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ABSTRACT 

This document discusses the creation of a real-time web application that identifies handwritten mathematical equations and transforms them into syntactically 

accurate LaTeX code employing a pre-trained deep learning model. The model used in this system was trained on a collection of 100,000 authentic handwritten 

mathematical equations, enabling it to generalize effectively across many different handwriting styles. The application employs ONNX Runtime to load and run 

the trained model, while Streamlit is utilized to develop an interactive frontend accessible via browsers for image uploads, LaTeX rendering, and result exporting. 

The system prioritizes usability, modularity, and reliability within educational settings. It doesn't carry out model training; instead, it emphasizes the smooth 

integration of current AI features into a user-friendly interface that includes preprocessing, postprocessing, LaTeX generation, copy-to-clipboard, and export options. 

Testing through experiments verifies that the application can reliably generate precise LaTeX from handwritten equations that are single-line.  
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1. Introduction 

Handwritten mathematical content is still among the most challenging domains of pattern recognition and document analysis because of the non-linear 

arrangement, variability in personal writing styles, and the semantic nuances of mathematical symbols. In educational settings, the demand for automated 

LaTeX creation from handwritten formulas is especially important, allowing students and instructors to swiftly convert notes, solutions, and lecture 

materials into digital format. Although many research articles have suggested deep learning models for symbol identification and sequence-to-LaTeX 

conversion [1][2], the real-world implementation of these systems for users remains restricted.  

 

Commercial solutions like Mathpix or MyScript deliver notable precision but are proprietary, require subscriptions, or do not allow access to raw LaTeX 

results [3]. Additionally, a majority of scholarly pursuits emphasize architectural advancements in model creation instead of developing user-friendly, 

implementable systems. This study tackles this deficiency by creating a lightweight, real-time application that allows users to access the results of a 

pretrained model through a web interface.  

 

The implemented model had earlier been trained on an extensive dataset of 100,000 handwritten equations, featuring diverse symbol patterns, layouts, 

and character variations. The training probably adhered to a supervised sequential learning approach employing encoder-decoder models with attention 

mechanisms or transformer variants, both of which are effective for recognizing mathematical syntax [2][4]. Nonetheless, this paper concentrates solely 

on employing the trained model for inference purposes. This pretrained model is delivered in the ONNX format, a transferable representation of the neural 

network that enables deployment without reliance on the original training framework. ONNX Runtime is utilized to run this model effectively on various 

platforms [7].  

 

The completed system is intended to operate both locally and in cloud environments without the need for GPU acceleration. It allows users to upload 

handwritten images, process them, transform them into LaTeX format, and engage with the output by copying or exporting. Streamlit acts as the interactive 

frontend component, managing real-time interactions, rendering previews, and facilitating user actions such as copying the LaTeX string or saving it to 

a .tex file. 

2. Literature Review 

The identification of handwritten mathematical formulas is a unique area of document analysis with a long-standing research background. Early systems 

relied on heuristic rules, stroke analysis, and template matching, which were not robust against variations in handwriting. Modern systems employ 
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convolutional and recurrent neural networks, particularly encoder-decoder structures with attention mechanisms, to convert image features directly into 

LaTeX sequences [1][2]. These architectures have shown remarkable outcomes in producing structured sequences.  

 

Ding et al. created a model that employs multi-head attention to improve the sequential prediction of mathematical symbols [2], while Yuan et al. 

introduced syntax-aware networks that embed LaTeX grammar restrictions into the decoding procedure [3]. These improvements significantly improved 

recognition accuracy, especially on CROHME benchmarks [4], which mimic real academic handwriting.  

 

ONNX Runtime has established itself as a standard for implementing pretrained models across multiple platforms without needing the original training 

code [7]. It allows for inference on various hardware with enhancements, making it particularly attractive for embedded or web-based applications. 

Although there is limited research on deployment, multiple studies investigate tools and platforms that aid in incorporating trained models into practical 

systems [8][10].  

 

This paper builds upon those principles by focusing on creating a functional, interactive web application that incorporates a pretrained model for 

recognizing handwritten equations, allowing its use in educational and research settings. While the core model stays the same, the structure of the 

surrounding system—inclusive of preprocessing, mapping, LaTeX validation, and real-time output—introduces innovation and promotes effective AI 

integration.  

3. Methodology 

The system's architecture is layered and modular, designed to promote ease of deployment, scalability, and flexibility. It is divided into five fundamental 

layers:  

 

User Interface Layer: Developed with Streamlit, this section handles file uploads, displays preview images, produces LaTeX output, and offers copy and 

export features. It maintains application state and allows for event-driven user interfaces.  

 

Input Verification and Preprocessing Layer: Uploaded user images are checked (file format, resolution, and content type) and subsequently preprocessed 

with OpenCV. Preprocessing entails changing to grayscale, adjusting the size to 1024×192 pixels, and normalizing. These processes correspond with the 

anticipated input format of the pretrained model [6].  

 

Model Inference Layer: This layer utilizes the pretrained ONNX model and sends the preprocessed image through it. ONNX Runtime manages the 

inference process, providing a series of index values that relate to the symbol classes learned by the model. The model was instructed to generate these 

sequences sequentially, mimicking the LaTeX format.  

 

LaTeX Mapping and Postprocessing Layer: The predicted index sequence is mapped to LaTeX tokens using a JSON mapping file. Postprocessing routines 

add syntactic wrappers, correct grouping issues, and ensure expressions like \frac{a}{b} or \sqrt{x} are correctly formed. Errors such as unbalanced 

brackets are corrected here [9].  

 

Output and Export Layer: The completed LaTeX is displayed on the screen via Streamlit’s st.latex() function and can be copied with pyperclip or saved 

to a .tex file through standard input/output methods. The application preserves its internal state by utilizing Streamlit's caching features. The complete 

process, from uploading to generating output, takes only 1–2 seconds per input on CPU systems. 

 

 

Fig. 1 – System Architecture. 

4. Implementation 

The system was created using Python version 3.13. The frontend was developed in Streamlit, selected for its responsive interface and integrated LaTeX 

capabilities. Essential components consist of cv2 for data preprocessing, onnxruntime for executing model inference, json for mapping symbols, and 

pyperclip for clipboard operations.  

 

After an image is uploaded, it undergoes validation and preprocessing. The photo is adjusted in size, standardized, and shifted to grayscale. The ONNX 

model is subsequently loaded, and inference takes place. The output generated is a series of indices that correspond to LaTeX symbols via a JSON file 



International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 16755-16757                  16757 

 

 

mapping. Postprocessing guarantees syntactical accuracy for intricate expressions like fractions and roots.  

 

The final LaTeX output is displayed in the interface and can be copied or exported. The software operates completely offline, making it ideal for 

educational settings with restricted internet access.   

5. Results 

To assess the system, numerous handwritten equations were examined under different conditions. Inputs comprised scanned equations from notebooks, 

digital entries written with a stylus, and photos taken with phones that had noise or inconsistent lighting. Performance was assessed according to prediction 

accuracy, the validity of LaTeX output, and the responsiveness of the system.  

 

The system exhibited over 90% accuracy in LaTeX for neat, centered entries. Minor deterioration was noted with distorted or noisy input. Typically, 

inference and rendering finished in under 2 seconds per input, demonstrating the system's appropriateness for real-time educational applications. Table 1 

provides an overview of performance for various input types.  

Table 1 - Evaluation Summary 

Input Type LaTeX Accuracy Output Validity Processing Time 

Notebook Scan 98% Valid 1.6 seconds 

Mobile Photo (Noisy) 92% Mostly Valid 1.8 seconds 

Digital Stylus Input 95% Valid 1.4 seconds 

Faint Writing (Scanner) 85% Partially Valid 2.0 seconds 

Quick Writing (Mobile) 88% Mostly Valid 1.7 seconds 

6. Conclusion 

This project introduces a practical and effective system for implementing a pretrained model for recognizing mathematical expressions within an intuitive 

web application. The emphasis on usability of the interface, LaTeX formatting, and export features renders the system especially beneficial for academic 

settings. Although model training is not the focus of this work, the integration layer offers considerable value by facilitating accessible and practical AI-

driven recognition. Possible enhancements could involve multi-line identification, solving equations, or expanding diagram interpretation.  
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