across applications.[3] 

5. Speech recognition systems do not work in a noisy industrial environment.[6] 

6. There is no reliable mechanism to incorporate data from different types of sensors within HRC systems. 

Literature Review 

Human-Robot Collaboration (HRC) has become an important research area in robotics, mainly due to advancing the cognitive flexibility and variability 

offered by humans with the reproducible precision and productivity afforded by robotic systems. This approach, to human-robot learning and training, in 

industrial and service settings, is increasingly being applied in multi-modal communication systems, aspiring to achieve similar communication richness 

to human-human communication. Multi-model HRC systems combine all different modes of interaction in the form of gesture, speech, vision, audio, 

tactile, and physiological signals, to support human-robot interaction that is natural, organized, and responsive in real-time. New academic work provided 

by [1] explores complementary perspectives associated with the design, use, and future of multimodal human-robot collaboration systems. Each piece, 

while differing operationally, explored interrelated concepts of collaborative robots, ranging from real-time communication systems, social modeling and 

interaction, and sensor fusion approaches. 

The development of a real-time, multi-modal communication system for industrial HRC, allowing for relative gesture and speech recognition to promote 

natural and effective human–robot interaction.[1] The developed system consists of 16 dynamically designed gestures inputted visually, recognized via 

a convolutional neural network (CNN), and received in conjunction with natural speech commands that are operated through a modified open-source 

speech recognizer. A particularly new aspect of the study is adopting motion history images (MHI) from some gesture sequences to extract spatio-

temporal features, which improved its accuracy on real-time recognition of the gesture. The way they're able to integrate gesture recognition, speech 

processing, robot control, and interface visualization, even while being a multi-threaded paradigm (running concurrently), was a notable feature for 

painting a picture as to how the mitigation of various latency challenges is possible. The systemic characteristic of avoiding wearable sensors and tapping 

into just visual and auditory modalities on the operator in the HRC system encourages natural movements without encumbering mobility or comfort in 

dynamic environments. This research tackled key dynamics and challenges to using poor speech recognition systems in industrial settings with ambient 

noise, lighting, and complexity of dynamic sequences, moving toward improved opportunities for incorporating intuitive command systems. 

By comparison,[2]focus on the socio-cognitive aspect of HRC and the multi-modal social cues: head-like gestures, light displays, and audio cues—to 

determine how multi-modal social cues can improve communication from robot to human and how combinations of social cues influence human 

perception, trust, enjoyment, and understanding of a given task, studying both light display and/or sounds along with visual displays of low to high 

anthropomorphic robots. Two experimental studies revealed that multi-modal social cues improved users' perceptions of the robot as being more friendly 

and indicated an intention to collaborate when visual gestures are paired with either sound or light. The study indicates that social cues are non-trivial, 

contribute toward establishing a mutual understanding of purpose in human–robot teams, although having excessive anthropomorphism can create a 

condition of excessive trust, when users assign unreasonable levels of intelligence or reliable behavior to a robot, that can put a potentially user in harms 

way in terms of safety or in certain contexts, e.g. Aviation. Thus, designers of socially interactive robots are challenged to strike a balance between social 

expressiveness and user awareness. 
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Provide a comprehensive systematic review of the applications of multi-modal fusion techniques in physical HRC (pHRI). pHRI is defined as ‘Where a 

human and a robot work collaboratively in the same physical space’, and bi-modal fusion typically refers to using multiple sensory modalities, such as 

visual, EMG, EEG, proprioception (force/torque), tactile sensors, or Inertial Measurement Units (IMUs). For their review, categorize sensor data as either 

feedforward communications or feedback communications.[3] They highlight differences in how these differ from intent recognition, motion prediction, 

environmental awareness, and interaction with safe contact. Traditional means of multi-modal fusion, such as Kalman filtering, Bayesian inference, rule-

based systems, etc., are compared to newer models for multi-modal data fusion with base-case computational learning, such as deep neural networks, 

probabilistic graphical models, etc. The authors also emphasize the need for spatiotemporal modeling concerning pHRI, where a robot has to disentangle 

a stream of continuously variable signals to infer the intent of a human participant and change their behavior, while remaining in safe contact. They 

believe that learning-based fusion may be more adaptive to dynamic environments and across differences in users, but are also aware that fusional learning 

models are likely to have greater computational requirements, sensor correlations, and challenges associated with the interpretability of users’ decisions 

or thinking processes. 

As a collective, these three studies provide an overall perspective for multi-modal HRC. Together, [1] provides evidence of the operational viability of 

gesture and speech for real-time control in HRC via the combination of the advancements in multi-modal human robot interaction (HRI), and in particular, 

multi-threaded capabilities to ensure responsiveness and usability. Cao et al. focused on the human emotional/psychological dimensions of interaction. 

They found that the use of multi-modal social cues increased user engagement and perceptions of robot intelligence, but that when designing multi-modal 

cues, careful consideration should be given to possible overdependence or false attribution. Lastly, [3] offers a broad framework of sensor fusion and 

signal integration, clearly delineating the constituents of HRC that are necessary for effective interaction in a physical context.  

Even with such advancements, there are still potential issues to resolve. Real-time multimodal systems need to pay particular attention to the amount of 

computational infrastructure they require so that there are no consequences for scalability or responsiveness in crowds and high-demand contexts. Models 

driven by deep learning may be powerful, but can be brittle when they encounter occlusions, sensor noise, or unfamiliar contexts. In addition, gesture and 

speech vocabularies can fail to transfer across cultures, industries, or tasks in which significant retraining or adaptation will be required. Ultimately, 

considerations of human social cues in robotic behavior must also be balanced with what the impact of this may be psychologically, where facilitating 

likability or anthropomorphism does not decrease the user's situational awareness or safety. 

Methodology 

Design of Dynamic Gestures 

Dynamic gestures are made through coordinated movements encompassing both the upper arm and forearm, with no movement of the fingers. Dynamic 

gestures, unlike static gestures, make use of additional temporal characteristics (e.g., motion trajectory, orientation, and speed), which implies that 

dynamic gestures have much greater variability and richer information than static gestures [1].In human-robot collaboration (HRC) systems, effectively 

designing gestures must adhere to three fundamental principles: simplicity, social correctness, and minimal cognitive affordance on the user. Based on 

the classification outlined, we identify four gestures: 

1. Iconic gestures explicitly represent an action or the physical presence of an object, 

2. Metaphoric gestures represent an abstract idea, 

3. Deictic gestures, normally involving a hand or limb that physically points towards an object, and 

4. Beats, which are hand movements focused on rhythmically supporting speech that has no semantic [25] relevance. 

 

Given the nature of dynamic gestures about clarity and semantic value, we produced 16 dynamic gestures in both iconic and deictic form for use in HRC 

system development (see Fig. 2). The gestures were delineated into two different functional groups: calibration and operation. The calibration gestures 

(Gestures 1 - 4) assist the robot to commence standard robot behaviours: clockwise (CW) or counterclockwise (CCW). 

Start: Starts kinematic calibration - finding a set of initial values in the robot’s motion structure and executing the position for task execution. 

Stop: Stops all robot motion and maintains the current pose. 

Go Home: Puts the robot back in its default position, or home position (for example, full arm extension in the upright position). 

Disengage: Used when the robot hits its motion limits, this gesture allows the robot to move and retract safely back into (only) a functional workspace. 

The remaining operation gestures (Gestures 5-16) control specific robot actions (e.g., directing the end-effector movement, speed, gripping and 

opening/closing the gripper, rotating the end-effector CW and CCW). 
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Speech Recognition 

To make the proposed human–robot collaboration (HRC) system more resistant to disruption and more flexible, we combine speech input from the human 

operator and real-time gesture recognition to enhance the overall accuracy of command interpretation. In addition to using log-Mel filterbanks to generate 

low-dimensional representations of log-spectral magnitude vectors, the system makes use of the Google open-source voice recognition software, which 

supports over 120 languages. This preprocessing step significantly increases overall speech recognition accuracy, especially for deep neural networks 

that have a larger number of parameters. 

 

To test the recogniser in an industrial context, we ran speech recognition experiments under ten different background noise conditions. The danger 

condition samples are shown in Figure 10 and were acquired from freely accessible public information sources on the internet. All noise conditions were 
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recorded at around 60 to 70 decibels (dB) or similar to a functioning manufacturing facility. Any noise sources above this level (>70 dB) were not included 

because typical human speech occurs at around 60 dB, and the loud noise from the environment would likely drown out the spoken command. 

In Figure 3, we present speech command waveforms collected in an isolated and quiet condition. Figure 12 presents cases for (1) the "Start" command 

without background noise; (2) only drilling noise in empty air; and (3) the "Start" command and drilling noise. 

A spectral subtraction method is used to minimize the degradation of speech recognition performance due to ambient noise. The spectral subtraction 

method measures the spectrum of noise and speech signal, then takes the noise spectrum away from the speech, converting the speech into a clearer 

representation. The first 0.5 seconds of each audio recording, which describes only background noise, is used for noise modeling and to create a noise 

profile, while the remainder is actual speech. This lead time allows for the collection of ambient noise before processing the gestures and speech inputs 

from the user. 

 

Fig.3 Waveform samples of the 16 commands 

The audio dataset consists of 16 different speech commands and recordings made by two native English speakers (one male and one female) in ten 

separate noise conditions, leading to around 1,600 audio recordings. The accuracy of speech recognition models, for a given command class (C), is 

defined as the number of times the command class was recognized divided by the total number of samples in that command class. Figure 4 indicates that 

the majority of command sounds had recognition accuracy of more than 90%. On the other hand, two commands had notably lower recognition accuracies, 

which were 'speed up' and 'inward'. The "speed up" command had an accuracy of around 75%, and "inward" had an accuracy below 15%.  

 

Fig. 4: Performance (%) of the speech recognizer on our speech data set 

Table 1 shows the recognition transcripts for the two commands that had low recognition accuracy. During the speech recognition process, the Google 

open-source speech recognizer runs through multiple candidate transcripts for each input. Each candidate transcript has a confidence score associated 

with it (0 - 100%). The final output transcript is the one with the highest confidence. For example, for the first sample of the "inward command", the 

possible transcripts were "uworld", "in word", "inward", "keyword", and "in world". The final transcript selected was "uworld" because it had the highest 

level of confidence available at 69.70%. 
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 Note: The recognizer outputs the transcription with the highest confidence, and the lowercase/capitalization does not affect the recognition result. 

We treat the transcripts in Table 1 as the correct recognitions for the speech database. We use the correct recognition approach since the available 

command phrases are very distinct and not likely to be confused with one another in the factory floor HRC cases. We then achieved a real-time keyword 

extraction technique during recognition for the 16 speech commands. Specifically, the system could filter necessary keywords from short spoken 

phrases—for example, reducing "speed up the process" to the "speedup" keyword, or recognizing "go inward" as the "inward" keyword. Experimental 

results are presented in Section 5 and show that this method offered a gain since the accuracy of both the "inward" and "speed up" commands was 

increased to over 90%. 

System Integration:- 

 Integration of Gesture and Speech Recognition Results:- 

The strategy of integrating the system is to combine gestures and speech recognition outputs to produce dependable command interpretation in a natural 

human-robot collaborative environment. The system uses a confidence score between 0% and 100% to compute a recognition score and confirm the 

recognition outcome, with 0% being that what was identified was not the command intended through the gesture or speech, and 100% being confident 

that what was identified is a correct gesture or speech command. The system will accept a command using either or both outputs (gestures and speech) 

only if the confidence scores indicate a signal of 90% or above. If the confidence score from either or both outputs produces a result scoring below 90%, 

the results will be invalidated, the system will sound a beep for the user, and the system will start awaiting input for a suitable command - in this way, 

false positives and false negatives can be decreased[1].  

The integration logic is intended to be able to accommodate the scenarios described in Algorithm 2. First of all, the program checks the ambient noise 

level to determine if it is appropriate to consider speech commands; if the noise level is above 70 dB, the system will not utilize any speech commands. 

Second, the system processes gesture and speech outputs as well as the accompanying recognition confidence assessments. The program handles 5 

possible integration cases: 

1. When both gesture and speech results are the same and valid (i.e., one of the 16 command labels), the output will be the same command label. 

2. When gesture and speech results are different but are both valid, then the output will be determined based on the confidence values by taking 

the command with the highest confidence value. 

3. When only a gesture result is valid, then the gesture will be output as the final command. 

4.  If the speech command is valid but the gesture is invalid, then the speech outcome is selected.  

5. Both gesture and speech inputs provided by a user are invalid, and "invalid" will be displayed, informing that the system is waiting and to 

provide more input. The system remains active, collecting speech and gesture data continuously, only waiting to be activated until an input is 

considered valid. Where background noise exceeds 70dB, the system does not use speech input due to the level of chance misinterpretations, 

and only utilizes gesture identification. In this case, there are two more cases to be assessed.  

6. It is where the gesture is valid and is accepted as the final command. 

7.  The gesture is also invalid; no command is issued to the robot, and the system will remain on standby, continuously collecting new observation 

events and information until a valid input is detected. 

Multi-Threading Architecture of the HR system:- 

The HRC system is built on a multi-threading configuration to allow multitasking, necessary for high-speed performance with real-time responsiveness. 

The next two paragraphs describe the seven operational threads in detail. Figure 5 shows the high-level organization of the thread design for operational 

tasking and the management of the dedicated threads. The system initializes and organizes seven operational threads: user interface thread, gesture 
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capture/thread, speech capture/thread, gesture recognition thread, speech recognition thread, command/feedback result integration thread, and executable 

robot actuators thread. By separating these operations into different threads, they can be performed in parallel, which is crucial when executing and 

communicating between humans.[1] 

 

Fig.14 Multi-threading model of the proposed real-time HRC system with an example 

Robot in adjusted timing activities with low latency. For optimal system performance, all threads are designed to run continuously in a collaborative 

multi-threading environment with the goal of meeting or exceeding time constraints imposed by the adaptive real-time collaborative environments with 

robots and humans working together. 

To guarantee smooth and continuous real-time operation, the real-time capabilities and functions in the system are isolated from other processes and 

assigned to independent concurrent threads. They are autonomous threads that receive and send information from and to queues (to simplify 

implementation, the queues are linear queues shown in Fig. 5), which will simply store the data in a FIFO-first-in, first-out process. 

The system is implemented using the Python language, developed in the PyCharm environment. The performance hardware used for implementation is 

a 24-core CPU, a dual Nvidia GeForce GTX 1080 Ti Graphics Processing Units (GPU), and 64 GB of RAM. The gesture recognition model processes 

one Motion History Image at an average of 0.026 seconds per MHI, which essentially processes at 30 fps (0.0333 seconds per frame) and thus supports 

real-time gesture processing. The speech commands are recognized using the Google Speech Recognition API at an average of 0.218 seconds for speech 

commands that average three seconds in duration, which is within the threshold for real-time. Therefore, the CNN-based gesture recognition and speech 

recognition modules effectively support real-time performance without delay. 

Thread 1 is running continuously while the system is running to manage the user interface. Threads 2 and 3 read the gesture and speech inputs from the 

RGB camera and microphone, respectively. The input devices are automatically shut off at the end of each data collection cycle, then turned back on 

when Threads 6 and 7 have completed processing. The data collection window (known as "execution time") is fixed at 2.5 seconds based on the maximum 

time needed for a user to complete a gesture or speech command from the collected dataset. During this time window, the camera and microphone, 

recording gesture and speech input respectively, store input data into separate gesture and speech data queues.  

 

Fig.5  Multi-threading model of the proposed real-time HRC system with an example 

The MHI is rendered in real time on the interface, and the microphone is turned on 0.5 seconds earlier than the camera to allow the ambient noise to be 

collected to denoise speech inputs. 

The study 

Threads 4 and 5 handle recognition, processing MHIs, and speech inputs as they are dequeued. The recognition results are labeled and displayed on the 

interface, as well as stored in separate label queues. Thread 6 takes the labeled results and fuses the gesture and speech outputs into a single command 

and stores that final decision in the result queue. Finally, Thread 7 continuously reads from the result queue to communicate the interpreted result. 

To the best of our knowledge, prior work with industrial robot arms does not fully investigate the interactions between head-like gestures and combinations 

of integrated light and sound. In the study, we are considering the gap of examining the effects of multi-modal social cue behaviors in a robotic arm that 

produces three communication modalities together: head gestures (gaze cues, nodding, and head shaking) with an improvisational "breather," visual 

feedback with LED lights, and auditory feedback with an informative sound cue. Rather than looking at these modalities separately, we will compare a 

condition where all three modalities are enabled (i.e., full condition), to other conditions where either the light/or sound is not enabled. This way of 

comparing a multi-modal level condition to another condition assumes these modalities have possible coupling effects, looking at the head-like gestures, 

building off the findings of Tatarian et al. (2021). All conditions will be considered to have the same contextual information if everything is enabled. 

Based on this design, the following hypotheses were formulated. 

Hypothesis 1 (H1): Expressing multi-modal social cues can influence people’s perception of industrial robot arms.[20] 

Prior work has demonstrated that expressing head gestures can influence people’s perception of industrial robot arms using five scales of the God Speed 

questionnaire, except perceived safety.[20] The study demonstrates that a higher rating in Anthropomorphism can offer a lower rating in perceived safety. 

The exploratory study suggests that light and sound modalities can affect making people feel more comfortable with robot motion. Additionally, alarm 

lights and sounds have been used to raise concerns about safety in industry, and especially human-robot collaboration in industrial setups. Hence, we 

hypothesize that the use of combining head gestures, light, and sound modalities will influence the ratings of all five scales of people’s perceptions of the 

robots. 

H2 (Hypothesis 2)  

The display of multi-modal social cues can positively influence users’ perceived enjoyment, perceived usefulness, and intention to use industrial robotic 

arms. For example, robot head gestures have been shown to positively influence perceived enjoyment, perceived usefulness, and intention to use within 

high and low anthropomorphic robot contexts in some studies.[46],[54] We forecast, exploratory study, that the positive influence of head gestures, given 

light and sound multimodal. Social cues will persist in perceived enjoyment, perceived usefulness, and intention to use. 
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Hypothesis 3 (H3):  

The addition of light and sound will further enhance the legibility of social cues provided through head gestures. 

The combination of visual (e.g., light) and auditory (e.g., sound) cues provides additional layers of information that can better the understanding of 

humans about the behavior of robots, increasing the effect of human-robot interactions. Using prior studies as a basis, we hypothesize that the social cues 

(e.g., head gestures) will be easier to recognize and interpret with both light and sound, compared to head gestures alone. Furthermore, we examine if the 

combination of both modalities produces better understood results than either modality (light or sound) alone. [21] 

 

To test our hypotheses, we completed two user studies online. In both studies, users watched videos of a human collaborating with a Franka Emika robot 

arm and were asked to evaluate their impressions of the robot, as well as interpret the action of the robot. Study I was focused on evaluating overall 

impression of the robot (H1), as well as perceived enjoyment and intention to use the robot (H2).[43] 

I. MULTI-MODAL FUSION METHODS:- 

Multi-modal fusion has been used in many areas (content analysis, fault detection, aerial navigation), and many review studies attempt to categorize these 

processes into various techniques.[1] provided a widely cited organization, sorted by sensor configuration, into three types: complementary, competitive, 

and cooperative. They also discussed fusion techniques, which exist at both the signal and decision levels. Similarly, on wearable robotics and recommend 

four unique fusion approaches: single fusion algorithm, unimodal switching, multimodal switching, and mixing. 

While these are general categories, this paper focuses on the specific area of pHRI. Based on the idea of a two-phase stable grasping concept, we describe 

pHRI as two distinct phases: global space perception and local contact behaviors. Each of these phases entails different sensor modalities and different 

fusion strategies. By aligning the fusion strategy with the phase of interaction, we offer a more context-responsive and effective design framework for 

achieving real-time, responsive, and ultimately safe, physical collaboration in human–robot systems. 

 Global Space Perception Phase 

Global Space Perception Phase. Corresponding to the indirect contact signals, the global space perception phase is the first phase of pHRI. The big targets 

of observation can be split into three aspects: environments, task objects, and humans. Various methods for multi-modal fusion concerning these three 

aspects are shown. The perception of 3D environments is critical for robots to have coarse cognition about the environment and humans. To improve the 

capturing of the environment's information,[3]fused orientation information from inertial sensors, images from cameras, and depth information from ToF 

sensors, using a probabilistic framework to synergistically get robust reconstructions. The use of probabilistic models has an inherent advantage in the 

treatment of heterogeneous information, and the Bayesian equation uses prior knowledge of previous states. Concerning specific task objects in the global 

workspace, there are lots of interesting architectures proposed. used a weight-shared strategy and parameter-free correlation layer to fuse RGB and depth 

information. They designed a complex feature learning architecture, which is made up of two modality-specific and one modality-correlated deep feature 

learning networks. In the correlated detection net, after passing through 3 layers. Due to the inherent differences between sensor signals, the first step was 

to use a series of filters to process the raw input data during feature construction. This included the Sobel operator (with a window size of 3), Canny edge 

detector, Laplacian of Gaussian (LoG), and Gabor filters, each of which helped in pattern identification of the signals. After feature extraction and 

classification, the most informative features were found and selected for further refinement during feature selection. For modeling temporal sequences, 

Long Short-Term Memory (LSTM) networks were trained independently on the features derived from each modality for early prediction of turn-taking 

behavior. Finally, the Dempster–Shafer Theory (DST) was used during the decision-level fusion stage to merge the information from multiple sensor 

channels, providing a more robust and complete understanding of turn-taking intent. 

Local Contact Operation Phase 

After the global sensing phase, in which robots have a basic understanding of the workspace, task objects, and nearby humans, one must address how to 

support proximal human–robot collaboration to carry out complex, fine-grained tasks. This entails a dynamic long-distance interaction in a closely-

coupled system involving direct physical contact; thus, this section will focus on fusion methods for interpreting multiple modalities during local 

interaction with contact.[3] 

The salient aspect of this phase of interaction is the continuous, kinesthetic physical contact between human and robot. While the previous phase of 

interaction (global detection) had a touch and force/torque modality, the context of local contact means that one can engage with more active modalities 

of touch and force/torque, which preconditions the modalities towards object recognition and promotes precise real-time control over the motion of the 

robot. In the context of this close interaction, a tactile-image fusion framework for recognizing a target object engaged with physical movements. 

Specifically, the authors chose to model their tactile data as a multivariate time series, characterize the empirical equations, and generate covariance 

descriptors for the tactile images. The classification was undertaken with a k-nearest neighbors (K-NN) algorithm from a distance map modulated by 

references created with Dynamic Time Warping.[3] 

To improve robotic perceptibility of object properties like compliance, texture, and thermal response, a Bayesian exploration model enhanced with 

reinforcement learning, allowing robots to make exploratory movements that reduce ambiguity concerning the candidate objects by building a confusion 

probability matrix, thereby improving recognition accuracy across a range of object properties. 
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While haptic sensing contributes valuably during physical contact in human–robot interaction, visual inputs in HRI play an equally critical role, as visual 

input gives more comprehensive awareness of the surrounding environment and object context. To give an example, collected tactile data from a Barrett 

Hand (BH8-280) and visual data from a Kinect sensor. For the two sensory modalities, raw sensor inputs are first processed to extract feature vectors that 

represent the tactile-visual informational content, and then conformed to the same representation structure and size using Bag-of-Systems (BoS). The 

sensory modalities are combined in a linear representation model, where each feature vector is represented as a linear combination of learned training 

dictionaries. The distribution of weights by each modality corresponds to classification accuracy during training, and the dictionary is optimized to 

improve object classification.[3] 

II. MULTI-MODAL FUSION CLASSIFICATION:- 

The process of multi-modal fusion in physical human–robot interaction (pHRI), combines the many sensing modes used to perceive the environment, the 

human actions, and object interactions. Coordinating a pHRI effect from multi-modal fusion can occur either during global space perception or local 

contact perception (Section III). All strategies in multi-modal fusion maintain the three integral features of pHRI:  

(1) Shared spatio-temporal space:-Spatio-Temporal Sharing: pHRI occurs in a shared physical space over time, requiring fusion techniques that 

account for both space and time. Depending on whether the input is instantaneous or includes a time series, we can categorize the fusion 

approaches: transient fusion (one-time snapshot); sequential fusion (based on time-series data).  

(2) Multi-modality:-Spatio-Temporal Sharing: pHRI occurs in a shared physical space over time, requiring fusion techniques that account for 

both space and time. Depending on whether the input is instantaneous or includes a time series, we can categorize the fusion approaches: 

transient fusion (one-time snapshot); sequential fusion (based on time-series data).  

(3) Multi-task processing. Here, we provide an organized account of fusion techniques using these three features::-Multi-Task Processing: pHRI 

tasks are dynamic and inherently result from multiple tasks performed simultaneously. Each of these tasks will vary in its many characteristics. 

Spatio-Temporal Sharing 

Physical human–robot interaction (pHRI) typically includes how perception processes occur through space and time effectively within a common 

environment. In some examples or situations, the system may need only to perceive the instance of the elements that are supporting or in the interaction, 

for instance: the state of sensor data (i.e., an RGB image or depth image) would be sufficient to perceive with visual detection--and consequently ascertain 

the state relative to the moment, whilst making allied inference relative to global spatial perception. The process to capture all of the perception processes 

can be initiated for example, through using the moment in time of the interacting elements states or the physical human robot interactions for evaluating 

appropriateness; but there can be situations such as a robot estimating the future trajectory of a human where including previous observations is warranted 

to substantiate the transitions and temporal change which is significantly more pronounced for more dynamic or predictive tasks requiring incorporated 

fused state information. Temporal sequences of data that is representative of an interaction provide key contextual information and features important to 

inference and conclusions about future state.  

To be more precise, fusion approaches that capitalize on this spatio-temporal characteristic are generally organized into two primary ways of fusion 

forms: transient fusion, which captures some snapshot of a single point. 

Transient Fusion (TRA) 

 

Fig.5 Transient fusion (TRA) 
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Transient fusion refers to taking representations of sensor data at one time point and processing and filtering the data. For our purposes, we want to 

represent a multi-modal representation of the current state of the system (depicted in Fig. 5). 

In the transient fusion process, multiple modal data points (e.g., vision, geometry or skeletal tracking) occur concurrently from different sensors. In the 

first step of the process, the raw data are filtered into associated relative features that point to some state. Then, each modality feature is presented via a 

transient fusion module to give multi-modal representations for engaging with (i.e., decision making) later. 

Transient fusion is well established for modal representations that can be captured and represented while the information is captured at one time (RGB 

images, geometry features, skeletal tracking, object affordances etc.). In general, transient fusion is common in situations where a user's state needs to be 

evaluated in real-time while eliminating motion or transitional actions between states. Classic examples of transient fusion include 3D reconstruction of 

an environment, real-time human detection or object detection, or immediate gesture grounding. 

Sequential Fusion (SEQ): 

Sequential fusion merges temporal data into models that maintain some memory (e.g., Recurrent Neural Networks (RNNs) and/or hidden Markov Models 

(HMMs)). These models then provide a multimodal representation that maintains the value of temporal order (see Fig. 6).  

 

Fig.6 Sequential Fusion 

This architecture gathers data over a time period continuously across multiple modalities. The raw data is passed through feature extractors, and the 

resulting sequential representations for each modality are sent together to a sequential fusion module. The fusion module remembers the time-series data, 

returns back a time-oriented and multi-modal representation, thus allowing for the perception to better represent the continuity of experience. [3] 

Time-based sequential fusion is critically important for PHRI applications, where perception and decision making rely on a continuum and temporal 

evolution governed by sensor observations. It is most successfully integrated with modalities with natural temporal features (e.g. audio, center of pressure 

or haptic data, electroencephalogram (EEG) signals). The architecture has been deployed successfully for human tracking systems, detection tasks for 

tactile events, and action recognition tasks. 

suggested a self-learning model for detecting human activity using a three-layer Long Short-Term Memory (LSTM) network to encode long motion 

sequences of a skeleton, which is of critical importance for dynamic human–robot interaction. Likewise, a deep neural network–hidden Markov model 

approach for speech recognition that recognized clean speech, acoustic responses, and background noise to ensure robustness and improve validity. 

B. Multi-Modal 

The modalities in a multi-modal system can be grouped into two categories, based on the type of raw data: homologous modalities (with similar types of 

data) and heterogeneous modalities (with different types of data). There are only two general fusion architectures to combine either one of the different 

categories of modalities. 

1. The first one is a simply fusion method, where the modalities are directly fed into the fusion module with no dedicated preprocessing of any modality. 

2. The second has recognized that each modality has different qualities as well as types of data. In this case, the first stage is to extract the features 

individually from each modality, and to respect the properties of the data type. These features could be brought together—in the case had more than one 

classifier— present as a thorough, multi-modal representation. 
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1) Swallowing Fusion (SWA) 

Swallowing Fusion is a simple method where instead of preprocessing (feature extraction), we simply put multiple modalities directly into the fusion 

module (see Fig. 7) 

 

Fig. 7 Swallowing fusion (SWA) 

In this architecture, homologous data is put simultaneously into the multi-modal fusion module, where it is used to provide a single representation. This 

approach is typically used to combine only a few modalities that have a similar data structure, for example, RGB, depth and skeleton data force and 

encoder outputs, and physiological data like ECG and SpO₂. 

Recently, technologies like GelSight have made it possible to represent tactile information visually, so a combination of vision and haptic data could all 

be fed into the same convolutional neural network (CNN). For instance, reported improved grasping performance when both RGB images and GelSight 

tactile images were input into a deep CNN. 

Swallowing Fusion architecture may be considered the simplest means to integrate multiple modalities, although it applies best in instances when the 

modalities have compatible or the same data representation. 

2) Mixing Fusion (MIX) 

Mixing Fusion uses independent feature extraction within each modality and parallel fusion processes. Produces multiple classifiers for fusion – only one 

classifier per modality or a combination of modalities. Each classifier's output is combined in a single representation (See Fig. 8). 
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                                             Fig. 8 Mixing fusion (MIX). 

Heterogeneous data are pre-processed with individual feature extractors that confine and exploit the properties of each modality. The features of each 

modality are put into multi-modal fusion, and the final output is a representation. Mixing Fusion is useful for heterogeneous data types as heterogeneous 

data may differ within spatial, temporal, and structural meanwhile processing R and I-HRI in anthropomorphic humanoid robotic forms. Mixing Fusion 

is one of the most popular methods of fusion for incorporating diverse types of information and accommodating the resources of the various information. 

Especially in challenging human-robot interactions with complex tasks, and contact-rich actions where the data were collected at different time phases 

and spatial contexts. 

Analysis 

The first study highlights the innovative approach between people and robots by utilizing gestures and spoken language to control an industrial robot 

arm. The first study uses a unique gesture dataset and analyzes with Motion History Images from video plus a convolutional neural network (CNN) type 

of Artificial Intelligence. The authors achieved greater than 98% accuracy on recognizing gestures. The study also implements speech recognition using 

an open-source platform and noise noise-reduction techniques, achieving greater than 95% accuracy. Because the whole system is able to handle multiple 

inputs, the user may be able to interact with the robotic arms quickly and smoothly. The authors performed multiple experiments with a robotic arm 

performing pick-and-place tasks to assess the system's reliability and effectiveness. The most important contribution of this work is the combination of 

inputs to improve recognition and letting humans establish the intentions of their actions with the actions of the robot in the real-world context.[1] 

The second study looked at how different types of social signals, such as gestures or sounds produced by a robotic arm, would influence people's 

perception or feeling towards interacting or collaborating. By using a small, robotic arm with various patterns of lights and sound to communicate actions, 

they demonstrated the head gesture plus lights and sounds led to participants perceiving the robot was friendlier and smarter.The results suggested that 

participants were easier able to understand the robot's actions and had relatively more positive perceptions of their interaction when multiple means of 

communication were offered instead of one. In addition, the studies were conducted online, and only applied in one task, they indicated how significant 

these multiple signals could be at making robots more engaging and also easier to interact with.[2],[21] 

The next study provided a comprehensive description of the feasibility of using varied manners of weaving together signals for future human-robot 

interactions, where humans and robots were also physically working side by side. Authors separated types of Sensory signal inputs into indirect sensory 

inputs like EEG and cameras, and direct sensory inputs like tactile sensors. They also explored types of signal combinations on three distinct dimensions: 

timing; overlapping or simply mixing data; and how complex are the tasks. The authors indicated several limitations of their framework, including: timing 

can mismatch with sensory data, how to approach choosing which input to utilize, and also what can be accomplished with pre-trained models was not 

explored. Additionally, the authors noted possible directions of future work, such as improving tactile sensors, different ways to dynamically weave 

together multiple signals overtime, more flexibility concerning which input to select, and improvement in learning efficiency. Interestingly, the authors 

hope this review will provide insights in future directions for increasing robot's intelligence and interactivity.[3] 
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Conclusion 

This research represents a significant contribution to the progress of collaborative human–robot interaction (HRC) systems through the development of 

a multimodal system incorporating gesture and speech recognition. The development and testing of a viable real-time interaction system capable of 

utilizing convolutional neural networks and motion history images to identify gestures, along with an improved and open-source speech recognition 

engine for noisy industrial environments, not only demonstrates the real-world applicability of multi-modal systems, it also reduces the margin for error. 

The capacity to combine human gestures, speech, and the function of the robot, as well as facilitate a prompt feedback loop depends on the integration of 

multi-threading functionality; thus, low-latency two-way interaction is achievable. In addition, the design of a multimodal system that enhances the 

effectiveness of the human-robot teaming process is a high priority. The three modalities were tested to provide evidence of the situational benefits 

associated with multimodality within HRC; analysis of the psychological and operational benefits associated with modality co-occurrence—benefits that 

affect user perception, trust, and engagement—also augment HRC systems. The discussion of multimodal fusion in detail contributes to the research on 

sociocultural signals in HRC at both transitory and sustained levels of structural development and application in the fields of robotics, interaction design, 

social cue investigation, and collaborative systems research. Although the work accomplished in this project presents obstacles (e.g.g, speech ambiguity 

associated with noise, computation burden associated with gesture and speech recognition), the integrated HRC approach further establishes the usability 

of robots making them more intuitive, more intelligent, and able to engage as peers in a two-way multimodal manner with humans during multimodal 

collaborative interaction. 
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