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ABSTRACT 

The escalating costs of prescription medications have intensified public scrutiny of pharmacy pricing practices and the role of Pharmacy Benefit Managers 

(PBMs) in shaping drug affordability and accessibility. Amidst rising concerns over medication non-adherence due to cost and the opaque rebate structures of 

PBMs, Artificial Intelligence (AI) has emerged as a transformative solution with the potential to modernize pharmacy pricing systems. This paper explores the 

integration of AI technologies in pharmacy pricing frameworks to achieve a balanced triad of affordability, patient adherence, and ethical PBM operations.  AI-

driven platforms can process large datasets in real time to optimize pricing models, forecast demand, and detect pricing anomalies that may disadvantage patients. 

Machine learning algorithms enhance transparency by analyzing rebate flows, formulary decisions, and manufacturer-PBM agreements, enabling regulators and 

stakeholders to monitor compliance and ensure fairness. At the patient level, AI can personalize drug cost simulations and predict out-of-pocket expenses, 

fostering greater trust and proactive decision-making in medication management. The paper also examines ethical dimensions and policy implications of 

embedding AI in drug pricing systems, including risks of algorithmic bias, data privacy concerns, and the need for regulatory oversight. Case studies highlight 

successful implementations of AI in pharmacy benefit platforms that improved pricing transparency and medication adherence without compromising profit 

sustainability for stakeholders. By synthesizing current technological, regulatory, and ethical trends, this paper proposes a multi-layered model for responsible AI 

integration in pharmacy pricing. It advocates for collaborative frameworks that align the interests of patients, pharmacies, PBMs, and policymakers—ultimately 

advancing a data-driven, equitable pharmaceutical pricing ecosystem. 

Keywords: Artificial Intelligence in Healthcare, Pharmacy Benefit Managers (PBMs), Drug Pricing Optimization, Medication Affordability, Ethical 

Algorithm Governance, Patient Adherence Systems 

1. INTRODUCTION  

1.1 The Evolving Pharmacy Pricing Landscape  

The pharmaceutical pricing landscape has undergone significant transformation in recent years, driven by a combination of market dynamics, 

regulatory shifts, and technological advancements. Historically, drug pricing was largely opaque, influenced by intermediaries such as pharmacy 

benefit managers (PBMs), wholesalers, and insurers. These entities often negotiated confidential rebates and discounts that obscured the true cost of 

medications, contributing to pricing variability across pharmacies and patient populations [1]. As a result, the lack of transparency in pricing 

mechanisms made it difficult for both consumers and providers to assess the value of prescribed therapies. 

Globalization and the emergence of high-cost specialty drugs have further complicated the pricing ecosystem. Innovative treatments—particularly 

biologics, gene therapies, and immunotherapies—offer substantial clinical benefits but are frequently introduced with price tags exceeding hundreds of 

thousands of dollars annually [2]. These innovations, while transformative, raise concerns about the long-term affordability and sustainability of 

healthcare systems. 

In parallel, governments and policymakers have begun enacting pricing reform initiatives to rein in excessive costs. The United States, for example, has 

seen rising support for prescription drug pricing transparency laws, Medicare price negotiation authority, and reference pricing models [3]. Similarly, 

other high-income countries employ value-based frameworks that link reimbursement levels to clinical efficacy. 

The introduction of digital pharmacy services has also changed the landscape, enabling patients to compare prices and access generics through mobile 

platforms [4]. However, significant disparities persist, particularly for underinsured or uninsured populations who face disproportionate financial 

burdens. As pricing becomes increasingly scrutinized, stakeholders are recognizing the urgent need for equitable, transparent, and evidence-based 

approaches to pharmaceutical cost management that prioritize both innovation and accessibility [5]. 

1.2 Challenges in Affordability and Adherence  

The rising cost of prescription medications presents significant barriers to patient affordability, directly impacting adherence and long-term health 

outcomes. Numerous studies show that high out-of-pocket costs lead patients to delay, modify, or forgo treatment altogether, especially for chronic 
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conditions requiring long-term pharmacologic therapy [6]. This phenomenon, commonly referred to as cost-related nonadherence (CRN), has been 

linked to increased emergency visits, disease progression, and hospitalizations [7]. 

Vulnerable populations—such as low-income individuals, the elderly, and those without comprehensive insurance—are particularly susceptible to the 

adverse effects of CRN. These patients may face impossible trade-offs between medications and essential needs like food or housing, resulting in 

deteriorating health and financial instability [8]. Moreover, patients with polypharmacy regimens often struggle with complex dosing schedules and 

medication access, further compounding nonadherence issues. 

Health systems also face indirect costs related to poor medication adherence. Estimates suggest that nonadherence contributes to over $100 billion 

annually in avoidable healthcare expenses in the United States alone [9]. Interventions such as generic substitution, 90-day supply optimization, and 

medication therapy management (MTM) programs have shown promise in improving adherence, yet scalability remains limited due to logistical and 

policy barriers [10]. 

Additionally, communication gaps between prescribers, pharmacists, and patients hinder informed decision-making about cost-effective alternatives 

[11]. Without accessible pricing data and real-time benefit tools, providers may inadvertently prescribe expensive medications when more affordable, 

equally effective options exist. Addressing these challenges demands a restructured approach that combines policy reform, edu cation, and advanced 

technologies aimed at improving affordability and adherence outcomes [12]. 

1.3 Role of AI in Healthcare Transformation  

Artificial intelligence (AI) is increasingly recognized as a transformative force in healthcare, offering the potential to improve efficiency, accuracy, and 

personalization of care across multiple domains. In pharmacy and medication management, AI-driven tools are being developed to address 

longstanding challenges related to pricing transparency, prescription optimization, and adherence support [13]. These technologies leverage big data 

analytics, natural language processing (NLP), and predictive modeling to enhance both clinical decision-making and administrative workflows. 

One key application of AI in pharmacy pricing is real-time price comparison. AI algorithms can aggregate data from diverse sources—including 

insurers, PBMs, and pharmacies—to provide patients and providers with dynamic cost insights at the point of prescribing [14]. This facilitates informed 

choices that balance clinical efficacy with financial feasibility. Some platforms also incorporate benefit verification tools that automatically identify 

prior authorization requirements and suggest therapeutic alternatives to streamline access [15]. 

Beyond pricing, AI has shown promise in improving medication adherence. Machine learning models can predict which patients are at high risk of 

nonadherence by analyzing behavioral, socioeconomic, and clinical variables [16]. These insights allow care teams to deploy targeted interventions, 

such as reminders, digital coaching, or pharmacist-led outreach, tailored to patient-specific needs. 

AI also plays a critical role in pharmacovigilance, flagging potential drug interactions or adverse effects through automated surveillance systems [17]. 

As healthcare moves toward value-based care, the integration of AI into pharmacy operations can help reduce waste, optimize therapy selection, and 

ensure timely, cost-effective treatment—thereby reshaping the patient experience and promoting health equity across populations [18]. 

 

Figure 1: Rising drug cost trends vs. medication adherence rates 

(2010–2024, dual-axis chart) [9] 
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2. UNDERSTANDING PBM STRUCTURES AND PRICING COMPLEXITIES  

2.1 Anatomy of Pharmacy Benefit Managers (PBMs)  

Pharmacy Benefit Managers (PBMs) are third-party administrators that serve as intermediaries between insurers, pharmacies, and drug manufacturers. 

Their primary functions include managing prescription drug benefits, negotiating discounts and rebates, maintaining formularies, and processing 

pharmacy claims [11]. Originally designed to reduce costs and streamline medication access, PBMs have evolved into powerful entities capable of 

significantly influencing drug pricing and utilization patterns across healthcare systems. 

The typical PBM business model involves leveraging the large beneficiary pools of health plans to negotiate favorable terms with pharmaceutical 

manufacturers. In return for formulary placement or preferential tiering, PBMs often secure rebates, which are either passed on to insurers or retained 

partially or entirely as revenue [12]. Additionally, PBMs establish pharmacy networks, determine reimbursement rates to retail pharmacies, and manage 

utilization controls such as prior authorization, quantity limits, and step therapy [13]. 

While PBMs claim to reduce drug costs, critics argue that their operations lack transparency and are misaligned with patient interests. For instance, the 

negotiation processes and rebate arrangements are generally kept confidential, making it difficult for stakeholders to assess whether cost savings are 

realized at the consumer level [14]. Furthermore, vertical integration—where PBMs are owned by or affiliated with insurers and pharmacy chains—

raises questions about competitive fairness and market monopolization [15]. 

Three major PBMs—CVS Caremark, Express Scripts, and OptumRx—now control nearly 80% of the U.S. market, amplifying their influence over 

drug accessibility and affordability [16]. As gatekeepers of pharmacy benefits, PBMs play a pivotal but opaque role in shaping healthcare delivery and 

pricing—often benefiting intermediaries at the expense of patients, payers, and independent providers [17]. 

2.2 Rebate Models, Formularies, and Spread Pricing  

One of the most contentious aspects of PBM operations is the rebate model, which involves manufacturers paying negotiated rebates to PBMs in 

exchange for favorable placement of their products on insurance formularies. Although rebates are intended to reduce net drug prices, the lack of 

transparency around how these rebates are calculated and distributed has sparked widespread concern [18]. Many rebates are not passed on to 

consumers at the pharmacy counter, meaning patients often pay based on inflated list prices, especially those with high-deductible plans or coinsurance 

[19]. 

Formularies—lists of covered drugs categorized by tiers—are constructed by PBMs in collaboration with insurers and sometimes pharmaceutical 

manufacturers. These tiers influence the out-of-pocket costs patients face and can encourage or discourage the use of specific drugs. Tier 1 typically 

includes generics with low copayments, while Tier 3 and specialty tiers often encompass expensive brand-name or specialty medications [20]. Critics 

argue that formulary design is sometimes driven more by rebate optimization than by clinical efficacy, which may result in less effective or more 

expensive drugs being preferred over equally suitable alternatives [21]. 

Spread pricing adds another layer of complexity. In this model, PBMs charge health plans a higher price for a drug than what they reimburse to the 

dispensing pharmacy, retaining the difference as profit [22]. This practice, often hidden from employers and plan sponsors, has drawn scrutiny for its 

potential to inflate healthcare spending without improving value or access [23]. 

The cumulative effect of these mechanisms distorts market incentives. Drug manufacturers may increase list prices to offer larger rebates to PBMs, who 

then profit more while patients experience higher upfront costs [24]. Moreover, pharmacies—especially independents—suffer from below-cost 

reimbursements, threatening their financial sustainability [25]. 

These pricing strategies raise ethical and policy questions, particularly regarding the actual beneficiaries of negotiated discounts and the fairness of 

pricing structures. Increasingly, healthcare stakeholders and policymakers are calling for greater transparency, regulation, and realignment of financial 

incentives to better serve patient interests and promote sustainable drug pricing practices [26]. 

2.3 Ethical Dilemmas and Transparency Deficits  

The operations of PBMs present a number of ethical dilemmas rooted in conflicts of interest, lack of accountability, and limited public scrutiny. Central 

to these concerns is the opacity of rebate agreements, spread pricing, and formulary decision-making—all of which significantly impact drug costs and 

patient access to essential therapies [27]. These processes occur behind closed doors, preventing regulators, providers, and consumers from 

understanding how drug prices are determined and how benefits are distributed. 

Ethically, the retention of rebates and pricing spreads raises questions about fiduciary duty. PBMs are expected to act in the best interest of plan 

sponsors and patients, yet they frequently prioritize profit through arrangements that may not align with clinical outcomes or affordability [28]. For 

example, a drug that offers a higher rebate may be favored over a clinically superior alternative with a lower financial incentive, putting patients at risk 

of suboptimal treatment [29]. 

Transparency deficits also hinder informed decision-making at multiple levels. Prescribers may be unaware of patient-specific drug costs or formulary 

restrictions, while patients often lack visibility into cost-effective alternatives or therapeutic substitutions [30]. This disconnect undermines the 

principles of shared decision-making and informed consent, eroding trust in the healthcare system. 

Additionally, vertical integration of PBMs with insurers and retail pharmacy chains further exacerbates ethical concerns. Such consolidation may lead 

to preferential dispensing practices, reduced competition, and channeling of patients toward proprietary services irrespective of best clinical value [31]. 

The ethical imperative to place patient welfare above organizational profit is increasingly at odds with the current PBM business model, prompting 

growing demands for regulatory and systemic reform [32]. 
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2.4 Regulatory Landscape and Gaps  

The regulatory framework governing PBMs remains fragmented, with significant variation across jurisdictions and limited federal oversight. Currently, 

no centralized federal entity comprehensively regulates PBM practices in the United States, leaving states to adopt their own approaches—many of 

which are inconsistent or narrowly focused [33]. Several states have passed laws requiring PBM licensing, transparency reporting, and limits on spread 

pricing, but enforcement mechanisms are often weak or underfunded [34]. 

At the federal level, recent legislative efforts such as the Pharmacy Benefit Manager Transparency Act and proposed provisions within the Inflation 

Reduction Act aim to increase accountability by mandating rebate disclosures and curbing exploitative pricing practices [35]. However, these initiatives 

face substantial opposition from lobbying groups and have yet to establish robust frameworks for real-time monitoring and compliance. 

Regulatory gaps persist around key issues such as rebate pass-through, formulary design ethics, and conflicts of interest arising from vertical 

integration. Moreover, the absence of standardized data reporting impedes comparative analysis and policy evaluation [36]. Without cohesive and 

enforceable oversight, PBMs continue to operate within a largely self-regulated environment, perpetuating inefficiencies and inequities in drug pricing. 

Addressing these regulatory gaps is critical for restoring transparency, rebuilding public trust, and ensuring that pharmacy benefit structures are aligned 

with public health goals rather than corporate profit. 

 

Table 1: Comparison of PBM Practices Across Selected U.S. States 

State 
Rebate Pass-Through 

Policy 
Clawback Restrictions Transparency Laws 

Licensing/Registration 

Required 

Notable Legislation or 

Action 

California 

Mandatory pass-

through for state-run 

plans 

Prohibited under AB 

315 

Requires PBMs to disclose 

pricing and rebate 

information to state 

Yes 

AB 315: PBM 

regulation and 

transparency law 

Texas 
Partial – only applies to 

Medicaid managed care 

Restricted under SB 

1264 

Requires reporting of spread 

pricing and rebate data 
Yes 

SB 1264: Limits 

surprise billing and 

PBM abuses 

New York 

Full pass-through 

required for Medicaid 

and state plans 

Prohibited under DFS 

regulation 

Annual reporting of rebates, 

MAC pricing transparency 
Yes 

Executive Budget Bill 

2021 on PBM 

oversight 

Ohio 

Full pass-through 

model in state Medicaid 

contracts 

Prohibited via state 

audit findings 

Requires PBMs to disclose all 

spread pricing and rebate 

data 

Yes 
State audit led to PBM 

contract restructuring 

Florida 

No universal 

requirement – varies by 

plan sponsor 

Allowed unless 

explicitly prohibited 

by insurer 

Limited; no comprehensive 

transparency mandate 
No 

Legislation pending to 

require PBM 

disclosures 

Oregon 
Required for all state-

regulated health plans 

Prohibited for insured 

patients 

PBMs must file annual 

transparency reports with the 

Insurance Division 

Yes 

HB 4005: Drug price 

transparency 

framework 

Illinois 
Required in Medicaid 

managed care contracts 

Prohibited under state 

insurance code 

amendments 

PBMs must register and 

report pricing practices 

annually 

Yes 

HB 465: Illinois 

Pharmacy Benefit 

Reform Act 

 

3. AI TECHNOLOGIES IN PHARMACY PRICING SYSTEMS  

3.1 Types of AI Used in Pricing Analytics  

Artificial Intelligence (AI) has become a critical enabler of advanced pricing analytics in pharmacy systems, offering tools that can parse complex data, 

identify trends, and optimize decision-making in real time. The most common types of AI employed in this domain include machine learning (ML), 

deep learning, natural language processing (NLP), and reinforcement learning [15]. Each of these techniques brings distinct advantages depending on 

the pricing context and dataset characteristics. 

Machine learning algorithms, particularly supervised learning methods such as decision trees and support vector machines, are  frequently used to 

predict price fluctuations and detect cost anomalies across regions, providers, or insurance plans [16]. These models can be trained on historical pricing 

and sales data to project future pricing scenarios or flag suspicious discrepancies. Unsupervised learning methods, such as clustering algorithms, are 

also useful for market segmentation and benchmarking pharmacy performance. 

Deep learning, a subfield of ML, excels in analyzing large and unstructured data sources. In the context of drug pricing, deep neural networks can 

process inputs from prescription claims, EMRs, and real-time pharmacy transactions to uncover nonlinear relationships that might be missed by 

traditional models [17]. This enables more granular pricing predictions and demand forecasting. 
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Natural language processing is especially valuable in processing text-heavy data such as regulatory filings, manufacturer rebate contracts, or insurance 

formularies. NLP tools can extract relevant cost and policy information to inform pricing strategies [18]. Reinforcement learning, though still emerging 

in healthcare pricing, has shown promise in adaptive pricing models that learn and optimize strategies over time based on feedback and evolving market 

conditions [19]. 

Together, these AI approaches form the backbone of sophisticated analytics frameworks that help stakeholders identify cost drivers, minimize 

inefficiencies, and support more dynamic and transparent pricing mechanisms. 

3.2 Data Inputs and Feature Engineering for AI Models  

AI pricing models in pharmacy rely heavily on the quality, diversity, and granularity of input data. Effective model performance hinges on carefully 

curated datasets and robust feature engineering techniques that capture the variables influencing medication costs. Typical data inputs include drug 

pricing databases, claims history, supply chain metrics, formulary placement, pharmacy location, insurance plan types, and patient demographic 

information [20]. 

Claims data is among the most valuable sources, offering insights into transactional pricing, reimbursement levels, and utilization patterns across 

different payers and geographic areas. This allows AI models to learn pricing behaviors and patient out-of-pocket costs under varying conditions [21]. 

Additionally, real-time inventory data from pharmacies, including stock levels, acquisition costs, and order frequencies, contributes to demand-supply 

analytics essential for price forecasting [22]. 

Feature engineering is a crucial step in making raw data usable for AI algorithms. This process involves transforming data into structured variables that 

represent meaningful aspects of pricing behavior. For instance, engineered features might include rebate-to-cost ratios, co-pay elasticity, or generic 

substitution rates [23]. Time-series features can be derived to detect seasonality or promotional pricing trends over time. Socioeconomic data, such as 

neighborhood income levels or access to health services, may also be integrated to assess price sensitivity among different populations. 

Moreover, incorporating policy variables—such as formulary tier, prior authorization status, or step therapy requirements—enables the model to 

account for administrative pricing determinants that influence final patient cost [24]. Feature selection and dimensionality reduction techniques help 

refine the dataset, eliminating noise and enhancing model accuracy. By combining diverse, well-engineered inputs, AI models can achieve precise 

pricing insights, enabling more equitable and responsive pharmacy pricing decisions across healthcare systems [25]. 

3.3 Predictive vs. Prescriptive Models in Pricing Optimization  

In pharmacy pricing analytics, AI models typically fall into two main categories: predictive and prescriptive. Each type serves a distinct function in 

improving drug pricing strategies, from forecasting cost trends to determining optimal pricing actions based on scenario modeling [26]. 

Predictive models use historical data to estimate future outcomes, such as drug price changes, demand variations, or patient adherence under different 

cost-sharing arrangements. These models commonly employ regression analysis, decision trees, or gradient boosting algorithms to detect pricing 

patterns and project future price movements [27]. For instance, a predictive model can analyze how price increases for a particular insulin formulation 

might affect demand or substitution with biosimilars in low-income regions. These models are instrumental in informing risk assessments and budget 

planning for payers and providers. 

Prescriptive models go a step further by not only forecasting outcomes but also recommending specific actions to achieve predefined objectives. These 

models often incorporate optimization algorithms, including linear programming, genetic algorithms, or reinforcement learning, to simulate scenarios 

and suggest pricing strategies that maximize value while minimizing adverse outcomes [28]. For example, a prescriptive model might evaluate multiple 

rebate structures and recommend the one that balances access, profit, and formulary compliance most efficiently. 

The integration of predictive and prescriptive analytics creates a feedback loop in which forecasts are continually refined and decision-making becomes 

increasingly responsive to environmental shifts [29]. In dynamic pricing environments, such as retail pharmacies or mail-order services, this dual-model 

approach allows real-time adaptation to competition, patient behavior, and regulatory change. 

The fusion of these AI models empowers stakeholders to transform static pricing policies into adaptive, data-driven frameworks that anticipate market 

shifts and respond with precision, ultimately enhancing affordability, transparency, and access in pharmaceutical care [30].  

3.4 Examples of AI Deployment in Pharmacy Settings  

Several real-world examples demonstrate the growing adoption of AI in pharmacy pricing and operations. One notable implementation is the u se of AI-

powered platforms by pharmacy benefit managers to automate formulary management. These systems evaluate cost-effectiveness data, therapeutic 

equivalence, and rebate incentives to recommend optimized drug tier placements that balance cost with clinical value [31].  

Retail pharmacy chains have also embraced AI for price optimization and inventory control. For example,  Walgreens and CVS have piloted machine 

learning tools to adjust drug pricing dynamically based on local market demand, availability, and competitive pressures [32]. These tools help reduce 

overstocking, prevent shortages, and minimize price disparities across locations. 

Startups such as GoodRx and Capital Rx leverage AI algorithms to provide real-time price comparison tools for consumers. These platforms aggregate 

pricing data across multiple pharmacies and apply decision-support analytics to identify the lowest-cost options based on patient insurance and location 

[33]. Hospitals have also integrated predictive AI models to forecast high-cost medication utilization and adjust procurement strategies proactively. 

These applications illustrate the expanding role of AI in supporting transparency, operational efficiency, and equitable pricing across pharmacy 

systems. As these technologies mature, they promise to further democratize access to essential medications by aligning pricing mechanisms more 

closely with patient needs and healthcare value [34]. 
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Figure 2: Workflow of an AI-enhanced pharmacy pricing engine (data ingestion to price output) 

4. AFFORDABILITY OPTIMIZATION THROUGH AI 

4.1 Real-Time Price Adjustment and Dynamic Discounting  

One of the most impactful applications of artificial intelligence in pharmacy pricing is real-time price adjustment, which enables retailers and benefit 

managers to modify medication prices dynamically based on market behavior, inventory levels, and demand signals. Unlike traditional static pricing, 

which can result in inefficiencies or supply bottlenecks, dynamic pricing uses machine learning algorithms to continuously analyze data and adjust 

prices for optimal balance between profitability and patient affordability [23]. 

These AI-driven systems ingest a broad range of variables including competitor pricing, insurance plan structures, local economic indicators, and 

product lifecycle status to fine-tune prices in real time. For instance, if a sudden spike in demand for a specific antihypertensive is detected, AI 

algorithms can adjust prices downward at specific pharmacies to increase accessibility and prevent medication abandonment [24]. 

Dynamic discounting extends this functionality by incorporating patient-specific information into the pricing decision. Using anonymized datasets, AI 

can segment patients by risk profiles, insurance coverage gaps, and historical adherence patterns to offer personalized discounts or coupons at the point 

of sale [25]. This strategy not only improves affordability but also supports public health goals by ensuring patients with chronic conditions maintain 

medication continuity. 

Retail pharmacy chains have already begun piloting dynamic pricing platforms integrated with mobile apps that provide real-time cost visibility to 

patients before purchase [26]. These systems reduce sticker shock, improve transparency, and encourage comparison shopping. More importantly, they 

empower patients to make informed decisions and reduce the likelihood of cost-related nonadherence. As more stakeholders adopt AI-powered price 

optimization tools, real-time adjustment and discounting models are likely to become industry standards in enhancing pharmacy cost efficiency and 

access [27]. 

4.2 AI-Driven Formulary Management to Lower Out-of-Pocket Costs  

Formulary management—deciding which drugs are covered and how they are tiered—is a central lever in controlling both payer costs and patient out-

of-pocket expenses. AI is revolutionizing this domain by enabling more sophisticated and equitable formulary decisions that prioritize clinical 

outcomes alongside affordability. Traditional formulary design often relies on manual analysis of claims data and manufacturer negotiations, which can 

be time-consuming and may not account for real-world effectiveness or socioeconomic factors [28]. 

AI-powered formulary management systems integrate vast datasets from prescription claims, clinical guidelines, therapeutic equivalency databases, and 

patient feedback to optimize drug inclusion based on multiple criteria. Algorithms can identify medications that deliver comparable therapeutic 

outcomes at lower costs and recommend their elevation in formulary tiers to reduce patient copays [29]. This not only improves adherence but also 

enhances medication access for underinsured populations. 

Furthermore, AI systems can assess real-time prescribing trends and reimbursement outcomes to predict which medications are likely to experience 

price increases or shortages. Based on these forecasts, benefit managers can proactively adjust formulary placement or recommend alternatives to avoid 

spikes in patient expenses [30]. Some systems also incorporate predictive analytics to flag patients at high risk of financial hardship and adjust coverage 

decisions accordingly. 

Insurance providers have begun using AI to simulate the financial impact of formulary shifts, estimating how a proposed change would influence total 

cost of care and member satisfaction. These models support value-based care by aligning economic incentives with evidence-based prescribing [31]. As 

AI continues to evolve, its role in formulary design will be crucial in curbing drug spending while promoting equitable, patient-centered pharmacy 

coverage policies [32]. 
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4.3 Targeted Subsidy and Copay Assistance Using Machine Learning  

Machine learning algorithms are increasingly being used to support targeted financial assistance programs aimed at improving medication affordability. 

Unlike blanket subsidy schemes that may lack precision or scalability, AI-driven models analyze patient-level data to identify individuals most in need 

of support and match them with tailored assistance interventions [33]. This approach ensures that limited resources are allocated efficiently, 

maximizing both economic and clinical value. 

These models draw upon structured and unstructured data sources, including prescription histories, income proxies, medication adherence patterns, and 

geographic health disparities. By evaluating this information in real time, machine learning tools can stratify patients by financial risk and likelihood of 

cost-related nonadherence. Once identified, the system can recommend specific interventions—such as copay waivers, manufacturer coupons, or third-

party grants—automatically triggered through pharmacy point-of-sale systems [34]. 

Some platforms further enhance their effectiveness by incorporating behavioral analytics to determine how different patients respond to various subsidy 

formats. For example, patients with chronic but asymptomatic conditions may be more responsive to upfront discounts, while others may prefer long-

term price locks or refill incentives. Such insights allow healthcare systems to personalize affordability strategies based on patient preferences and 

adherence behavior. 

Pilot programs using these tools have demonstrated promising results, with significantly higher medication possession ratios and reduced 

discontinuation rates in targeted populations [35]. As healthcare moves toward precision medicine, incorporating financial personalization through AI 

could redefine how affordability support is delivered across pharmacy networks, ensuring broader access and improved health equity in a resource-

efficient manner [36]. 

4.4 Simulation of Cost Scenarios for Stakeholders  

Simulation modeling is another innovative use of AI that supports pricing decisions across stakeholders—including insurers, health systems, and 

pharmacies. These models allow users to test different cost scenarios by adjusting inputs such as drug rebates, formulary configurations, or patient 

assistance strategies [37]. The resulting simulations offer insight into downstream effects on payer spending, patient out-of-pocket costs, and treatment 

adherence. 

Advanced simulation tools leverage AI techniques like agent-based modeling and Monte Carlo simulations to forecast patient behavior under various 

pricing policies. For instance, a pharmacy network might simulate the impact of shifting a high-cost brand medication to a lower-tier biosimilar and 

estimate changes in market share, pharmacy reimbursement, and refill rates [38]. 

Stakeholders can also assess unintended consequences—such as increased administrative burden or reduced access to niche therapies—before 

implementing policy changes. These insights enable evidence-based decision-making that balances cost control with patient welfare. As simulation 

tools become more accessible, they will play a vital role in aligning pricing innovation with the values of transparency, efficiency, and equity [39]. 

 

Table 2: Sample Output of an AI-Generated Price Adjustment Scenario for Generic vs. Branded Drugs 

Drug Name 
Drug 

Type 

Baseline Price 

(USD) 

AI-Predicted Optimal 

Price (USD) 

Price 

Adjustment (%) 
Patient Segment Rationale for Adjustment 

Atorvastatin Generic $22.00 $17.60 -20% 
Low-income, 

uninsured 

Increase affordability, prevent 

abandonment 

Lipitor Branded $135.00 $130.00 -3.7% 
Insured, stable 

adherence 

Price elasticity low, minor discount 

for loyalty retention 

Metformin Generic $12.00 $9.60 -20% 
Elderly, 

polypharmacy 

Improve refill synchronization and 

reduce copay burden 

Januvia Branded $490.00 $470.00 -4.1% 
Diabetic, high 

dropout risk 

Modest discount to improve 

persistence in chronic condition 

Lisinopril Generic $8.00 $6.40 -20% Rural patients 
Offset pharmacy access barriers with 

price reduction 

Crestor Branded $220.00 $195.00 -11.4% 
Commercially 

insured 

Align with competing formulary price 

to prevent switching 

 

5. ENHANCING PATIENT ADHERENCE VIA AI  

5.1 AI Models Predicting Non-Adherence Risk Factors  

Non-adherence to medication regimens remains a pervasive challenge in chronic disease management, contributing significantly to poor health 

outcomes and escalating healthcare costs. Artificial Intelligence (AI) models have shown promise in predicting patients who are at high risk of non-

adherence by analyzing complex, multifactorial datasets that include clinical, behavioral, and socioeconomic indicators [27]. 
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These predictive models employ machine learning techniques—such as logistic regression, random forests, and gradient boosting—to uncover patterns 

that human analysis may miss. By processing data from electronic health records (EHRs), pharmacy claims, appointment attendance, and past refill 

histories, AI systems can stratify patients by their likelihood of medication dropout or inconsistent usage [28]. For example, a patient with a history of 

delayed refills, comorbid depression, and inconsistent primary care visits may be flagged as high risk and prioritized for intervention. 

Socioeconomic variables such as income level, ZIP code, and insurance status are also incorporated into model features to provide context-aware 

predictions. The inclusion of geospatial analytics, for instance, helps identify patients who live in pharmacy deserts or face transportation barriers [29]. 

These insights allow health systems and insurers to allocate resources effectively and design proactive outreach campaigns.  

Moreover, AI systems can operate in real time, enabling care managers and pharmacists to receive alerts when patients display signs of waning 

adherence. This enables early intervention through counseling, medication synchronization, or financial assistance programs. As these models improve 

in accuracy and scalability, they have the potential to drastically reduce preventable complications and healthcare utilization by ensuring patients 

remain on consistent and effective treatment regimens [30]. 

5.2 Behavioral AI Tools: Reminders, Gamification, and Nudges  

Behavioral science and artificial intelligence are increasingly being merged to design tools that encourage medication adherence through subtle 

behavioral prompts. These interventions leverage real-time patient data to generate personalized digital reminders, gamification strategies, and 

behavioral nudges—all aimed at improving consistency in medication usage [31]. 

AI-enabled reminders go beyond simple text alerts by timing communications based on patients’ routines, medication regimens, and adherence history. 

Natural language processing allows for human-like, empathetic phrasing in messages, which can improve engagement and reduce alert fatigue [32]. 

Some platforms integrate with mobile applications, voice assistants, or wearable devices to provide multisensory cues—vibrations, auditory tones, or 

visuals—that reinforce adherence habits. 

Gamification adds an element of motivation by using AI to create reward systems based on adherence performance. Patients may earn points, badges, 

or progress through levels as they maintain consistent medication behaviors [33]. These features are particularly effective in younger populations or 

those managing lifestyle-modifiable conditions like hypertension or diabetes, where long-term engagement is critical. 

Behavioral nudging is another technique rooted in choice architecture. AI can learn which incentives—such as reduced premiums, shopping vouchers, 

or congratulatory messages—are most effective for specific patient demographics and deploy them at optimal times [34]. These nudges are designed to 

make the preferred behavior (e.g., taking medication) easier and more rewarding than the alternative (e.g., forgetting a dose). 

Studies show that AI-powered behavioral tools can boost adherence rates by as much as 20% when appropriately customized to the user [35]. As these  

tools evolve, they offer scalable, non-intrusive methods to embed adherence-promoting mechanisms into patients’ daily lives with minimal disruption 

and maximum personalization. 

5.3 Linking Price Optimization to Improved Medication Persistence  

Medication persistence—the duration over which a patient continues therapy without interruption—is highly sensitive to drug pricing and affordability. 

AI-driven price optimization tools can significantly influence persistence by aligning medication cost structures with patients’ financial capacities and 

clinical needs. By dynamically adjusting prices, identifying low-cost therapeutic alternatives, and offering real-time discounts, these systems reduce the 

likelihood of price-related treatment discontinuation [36]. 

Machine learning models analyze patient-level data, such as income bracket, insurance type, prior refill behaviors, and out-of-pocket maximums, to 

recommend pricing strategies that promote long-term medication adherence. For instance, a patient flagged for potential dropout due to high copays 

might be auto-enrolled in a copay assistance program or redirected to a cost-effective generic equivalent [37]. 

In real-world applications, pharmacies using AI-driven pricing engines have reported increases in medication refill rates and persistence, especially in 

populations managing chronic conditions like asthma, hypertension, or lipid disorders. These tools also support medication synchronization by aligning 

refill schedules across prescriptions, which further improves long-term therapy continuation [38]. 

Furthermore, AI models can forecast future dropout risks and adjust pricing proactively, rather than reactively. This shift enables a preventative 

framework where affordability barriers are mitigated before they lead to non-persistence. Integrating cost management with behavioral and clinical data 

positions AI as a comprehensive adherence enabler. As healthcare systems increasingly adopt outcome-based reimbursement models, ensuring 

persistence through price responsiveness becomes both a clinical and financial imperative [39]. 

5.4 Evidence from AI-Driven Adherence Programs  

Emerging evidence underscores the effectiveness of AI-driven adherence interventions in real-world settings. Health systems employing predictive 

analytics to identify non-adherence risks have reported up to a 15% reduction in hospital readmissions and a 10–20% improvement in medication 

possession ratios among targeted cohorts [40]. 

Programs that combine predictive AI with behavioral nudges—such as text reminders and gamification—have demonstrated increased refill rates, 

especially for chronic medications like statins and oral hypoglycemics. For instance, one study found that patients using an AI-powered app 

experienced 25% higher 6-month adherence compared to non-users [41]. 

Retail pharmacy chains and integrated health networks now routinely deploy AI tools to personalize outreach and streamline adherence programs. 

These systems enable timely follow-ups, automate refill reminders, and customize interventions based on prior engagement success rates [42]. As the 

data ecosystem expands and model accuracy improves, AI is expected to play an increasingly central role in reducing non-adherence and enhancing 

chronic disease outcomes across diverse populations. 
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Figure 3: Correlation graph: AI-generated price drop vs. refill adherence rate increase (case study view) 

6. BUILDING ETHICAL AND TRANSPARENT PBM-AI ECOSYSTEMS  

6.1 Algorithmic Bias and Equity Concerns in Drug Pricing AI  

As artificial intelligence (AI) becomes increasingly embedded in pharmacy pricing and formulary decisions, concerns about algorithmic bias and equity 

have come to the forefront. AI systems learn from historical data, which often reflect existing disparities in healthcare access, drug affordability, and 

demographic representation. When these biases are not identified and corrected, AI models may perpetuate or even exacerbate inequities in drug 

pricing and medication access across marginalized populations [32]. 

For instance, if training data underrepresent rural or low-income communities, AI predictions may be skewed toward urban-centric pricing 

assumptions, leading to pricing models that are less effective or less accessible in underserved areas [33]. Similarly, patient segmentation algorithms 

that rely heavily on economic indicators without contextualization may deny discounts or benefits to vulnerable groups who need them the most but fail 

to meet rigid, data-defined thresholds [34]. 

Moreover, AI tools used to allocate patient assistance or copay relief can inadvertently favor those with better digital access or clearer documentation, 

systematically excluding populations with limited literacy, language barriers, or inconsistent insurance records. These disparities raise ethical questions 

about fairness, representation, and the prioritization of human dignity in automated systems [35]. 

Biases can also emerge through proxy variables—such as ZIP code or employment status—that correlate with race or socioeconomic status. Without 

careful calibration and regular auditing, these proxies can replicate systemic inequalities embedded in the healthcare system [36]. To ensure equitable 

outcomes, developers and policymakers must design AI algorithms with fairness constraints, invest in inclusive datasets, and monitor disparities in real-

world model performance across different racial, geographic, and economic subgroups [37]. 

6.2 Transparency Tools: Open AI Logic and Auditable Models  

Transparency is essential to building trust and accountability in AI systems deployed for pharmacy pricing and benefit management. Many current AI 

applications operate as "black boxes," generating outputs without disclosing how decisions are made. This lack of interpretability poses challenges for 

regulators, providers, and patients, who must be able to understand and validate the logic behind AI-driven pricing recommendations or subsidy 

allocations [38]. 

One approach to enhancing transparency is the adoption of interpretable machine learning models, such as decision trees, rule-based classifiers, or 

generalized additive models, which provide clear rationales for their predictions. These models allow stakeholders to trace how input features—such as 

drug cost, coverage tier, or patient income—contribute to a pricing recommendation [39]. While less complex than deep neural networks, these models 

can be highly effective when paired with robust data engineering and domain-specific calibration. 

Another important transparency tool is the use of model explainability techniques, such as SHAP (SHapley Additive exPlanations) and LIME (Local 

Interpretable Model-Agnostic Explanations), which can be applied to more complex algorithms to identify which variables most influence the model's 

decision in a specific instance [40]. These tools help uncover potential biases and offer opportunities for adjustment before implementation. 
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Auditable AI also requires ongoing documentation of model development, training datasets, parameter tuning, and validation results. Establishing 

model cards and version tracking facilitates external review and compliance verification [41]. Furthermore, making pricing logic accessible to 

patients—via patient portals or pharmacy apps—can empower users to challenge or query cost anomalies, fostering transparency and trust in AI-guided 

healthcare decisions [42]. 

6.3 Governance Frameworks for Ethical AI Use in PBMs  

The integration of AI into Pharmacy Benefit Manager (PBM) operations raises urgent questions around governance, particularly concerning ethical use, 

data accountability, and conflict of interest management. As PBMs wield increasing control over medication pricing, utilization management, and 

benefit design, the deployment of AI within these organizations must be guided by robust, enforceable governance frameworks that prioritize public 

interest and ethical integrity [43]. 

An ethical governance framework begins with the articulation of clear AI principles—such as fairness, transparency, non-maleficence, and 

accountability—that are adapted specifically for healthcare pricing environments. These principles should inform every stage of model development, 

from data acquisition to deployment, and be codified in formal internal policies [44]. PBMs should establish interdisciplinary AI ethics committees that 

include data scientists, ethicists, patient advocates, and clinicians to review algorithmic models before implementation. 

Privacy protections are also central to governance. AI pricing models depend on sensitive patient data, including health records, income indicators, and 

location. These datasets must be anonymized, securely stored, and used only with informed consent and strict purpose limitations [45]. Audits must 

assess compliance with laws such as HIPAA and emerging AI-specific regulations, while ensuring that pricing tools do not exploit vulnerable 

populations or disproportionately burden disadvantaged communities [46]. 

Governance frameworks should further require that all PBM-affiliated AI systems undergo regular impact assessments, including fairness testing, 

outcome monitoring, and stakeholder feedback loops. Transparent reporting of algorithmic performance and revision timelines can enhance public 

accountability [47]. By institutionalizing these safeguards, PBMs can deploy AI in ways that uphold ethical norms, align with  healthcare equity goals, 

and reinforce confidence in automated decision-making systems [48]. 

6.4 Cross-Sector Oversight and Stakeholder Involvement  

Given the complexity and high stakes involved in AI-driven pharmacy pricing, effective oversight must extend beyond individual PBMs or tech 

developers to involve multiple sectors, including regulators, healthcare providers, patients, and civil society organizations. Cross-sector oversight 

creates checks and balances that mitigate conflicts of interest and ensure that pricing models serve public health objectives rather than purely financial 

imperatives [49]. 

Multi-stakeholder advisory boards can play a critical role in shaping AI policy, evaluating algorithms, and co-designing ethical benchmarks for pricing 

transparency and accessibility. These boards should include patient representatives, community leaders, academic experts, and technology ethicists to 

reflect diverse perspectives and lived experiences [50]. Engaging affected populations in the design and monitoring of AI systems can improve their 

relevance, fairness, and cultural sensitivity. 

Public-private partnerships may also be instrumental in developing regulatory sandboxes where new AI pricing models can be safely tested and refined 

before widespread deployment. These initiatives enable innovation while preserving public oversight and minimizing harm [51]. National agencies, 

such as the FDA or FTC, could establish dedicated units to audit AI applications in pharmacy and benefit management, issuing guidance, penalties, or 

certifications where necessary. Only through coordinated, inclusive oversight can AI innovations in drug pricing fulfill their promise of equitable and 

ethical healthcare transformation [52]. 

 

Table 3: Ethical Risks and Mitigation Strategies in Pharmacy AI Pricing Models 

Ethical Risk Description Potential Consequence Mitigation Strategy 

Algorithmic Bias 
Training data may reflect systemic 

healthcare inequities 

Disproportionate pricing for 

marginalized or underserved 

groups 

Use diverse, representative datasets; 

apply fairness constraints; conduct bias 

audits 

Opacity (“Black Box” 

Models) 

Lack of transparency in AI decision 

logic 

Stakeholder distrust and inability 

to contest or verify decisions 

Use interpretable models; implement 

explainability tools (e.g., SHAP, LIME) 

Discriminatory 

Discount Allocation 

AI may deny financial support to 

vulnerable populations based on 

flawed proxies 

Widening health disparities and 

reduced medication access 

Validate subsidy logic; monitor impact by 

demographic segment; apply ethical 

filters 

Data Privacy Violations 
Misuse or leakage of sensitive health 

and financial data 

Breach of patient confidentiality, 

legal penalties 

Enforce strict access controls, encryption, 

anonymization, and HIPAA compliance 

Unregulated Dynamic 

Pricing 

Rapid, AI-driven price shifts without 

oversight 

Unfair cost fluctuations for 

patients, especially uninsured 

Establish regulatory caps and oversight 

panels; apply guardrails on pricing 

variability 

Conflict of Interest in 

PBM Ownership 

Vertical integration may influence AI 

to favor in-house pharmacies 

Anti-competitive behavior and 

limited consumer choice 
Require third-party audits, public 

disclosure of algorithms, and independent 
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Ethical Risk Description Potential Consequence Mitigation Strategy 

governance 

Lack of Patient 

Consent or Awareness 

Patients unaware of AI's role in 

pricing or subsidy decisions 
Erosion of trust, ethical violations 

Provide consent prompts; disclose AI 

involvement in price and benefit decisions 

 

7. CASE STUDIES AND IMPLEMENTATION EXAMPLES  

7.1 Case Study 1: AI-Enhanced PBM Operations in a Mid-Sized U.S. Insurer  

A mid-sized U.S.-based health insurer serving approximately 2 million lives implemented an artificial intelligence (AI)-enhanced pharmacy benefit 

management (PBM) platform to address escalating medication costs and improve transparency in formulary decisions. The insurer partnered with a 

health-tech vendor to integrate machine learning algorithms into its claims processing, formulary optimization, and rebate negotiations. The AI system 

analyzed historical claims, patient adherence data, and real-time drug price fluctuations to identify cost-saving opportunities without compromising 

clinical efficacy [53]. 

One key application was AI-assisted formulary tiering. By using predictive modeling, the platform could forecast which formulary adjustments would 

lower out-of-pocket expenses while maintaining therapeutic effectiveness. Within six months, the system facilitated a 17% increase in generic drug 

utilization and reduced high-cost brand prescriptions by 12% [36]. Additionally, patient copays were decreased by an average of $5 per prescription, 

with greater savings observed in high-volume therapeutic areas like cardiovascular and endocrine drugs. 

Another innovation was AI-driven rebate optimization. The system modeled various rebate contract scenarios and simulated the impact of different 

rebate thresholds on both payer savings and member access. This led to the renegotiation of three major contracts, yielding an estimated annual savings 

of $11 million [37]. 

Stakeholder feedback from physicians and pharmacists highlighted improvements in formulary clarity and prescription approval speed. While there 

were concerns about AI overriding clinician preferences, the insurer implemented a feedback loop where providers could contest decisions and propose 

overrides [38]. This case underscores the role of AI not only as a cost-reduction tool but also as a mediator between efficiency and ethical decision-

making in PBM strategy. 

7.2 Case Study 2: AI-Powered Retail Pharmacy Discount Program  

A leading national pharmacy chain launched an AI-powered consumer discount program aimed at enhancing affordability and customer loyalty. The 

program used machine learning algorithms to dynamically generate personalized discounts based on individual purchase history, insurance status, and 

socioeconomic indicators. By analyzing over 30 million de-identified transactions, the AI engine stratified patients into risk tiers for cost-related 

nonadherence and tailored offers accordingly [39]. 

The system was embedded within the pharmacy’s mobile app and online portal, allowing customers to access real -time prices, digital coupons, and 

lower-cost therapeutic alternatives. When a prescription was scanned at the point of sale, the AI engine assessed eligibility for available discounts and 

applied the most appropriate one instantly. In cases of high-cost medications, the system recommended evidence-based generics or connected patients 

with manufacturer copay assistance programs [40]. 

During a 12-month pilot, over 2.1 million consumers used the tool, resulting in a 22% increase in prescription fills among previously non-adherent 

patients and a 9% drop in abandonment rates at the point of sale [41]. Importantly, the initiative saw disproportionate gains among Medicaid enrollees 

and uninsured patients, demonstrating its potential to close affordability gaps. 

Retail pharmacists reported that the tool reduced the time spent manually searching for discounts and improved patient satisfaction scores by 15%. 

However, ethical debates emerged around data privacy and the use of behavioral profiles in targeting offers. The company responded by enhancing its 

data anonymization protocols and creating a consumer data transparency dashboard within the app [42]. This use case illustrates how retail-facing AI 

solutions can drive cost-effectiveness while reinforcing trust and equity in pharmacy services. 

7.3 Lessons Learned and Policy Implications  

These case studies reveal that AI can significantly enhance affordability, adherence, and operational efficiency in both PBM and retail pharmacy 

contexts. However, they also highlight the importance of robust ethical governance, continuous performance evaluation, and transparent stakeholder 

engagement. 

A critical lesson is the value of explainability. AI models that are interpretable and subject to provider review foster higher adoption and reduce 

pushback from clinicians concerned about algorithmic control over medical decisions [43]. Moreover, privacy protections—especially in consumer-

facing systems—are essential to sustain public trust in AI solutions. Programs that integrate transparent data use policies and offer opt-out mechanisms 

are more likely to gain consumer confidence. 

Policymakers must establish frameworks that standardize transparency and fairness metrics across AI implementations in pharmacy pricing. These 

could include mandatory reporting of pricing model impacts, audits of patient outcomes, and public disclosure of rebate-driven formulary decisions 

[44]. Encouraging cross-sector collaboration through public-private regulatory sandboxes can accelerate innovation while preserving safety and equity. 
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Ultimately, AI is not a panacea but a powerful tool that, if appropriately guided, can support systemic transformation. Integrating AI into pharmacy 

pricing requires ongoing alignment with policy objectives that prioritize equitable access, ethical practice, and value-driven healthcare delivery [45]. 

 

Figure 4: Timeline of AI-PBM integration milestones in the case studies 

8. CHALLENGES, LIMITATIONS, AND FUTURE PROSPECTS  

8.1 Data Access and Interoperability Hurdles  

A major barrier to the widespread adoption of AI in drug pricing is the lack of seamless data access and interoperability across healthcare systems. AI 

models rely on vast and diverse datasets—ranging from prescription claims and pharmacy transactions to clinical records and social determinants of 

health. However, much of this data is fragmented across siloed systems, governed by varying standards and formats that hinder integration [38]. 

Pharmacy Benefit Managers (PBMs), insurers, and providers often use proprietary systems that are not interoperable, making it difficult to link data 

needed for end-to-end pricing analysis. The absence of standardized data exchange protocols, such as consistent use of Fast Healthcare Interoperability 

Resources (FHIR), further complicates AI deployment at scale [39]. This disconnect limits real-time analysis, reduces model accuracy, and impairs the 

delivery of patient-specific pricing insights. 

Moreover, privacy regulations such as HIPAA, while essential, can create additional friction in sharing data for algorithm training or deployment. In 

many cases, data is not de-identified adequately or is withheld due to legal uncertainties, resulting in incomplete datasets [40]. This affects the 

representativeness of AI models and limits their ability to generalize across populations. 

Efforts to address these challenges include the development of data trusts, common data models, and interoperable APIs that can facilitate secure and 

standardized data flows. However, implementation remains uneven across sectors. Overcoming data access barriers will require concerted investment 

in digital infrastructure, harmonization of technical standards, and clear regulatory frameworks that balance innovation with privacy protection [41]. 

8.2 Organizational and Workforce Readiness for AI  

The successful integration of AI in drug pricing not only depends on technological readiness but also hinges on organizational culture, leadership 

commitment, and workforce preparedness. Many pharmacy benefit managers, insurers, and retail chains face internal resistance due to limited 

familiarity with AI, concerns over job displacement, or skepticism about algorithmic decision-making [42]. 

A common challenge is the lack of internal data science capabilities. Organizations may struggle to attract and retain AI talent, particularly when 

competing with the tech sector. Without skilled personnel to develop, validate, and interpret models, AI initiatives often stall or underperform [43]. 

Furthermore, front-line staff such as pharmacists and formulary managers may lack training in AI literacy, which limits their ability to collaborate 

effectively with technical teams or evaluate AI-generated recommendations. 

Leadership also plays a pivotal role. Organizations that fail to articulate a strategic vision for AI or underestimate the operational transformation 

required are unlikely to achieve sustainable impact. Change management strategies—including continuous education, pilot programs, and cross-

functional working groups—are essential to foster AI adoption [44]. 

Workforce readiness also requires ethical sensitivity. Employees must understand not just how to use AI tools but also how to question their fairness, 

explainability, and implications for patient care. Embedding AI ethics into professional training curricula can help cultivate a culture of responsible 

innovation [45]. As AI becomes increasingly embedded in pharmacy operations, organizations must evolve their structures, competencies, and mindsets 

to fully harness its potential while safeguarding clinical integrity and patient trust. 

8.3 Future of Explainable AI in Drug Pricing  

Explainable AI (XAI) represents a vital frontier in drug pricing, addressing the critical need for transparency, accountability, and trust in algorithmic 

decisions. Unlike conventional “black-box” models, XAI techniques provide clear, interpretable rationales for how pricing recommendations are 

generated, which variables were most influential, and what trade-offs were considered in the output [46]. 
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In pharmacy contexts, explainable models empower pharmacists, clinicians, and patients to understand why a certain drug was placed in a specific 

formulary tier or why one pricing scenario was favored over another. Tools such as SHAP and LIME can provide both global insights—such as which 

features consistently influence pricing—and local explanations tailored to individual decisions [47]. This level of clarity fosters confidence, supports 

clinical validation, and enables contestability in cases where AI decisions appear misaligned with patient needs or ethical norms. 

Future developments in XAI will likely focus on hybrid models that combine high-performance deep learning with inherently interpretable 

components, offering both accuracy and transparency. Regulatory bodies are also expected to require formal documentation of algorithm logic, audit 

trails, and real-world outcome tracking for high-stakes applications such as drug pricing [48]. As trust becomes a central currency in AI adoption, XAI 

will be indispensable in building stakeholder legitimacy and social acceptance of intelligent pricing tools.  

8.4 Global Expansion Potential and LMIC Use Cases  

AI-powered drug pricing systems hold significant promise for global expansion, particularly in low- and middle-income countries (LMICs) where 

affordability and access disparities are acute. Mobile-based AI platforms can facilitate real-time price comparison, optimize procurement, and predict 

stock shortages in public health supply chains [49]. Pilot projects in Kenya and India have demonstrated improved access to essential medicines 

through dynamic subsidy allocation and community-based adherence alerts powered by AI algorithms [50]. With investment in digital health 

infrastructure and culturally tailored models, LMICs can leapfrog legacy systems and implement scalable, equity-driven AI pricing strategies that 

enhance pharmaceutical access for underserved populations [51]. 

 

Figure 5: Future framework: Roadmap to scalable AI-integrated PBM reform (2025–2035) 

 

 

9. CONCLUSION  

Artificial intelligence (AI) is rapidly redefining the landscape of drug pricing, offering transformative capabilities to balance cost efficiency, medication 

adherence, and ethical pharmacy benefit management (PBM) operations. Through predictive analytics, dynamic pricing, and prescriptive models, AI 

empowers stakeholders to identify cost drivers, optimize formulary design, and tailor interventions that enhance affordability and access. At the same 

time, behavioral tools such as personalized reminders, gamification, and targeted subsidies have demonstrated significant promise in improving 

medication adherence, especially among vulnerable populations. These innovations collectively present an opportunity to realign pharmacy operations 

with the principles of health equity, financial sustainability, and patient-centered care. 

However, the growing role of AI also amplifies the urgency for transparent, accountable, and ethical governance. The risks of algorithmic bias, opaque 

decision-making, and profit-driven misuse underscore the need for frameworks that prioritize fairness, explainability, and public trust. Interpretable AI  

models, auditable systems, and inclusive oversight mechanisms must become standard practice, ensuring that AI remains a tool for empowerment 

rather than exclusion. Patients, providers, and policymakers alike must be granted meaningful insight into how pricing algori thms function and how 

they affect care delivery. 
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As AI technologies continue to evolve, there is a pressing need for collaborative action across the public and private sector s. Regulators, health 

systems, technology developers, and patient advocates must co-create robust policies, interoperability standards, and ethical benchmarks that govern AI 

deployment in pharmacy ecosystems. Cross-sector sandboxes, workforce development programs, and transparency mandates can accelerate responsible 

innovation while safeguarding patient rights and promoting equity. 

Ultimately, AI’s potential to reform drug pricing and PBM practices lies not in the sophistication of algorithms alone but in the collective will to guide 

their use with integrity, inclusivity, and foresight. The path forward demands a commitment to shared governance, continuous learning, and unwavering 

dedication to the public good. Only through such a united approach can AI serve as a catalyst for meaningful, equitable transformation in medication 

affordability and access. 
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