
International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 16107-16111

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Evaluating the Performance of Java Virtual Machine and Python

Interpreter in Machine Learning Workloads

1Aditya Narayan Chaubey, 2Sagar Choudhary, 3Akanksha Pandey

1, 3 B.Tech Student, Department of CSE, Quantum University, Roorkee, India.

2Assistant Professor, Department of CSE, Quantum University, Roorkee, India.

ABSTRACT:

This research paper presents a comprehensive comparative analysis between the Java Virtual Machine (JVM) and Python Interpreter with a specific focus on their

performance in machine learning workloads. Drawing from multiple scholarly research papers and supported by additional litera ture, this study explores the

syntax, semantics, runtime behaviour, ecosystem support, and performance trade-offs between the two languages. Python has emerged as the preferred language

for data scientists and machine learning practitioners due to its simplicity, dynamic nature, and vast libraries such as NumPy, Pandas, and TensorFlow.

Conversely, Java remains a top choice for enterprise applications owing to its performance, strong typing, and multithreading capabilities. The analysis dives into

experimental benchmarks, highlighting strengths and weaknesses of both platforms. Our findings suggest that while Python excels in rapid prototyping and ease

of use, Java offers superior performance and scalability for production-level systems. The paper concludes with guidance on when to prefer one language over the

other in the context of machine learning, aiming to support informed decisions in both academic and industrial AI development projects.

1.Introduction

Artificial Intelligence (AI) and Machine Learning (ML) are reshaping industries by automating processes, extracting insights from data, and enhancing

user experiences. As these technologies grow, the choice of a programming language becomes vital, influencing model performance, scalability, and

maintainability. Python and Java stand out due to their versatility, maturity, and community support [4][5].

Python's syntax resembles natural language, enabling developers to focus on problem-solving rather than language intricacies [6]. It is the de facto

standard for most ML tasks, supported by powerful libraries like Scikit-learn, Keras, and PyTorch [12]. Python’s flexibility also allows integration with

other technologies, making it ideal for experimental projects and academic research. Furthermore, its large open-source community accelerates the

availability of new machine learning tools and research implementations, providing immediate access to the latest AI trends.

Java, with its Java Virtual Machine (JVM), provides a platform-independent environment that supports high-performance, secure, and robust

applications [5][7]. Java’s scalability and strong typing system make it suitable for large-scale, high-volume production systems. Additionally, Java's

enterprise legacy means that it integrates well with existing business applications, making it a practical choice for organizations needing stable, long-

term deployment of AI solutions. This paper explores the nuances of both platforms, particularly in the realm of machine learning workloads, to aid

developers and researchers in selecting the appropriate tool [1][2][3].

2.Literature Review

Numerous studies have evaluated Python and Java individually for general-purpose programming and machine learning applications. Python,

developed by Guido van Rossum in 1989, emphasizes simplicity and readability [6]. Over time, it evolved with a rich ecosystem catering to AI and

ML, becoming the preferred choice for data scientists [4][12]. Java, introduced by James Gosling in 1995 at Sun Microsystems, was designed with

platform independence in mind [5]. Its evolution has led to robust enterprise-level applications across various domains [7].

Recent literature highlights Python's strengths in rapid prototyping, wide adoption in academia, and an active open-source community [1][2][4]. Its

flexible typing, extensive library support, and simple syntax make it ideal for researchers and students who need to build and test machine learning

models quickly. Notably, Python’s dominance in AI-related conferences and journals indicates its popularity among academic researchers. Tools like

Jupyter Notebooks have further enhanced its utility for teaching, experimentation, and documentation.

Conversely, Java is recognized for its multithreading, runtime efficiency, and security features [3][5][7]. Several studies emphasize Java's superiority in

developing scalable and performance-sensitive applications. Java’s static typing and object-oriented architecture contribute to code reliability and

maintainability, which are crucial for industrial-grade ML systems. Moreover, Java’s integration with enterprise systems (e.g., Spring Framework,

Apache Spark) positions it as a strong backend language that can support AI workflows at scale.

A few researchers have also used Halstead metrics to compare software complexity between Python and Java, concluding that Java tends to be more

complex but offers better control and predictability, especially in large-scale systems [10]. Others have focused on encapsulation mechanisms,

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 16107-16111 16108

suggesting Java provides better data hiding and object protection features compared to Python [11]. These nuanced perspectives inform the comparative

direction of our study and help identify when and where each language excels.

3. Architecture Overview

The architecture of Python and Java plays a significant role in how each language performs under machine learning workloads. Python code is executed

by an interpreter, typically CPython, which processes code line-by-line, introducing overhead but allowing for dynamic behavior [6]. Although this

enables interactive coding and faster debugging, it results in slower execution for computation-heavy tasks. Python’s flexibility, however, allows

integration with compiled languages like C and C++ for performance-critical components [12].

Additionally, Python’s reliance on interpreted execution makes it ideal for environments requiring runtime flexibility. Its dynamic type system allows

functions to handle multiple data types without strict declarations, which simplifies data pipeline implementation but can lead to runtime errors if not

properly handled [6]. Python also lacks native support for concurrency due to the Global Interpreter Lock (GIL), which restricts multi-threaded

execution. Workarounds such as multiprocessing or using libraries like Dask provide some relief but come with additional complexity.

Java’s architecture is centered around the JVM. Java source code is compiled into bytecode, which is executed by the JVM, allowing it to run on any

device with a compatible virtual machine [5][7]. This write-once-run-anywhere paradigm boosts Java’s cross-platform capabilities. The JVM includes

features like Just-In-Time (JIT) compilation, garbage collection, and runtime optimizations, significantly improving execution speed and memory

management [3][7]. Java’s ability to handle large-scale multithreaded operations efficiently makes it suitable for enterprise ML applications that require

performance and reliability [5][9].

Moreover, Java's architecture supports modularity, strong encapsulation, and efficient memory handling through its managed heap and stack memory

model. This makes it particularly well-suited for long-running services, batch processing systems, and AI applications deployed in production.

Languages built on the JVM such as Scala and Kotlin have also contributed to Java’s growing ecosystem for ML and data processing tasks.

FIG 1: Architecture comparison of JVM VS python interpreter

4. Comparative Analysis

Syntax and Readability:

Python is widely acknowledged for its intuitive syntax that emphasizes readability and brevity. It allows developers to write fewer lines of code to

achieve the same functionality as Java [6][8]. This simplicity lowers the barrier to entry, making Python a top choice for beginners and data scientists.

Java, though more verbose, offers explicitness and structure that aids in maintaining large codebases [5]. Its strong adherence to object-oriented

principles helps maintain complex projects but requires more boilerplate code.

Performance:

Performance benchmarks reveal Java’s superior execution speed, especially in compute-intensive operations [3][9]. Its use of JIT compilation and static

typing enhances runtime efficiency. Java’s ahead-of-time optimization during bytecode compilation enables faster execution paths and minimizes

latency in repetitive tasks. Python, in contrast, is interpreted and dynamically typed, leading to slower performance. However, integration with

optimized C-based libraries like NumPy and use of just-in-time compilers like Numba or PyPy have reduced the gap in some use cases [6][12].

Multithreading and Concurrency: Java was designed with built-in support for multithreading and concurrency [7]. The JVM manages threads

efficiently, making Java ideal for high-performance ML systems that leverage parallelism [3][9]. Developers can use advanced concurrency utilities

like ExecutorService, ForkJoinPool, and native threads for task distribution. Python, due to the Global Interpreter Lock (GIL), struggles with true

parallel execution in multi-core systems. While libraries like multiprocessing and Dask provide workarounds, they increase code complexity and are

not as performant in CPU-bound tasks [12].

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 16107-16111 16109

Memory Management:

Java employs a sophisticated memory model with automatic garbage collection and memory allocation strategies that support long-running applications

[5]. Modern JVMs include garbage collectors such as G1 and ZGC that handle massive heaps efficiently. Python also uses garbage collection via

reference counting and cyclic garbage collection. However, Python's approach can result in delayed memory cleanup and fragmentation in memory-

intensive workloads. Benchmarking indicates Java handles large datasets more reliably and with better memory control [3][9][10].

Security: Java’s sandboxing, type safety, and runtime checks make it more secure for production systems [5][11]. It restricts unauthorized access to

system resources, making it suitable for web-based AI applications that process sensitive data. Python’s flexibility and dynamic nature, while powerful,

also introduce higher security risks. Runtime type errors, unchecked object access, and lenient exception handling can lead to unpredictable

vulnerabilities if not carefully mitigated [8].

Ecosystem and Libraries:

 Python’s vast collection of ML and data science libraries — such as TensorFlow, Keras, Scikit-learn, and PyTorch — greatly accelerate development

[4][6][12]. Java has fewer native libraries, but tools like Deeplearning4j, Weka, and Apache Spark MLlib are gaining traction [3][7]. The choice

between ecosystems often hinges on the intended application — exploratory research favors Python, while scalable deployment may benefit from

Java’s tooling and integration capabilities.

5. Experimental Benchmarks

To assess real-world performance, we analyzed results from a series of benchmarks that involved processing a 5GB dataset using Python and Java

implementations [3][9]. The tasks included data loading, transformation, classification, and model evaluation.

Memory Usage: Initial memory usage was lower for Python (4.6 GB) than Java (5.4 GB), making it marginally more efficient in terms of memory

footprint during lightweight tasks [3]. However, Java displayed better long-term memory optimization post-processing due to its managed memory

pools and garbage collection mechanisms [10]. Python’s memory usage increased linearly with task complexity and data volume, resulting in

fragmentation issues for extended workloads.

Execution Speed: Java completed the processing task in 4.031 seconds, whereas Python took 30.828 seconds. Java's JIT compiler and statically typed

system enabled rapid code execution and efficient memory usage [3][9]. Even with optimized libraries, Python lagged in execution speed due to

dynamic dispatching and interpreter overhead. However, using tools like PyPy showed promise in reducing this gap under specific conditions.

Multithreading Efficiency: Java executed parallel tasks in just 0.054 seconds, compared to Python’s 3.398 seconds. This substantial difference

showcases Java’s mature concurrency model and thread pooling mechanisms [7]. Python’s multiprocessing module introduced additional context-

switching overhead and was less predictable across platforms.

Code Complexity: Using Halstead metrics and code profiling, Python demonstrated a lower complexity score in terms of code readability and

maintenance [10]. Java’s verbosity increased the logical line count, but offered better code traceability and early error detection.

These findings reinforce that while Python enables faster development and easier experimentation, Java is the clear winner in performance-intensive,

scalable machine learning applications. Developers must balance productivity with execution efficiency based on their operational goals.

FIG 2: Benchmark Comparison

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 16107-16111 16110

FIG 3: Execution time comparison across Machine Learning Models

6.Discussion

The choice between Python and Java for machine learning is not binary but context-dependent. Python has democratized machine learning and data

science education through intuitive syntax, abundant tutorials, and tools like Jupyter Notebooks. Its thriving open-source community rapidly integrates

cutting-edge research into libraries, allowing developers to leverage state-of-the-art models with minimal setup [4][6]. Python’s ability to interface with

R, C++, and JavaScript through frameworks such as PyR and Pyodide also increases its flexibility across data analysis environments.

However, Python's drawbacks become more evident in production environments where stability, execution speed, and scalability matter. Long-term

maintainability is often compromised due to dynamic typing, inconsistent performance across platforms, and limitations in concurrency. These

challenges have prompted many organizations to prototype in Python but deploy ML models in more robust environments such as Java or C++ [5][9].

Java, on the other hand, offers a production-ready ecosystem that emphasizes type safety, performance optimization, and integration with legacy

enterprise systems. It’s a suitable choice for AI models embedded in transactional systems, real-time fraud detection, or large-scale recommendation

engines. Java’s backward compatibility and availability of tools like Apache Hadoop, Kafka, and Spark enable seamless integration into big data

workflows.

Hybrid approaches are also gaining popularity. For instance, data preprocessing and model training may occur in Python, while the model deployment,

serving, and monitoring are done in Java or via REST APIs [3]. As the AI field evolves, solutions like ONNX (Open Neural Network Exchange) and

Dockerized microservices are helping bridge language gaps between experimentation and production.

Ultimately, understanding trade-offs in performance, scalability, developer experience, and security helps practitioners choose wisely between Python

and Java. Both ecosystems are continuously improving and will remain essential pillars in the machine learning landscape.

7.Conclusion

This comparative study highlights that both Python and Java offer valuable features for machine learning workloads, but serve different purposes.

Python remains the language of choice for experimentation, education, and quick deployment of ML models due to its ease of use and comprehensive

libraries [4][6]. Java, on the other hand, is more suited for performance-critical systems where execution speed, thread management, and security are

paramount [5][7].

From the analysis, it is evident that Python's high-level abstractions and simplified syntax empower researchers and beginners to rapidly build

prototypes and experiment with models. Python’s ecosystem, powered by active community support, continues to lead the AI research landscape.

However, the same dynamic and interpreted nature that simplifies development also introduces latency and inefficiency in production scenarios.

Java, with its statically typed nature and high-performance runtime environment, delivers superior results in multi-threaded execution, memory control,

and system integration. It remains a top contender for organizations looking to deploy ML models in enterprise settings, where consistency,

performance, and security cannot be compromised. Java’s compatibility with enterprise software stacks and its ability to support concurrent workloads

make it an ideal choice for high-throughput, real-time applications such as fraud detection, user personalization engines, and large-scale decision

support systems.

Organizations may consider using both languages in tandem — leveraging Python for rapid experimentation and algorithmic development and Java for

building robust, scalable, and maintainable production pipelines. With the growing adoption of microservices, containerization (e.g., Docker), and

cross-platform model representation formats like ONNX, it is increasingly feasible to integrate the best features of both ecosystems.

In conclusion, there is no universally superior language for machine learning. The choice should align with project goals, team expertise, resource

availability, and production requirements. As both ecosystems evolve, continuous evaluation of their strengths and limitations will remain essential for

developers and data scientists.

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 16107-16111 16111

8.REFERENCES:

1. Satish Kumar Alaria et al. (2023). Comparative Study of Java and Python: A Review. Industrial Engineering Journal.

Albatera, P., Soñega, J., Daluyon, K. (2024). Analyzing Python and Java for Artificial Intelligence Development: A Comparative Study.

2. Pratik Adhav. (2024). Comparative Study of Java and Python Languages with Reference to Data Science. IJSREM.

3. Lutz, M. (2013). Learning Python (5th ed.). O’Reilly Media.

4. Bloch, J. (2017). Effective Java (3rd ed.). Addison-Wesley.

5. Guttag, J. V. (2016). Introduction to Computation and Programming Using Python (2nd ed.). MIT Press.

6. Horstmann, C. S., & Cornell, G. (2018). Core Java Volume I: Fundamentals (11th ed.). Prentice Hall.

7. Shaw, Z. A. (2017). Learn Python 3 the Hard Way (1st ed.). Addison-Wesley.

8. Insanudin, E. (2019). Implementation of Python Source Code Comparison Results with Java Using Bubble Sort Method. Journal of Physics:

Conference Series.

9. Abdulkareem, S. A., & Abboud, A. J. (2021). Evaluating Python, C++, JavaScript, and Java Programming Languages Based on Software

Complexity Calculator (Halstead Metrics).

10. Omer, S. K., Kareem, A. M., & Muhammad, H. H. (2021). Comparative Analysis: Exploring Encapsulation in Java and Python

Programming Languages. University of Kurdistan Hewler.

11. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... & Oliphant, T. E. (2020). Array

Programming with NumPy. Nature, 585(7825), 357–362.

