
International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 16755-16757

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

* Corresponding author.

E-mail address: christiyna.mca@drmgrdu.ac.in

AI-Powered LaTeX Generation from Handwritten

Mathematical Equations

1Tom Ferdi Nalan A, 2Dr. A. Christiyana Arulselvi

1Scholar, Department of MCA, tomferdinalan30@gmail.com
2Associate Professor, Department of MCA

Dr. M.G.R Educational and Research Institute

ABSTRACT

This document discusses the creation of a real-time web application that identifies handwritten mathematical equations and transforms them into syntactically

accurate LaTeX code employing a pre-trained deep learning model. The model used in this system was trained on a collection of 100,000 authentic handwritten

mathematical equations, enabling it to generalize effectively across many different handwriting styles. The application employs ONNX Runtime to load and run

the trained model, while Streamlit is utilized to develop an interactive frontend accessible via browsers for image uploads, LaTeX rendering, and result exporting.

The system prioritizes usability, modularity, and reliability within educational settings. It doesn't carry out model training; instead, it emphasizes the smooth

integration of current AI features into a user-friendly interface that includes preprocessing, postprocessing, LaTeX generation, copy-to-clipboard, and export options.

Testing through experiments verifies that the application can reliably generate precise LaTeX from handwritten equations that are single-line.

Keywords: Handwritten Math Recognition, LaTeX, Streamlit, ONNX Runtime, Real-Time Interface, Deep Learning Integration, Educational Tools

1. Introduction

Handwritten mathematical content is still among the most challenging domains of pattern recognition and document analysis because of the non-linear

arrangement, variability in personal writing styles, and the semantic nuances of mathematical symbols. In educational settings, the demand for automated

LaTeX creation from handwritten formulas is especially important, allowing students and instructors to swiftly convert notes, solutions, and lecture

materials into digital format. Although many research articles have suggested deep learning models for symbol identification and sequence-to-LaTeX

conversion [1][2], the real-world implementation of these systems for users remains restricted.

Commercial solutions like Mathpix or MyScript deliver notable precision but are proprietary, require subscriptions, or do not allow access to raw LaTeX

results [3]. Additionally, a majority of scholarly pursuits emphasize architectural advancements in model creation instead of developing user-friendly,

implementable systems. This study tackles this deficiency by creating a lightweight, real-time application that allows users to access the results of a

pretrained model through a web interface.

The implemented model had earlier been trained on an extensive dataset of 100,000 handwritten equations, featuring diverse symbol patterns, layouts,

and character variations. The training probably adhered to a supervised sequential learning approach employing encoder-decoder models with attention

mechanisms or transformer variants, both of which are effective for recognizing mathematical syntax [2][4]. Nonetheless, this paper concentrates solely

on employing the trained model for inference purposes. This pretrained model is delivered in the ONNX format, a transferable representation of the neural

network that enables deployment without reliance on the original training framework. ONNX Runtime is utilized to run this model effectively on various

platforms [7].

The completed system is intended to operate both locally and in cloud environments without the need for GPU acceleration. It allows users to upload

handwritten images, process them, transform them into LaTeX format, and engage with the output by copying or exporting. Streamlit acts as the interactive

frontend component, managing real-time interactions, rendering previews, and facilitating user actions such as copying the LaTeX string or saving it to

a .tex file.

2. Literature Review

The identification of handwritten mathematical formulas is a unique area of document analysis with a long-standing research background. Early systems

relied on heuristic rules, stroke analysis, and template matching, which were not robust against variations in handwriting. Modern systems employ

http://www.ijrpr.com/
mailto:tomferdinalan30@gmail.com

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 16755-16757 16756

convolutional and recurrent neural networks, particularly encoder-decoder structures with attention mechanisms, to convert image features directly into

LaTeX sequences [1][2]. These architectures have shown remarkable outcomes in producing structured sequences.

Ding et al. created a model that employs multi-head attention to improve the sequential prediction of mathematical symbols [2], while Yuan et al.

introduced syntax-aware networks that embed LaTeX grammar restrictions into the decoding procedure [3]. These improvements significantly improved

recognition accuracy, especially on CROHME benchmarks [4], which mimic real academic handwriting.

ONNX Runtime has established itself as a standard for implementing pretrained models across multiple platforms without needing the original training

code [7]. It allows for inference on various hardware with enhancements, making it particularly attractive for embedded or web-based applications.

Although there is limited research on deployment, multiple studies investigate tools and platforms that aid in incorporating trained models into practical

systems [8][10].

This paper builds upon those principles by focusing on creating a functional, interactive web application that incorporates a pretrained model for

recognizing handwritten equations, allowing its use in educational and research settings. While the core model stays the same, the structure of the

surrounding system—inclusive of preprocessing, mapping, LaTeX validation, and real-time output—introduces innovation and promotes effective AI

integration.

3. Methodology

The system's architecture is layered and modular, designed to promote ease of deployment, scalability, and flexibility. It is divided into five fundamental

layers:

User Interface Layer: Developed with Streamlit, this section handles file uploads, displays preview images, produces LaTeX output, and offers copy and

export features. It maintains application state and allows for event-driven user interfaces.

Input Verification and Preprocessing Layer: Uploaded user images are checked (file format, resolution, and content type) and subsequently preprocessed

with OpenCV. Preprocessing entails changing to grayscale, adjusting the size to 1024×192 pixels, and normalizing. These processes correspond with the

anticipated input format of the pretrained model [6].

Model Inference Layer: This layer utilizes the pretrained ONNX model and sends the preprocessed image through it. ONNX Runtime manages the

inference process, providing a series of index values that relate to the symbol classes learned by the model. The model was instructed to generate these

sequences sequentially, mimicking the LaTeX format.

LaTeX Mapping and Postprocessing Layer: The predicted index sequence is mapped to LaTeX tokens using a JSON mapping file. Postprocessing routines

add syntactic wrappers, correct grouping issues, and ensure expressions like \frac{a}{b} or \sqrt{x} are correctly formed. Errors such as unbalanced

brackets are corrected here [9].

Output and Export Layer: The completed LaTeX is displayed on the screen via Streamlit’s st.latex() function and can be copied with pyperclip or saved

to a .tex file through standard input/output methods. The application preserves its internal state by utilizing Streamlit's caching features. The complete

process, from uploading to generating output, takes only 1–2 seconds per input on CPU systems.

Fig. 1 – System Architecture.

4. Implementation

The system was created using Python version 3.13. The frontend was developed in Streamlit, selected for its responsive interface and integrated LaTeX

capabilities. Essential components consist of cv2 for data preprocessing, onnxruntime for executing model inference, json for mapping symbols, and

pyperclip for clipboard operations.

After an image is uploaded, it undergoes validation and preprocessing. The photo is adjusted in size, standardized, and shifted to grayscale. The ONNX

model is subsequently loaded, and inference takes place. The output generated is a series of indices that correspond to LaTeX symbols via a JSON file

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 16755-16757 16757

mapping. Postprocessing guarantees syntactical accuracy for intricate expressions like fractions and roots.

The final LaTeX output is displayed in the interface and can be copied or exported. The software operates completely offline, making it ideal for

educational settings with restricted internet access.

5. Results

To assess the system, numerous handwritten equations were examined under different conditions. Inputs comprised scanned equations from notebooks,

digital entries written with a stylus, and photos taken with phones that had noise or inconsistent lighting. Performance was assessed according to prediction

accuracy, the validity of LaTeX output, and the responsiveness of the system.

The system exhibited over 90% accuracy in LaTeX for neat, centered entries. Minor deterioration was noted with distorted or noisy input. Typically,

inference and rendering finished in under 2 seconds per input, demonstrating the system's appropriateness for real-time educational applications. Table 1

provides an overview of performance for various input types.

Table 1 - Evaluation Summary

Input Type LaTeX Accuracy Output Validity Processing Time

Notebook Scan 98% Valid 1.6 seconds

Mobile Photo (Noisy) 92% Mostly Valid 1.8 seconds

Digital Stylus Input 95% Valid 1.4 seconds

Faint Writing (Scanner) 85% Partially Valid 2.0 seconds

Quick Writing (Mobile) 88% Mostly Valid 1.7 seconds

6. Conclusion

This project introduces a practical and effective system for implementing a pretrained model for recognizing mathematical expressions within an intuitive

web application. The emphasis on usability of the interface, LaTeX formatting, and export features renders the system especially beneficial for academic

settings. Although model training is not the focus of this work, the integration layer offers considerable value by facilitating accessible and practical AI-

driven recognition. Possible enhancements could involve multi-line identification, solving equations, or expanding diagram interpretation.

REFERENCES

1. J. Zhang, J. Du, and L. Dai, "Multi-Scale Attention with Dense Encoder for Handwritten Mathematical Expression Recognition," arXiv preprint

arXiv:1801.03530, 2018.

2. H. Ding, K. Chen, and Q. Huo, "An Encoder-Decoder Approach to Handwritten Mathematical Expression Recognition with Multi-Head Attention and

Stacked Decoder," in Proc. International Conference on Document Analysis and Recognition (ICDAR), Springer, Cham, 2021, pp. 39–54.

3. Y. Yuan et al., "Syntax-Aware Network for Handwritten Mathematical Expression Recognition," arXiv preprint arXiv:2203.01601, 2022.

4. M. Mahdavi et al., "ICDAR 2019 CROHME+ TFD: Competition on Recognition of Handwritten Mathematical Expressions and Typeset Formula

Detection," in Proc. ICDAR, IEEE, 2019.

5. D. Wang, C. Liu, et al., "ICFHR 2020 Competition on Offline Recognition and Spotting of Handwritten Mathematical Expressions (OffRaSHME)," in

17th Int. Conf. on Frontiers in Handwriting Recognition, IEEE, 2020.

6. G. Rao and S. M. Babu, "Preprocessing Techniques for Handwritten Mathematical Expression Recognition: A Review," International Journal of

Engineering Research & Technology (IJERT), vol. 9, no. 10, pp. 680–685, 2020.

7. Microsoft, "ONNX Runtime: High Performance Scoring Engine for ML Models," Microsoft Research Technical Report, 2019.

8. A. Kumar and S. K. Sahu, "Deploying Deep Learning Models in Web Applications: A Study of Frameworks and Tools," International Journal of Computer

Applications, vol. 182, no. 45, 2018.

9. S. Basak and A. Sinha, "Automated Conversion of Mathematical Handwriting to LaTeX Using Neural Networks," IEEE Xplore, 2020.

10. A. Saha and P. Ghosh, "Streamlit-Based Web Application for Real-Time AI Model Deployment," International Journal of Scientific Research in Computer

Science, Engineering and Information Technology, vol. 8, no. 3, 2022.

11. J. Cai, R. Zanibbi, and M. Suzuki, "A New Approach for Recognizing Handwritten Mathematical Expressions using Structural Parsing and Symbol Layout

Trees," Pattern Recognition Letters, vol. 135, pp. 44–50, 2020.

