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ABSTRACT: 

Stock price prediction has always been a topic of great interest due to its potential financial benefits and the complexity involved in modeling market behavior. 

With the advancements in machine learning, traditional statistical models are now being benchmarked against deep learning models to assess prediction 

capabilities. This project focuses on a comparative analysis between Linear Regression, a conventional supervised learning technique, and Long Short-Term 

Memory (LSTM) networks, a modern deep learning approach, for predicting stock prices. 

The project utilizes historical stock data, which includes features such as opening price, closing price, high, low, and volume. Extensive preprocessing techniques 

such as normalization, missing value treatment, and time-based train-test splitting were applied to prepare the data. Both models were trained on the same dataset 

to ensure consistency in evaluation. 

Performance metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R² score were used to analyze the effectiveness of each 

model. The findings reveal that while Linear Regression is faster and easier to implement, it fails to capture complex patterns and dependencies in sequential data. 

In contrast, LSTM networks, though computationally intensive, show a significantly higher accuracy due to their ability to learn temporal dependencies and non-

linear relationships. 

This comparative study not only highlights the strengths and weaknesses of both models but also provides a foundational understanding for selecting appropriate 

algorithms for financial time-series forecasting tasks. 

 

INDEXTERMS: Stock Price Prediction, Linear Regression, LSTM, Time-Series Forecasting, Deep Learning, Machine Learning, Financial Data 

Analysis, Model Comparison, RMSE, MAE, Predictive Modeling. 

INTRODUCTION 

The stock market is a dynamic environment influenced by various economic, political, and psychological factors. Predicting stock prices 

accurately has long been a challenging task due to its volatile and non-linear nature. With the growing accessibility of financial data and 

advancements in computational techniques, machine learning and deep learning models are increasingly being applied to improve the accuracy of 

stock price predictions. 

 

Among these models, Linear Regression stands out for its simplicity and interpretability. It establishes a linear relationship between input features 

and the output variable, making it suitable for problems where relationships are relatively straightforward. However, its inability to capture 

complex patterns limits its performance in highly volatile domains like stock markets.On the other hand, Long Short-Term Memory (LSTM) 

networks are a typeof Recurrent Neural Network (RNN) specifically designed to model sequential data. 

LSTMs are capable of learning long-term dependencies, making them ideal for time-series forecasting tasks such as stock price prediction. They 

can capture the trends and patterns over time that traditional models may miss. 

 

This project aims to conduct a comparative analysis between Linear Regression and LSTM models to evaluate their effectiveness in predicting 

stock prices. By training and testingboth models on historical stock data, the study seeks to understand their respectivestrengths, weaknesses, and 

applicability in real-world financial forecasting scenarios. 
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 ComparativeAnalysis  

 DATA COLLECTION : 

Historical stock data was sourced from trusted platforms like Yahoo 

FinanceorKaggle,ensuringawidetimerangeandconsistentintervals(daily frequency). 

The dataset typically includes: 

Date: Timestamp of stock activity. 

Open, High, Low, Close prices: Essential for price trend analysis. 

Volume:Numberofsharestraded,usefulforunderstanding market activity. 

DATAPREPROCESSING: 

Missing Value Treatment: 

Detected using pandas functions; handled using forward fill, backward fill, or linear interpolation. 

Feature Engineering : 

Created moving averages and lagged variables to help the models captureshort-term trends. 

Normalization/Scaling : 

Used Min-Max scaling to ensure features are within the [0, 1] range, which is crucial for faster convergence, 

especially in LSTM. 

Data Splitting : 

Data was divided into training and testing subsets, maintaining chronological order to respect time-series integrity. 

Atypical80:20ratiowasused,ensuringsufficientdataforbothtraining and evaluation. 

MODELIMPLEMENTATION: 

LinearRegressionModel: 

Builtusingscikit-learn. 

Asimpleyetpowerfulstatisticaltechniquethatassumesalinear relationship between input features and target 

variable (closing price). 

Regression coefficients were calculated using Ordinary Least Squares . 

LSTMModel: 

Implemented using Keras (TensorFlow backend). 
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Suitable for modeling long-term dependencies in time-series data. 

ArchitectureIncluded: 

Input Layer: Receives 3D input [samples, time steps, features]. 

LSTM Layer(s): Configured with memory units and dropout regularization. 

Dense Output Layer: Produces final prediction value. 

Backpropagation Through Time (BPTT) used for training. 

DIAGRAM1: 

 

 
DIAGRAM2: 

MODELTRAINING: 

Linear Regression was trained with minimal tuning, focusing on residual error minimization. 

LSTMwastrainedusing: 

Epochs:Typically50–100iterations. 

Batch Size: Set between 16 to 64 based on dataset size. Optimizer: Adam 

optimizer used for adaptive learning. 
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LossFunction:MeanSquaredError(MSE)forregressiontasks. 

Early Stopping: Applied to prevent overfitting by monitoring validation loss. 

MODELEVALUATION: 

Usedmultipleevaluationmetrics: 

MSE (Mean Squared Error) 

RMSE(RootMeanSquaredError) 

R² Score (Coefficient of Determination) 

Additionally, time-series plots were generated: 

Predicted vs Actual Prices to visually assess performance. 

Loss Curves for LSTM training to monitor learning progression. 

 

COMPARATIVEANALYSIS: 

Quantitative and visual comparisons were made to evaluate: Prediction accuracy 

Stability and robustness over time 

Learning capability from complex patterns 

Performance summaries were tabulated, and graphs plotted to draw conclusions regarding suitability of 

models for financial forecasting tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTANDDISCUSSION 

PREDICTIONACCURACY: 

Linear Regression : 

The model captured general trends but failed to adapt to sudden spikes or drops in stock prices due to its 

linear nature. 

R² Score: ~0.65 MAE: 

Moderate 

RMSE: Higher compared to LSTM LSTM Model : 

Showedsignificantlybetterperformanceinlearningcomplextemporal 

dependencies.Itcloselyfollowedreal-timestockfluctuations. 

R²Score:~0.87 MAE: 

Low 

RMSE: Significantly lower 

GRAPHICALCOMPARISON: 
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Actual vs Predicted Prices were plotted. 

LinearRegressionplotshowedunderfitting,withpredictionslagging actual values. 

LSTMpredictionsnearlyoverlappedwithactualprices,indicating higher reliability. 

ERRORANALYSIS: 

Linear Regression had consistent residual errors. 

LSTM showed adaptive learning with decreasing error trends as epochs increased. 

MODELBEHAVIOUROVERTIME: 

LinearRegression: 

 Static coefficients 

 limitedlearningcapacity. 

LSTM Model 

:
Continuouslearningviabackpropagationthroughtime(BPTT) Better adjustment to nonlinear 

patterns. 

DISCUSSION: 

LSTM is more computationally intensive but worth the accuracy gain. Linear Regression can serve as a baseline model. 

Forreal-worldapplicationsrequiringprecision(e.g.,high-frequency trading), LSTM is clearly the superior choice. 

Forquick,low-resourcetasks,LinearRegressionremainsaviable option. 

CONCLUSIONANDFUTUREENHANCEMENT 

CONCLUSION: 

Theproject"AComparativeAnalysisofLinearRegressionandLSTMfor StockPricePrediction"aimedtoevaluateandcontrasttheperformanceof 

twofundamentallydifferentmachinelearningapproaches:atraditional statistical model (Linear Regression) and a deep learning model (LSTM). 

 

LinearRegressiondemonstratedtheabilitytoidentifygeneraltrendsandwas 

easytoimplementandinterpret.However,duetoitsassumptionoflinearity, itfailedtocapturethevolatileandnon-linearnatureofstockprice 

movementseffectively. 

 

LSTM,ontheotherhand,leverageditscapabilitytorememberlong-termdependenciesinsequentialdata.Itlearnedtemporalpatternsandproduced 

predictions that closely matched actual stock prices. 

 

ThroughvariousperformancemetricssuchasR²Score,RMSE,andMAE, andthroughvisualplotsofpredictedvs.actualvalues,thesuperiorityofLSTM 

over Linear Regression was clearly evident. 

FUTUREENHANCEMENT: 

 IntegrationofMoreFeatures: 

IncludetechnicalindicatorslikeBollingerBands,RSI,MACD,and moving averages. 

Integratefundamentalanalysisdatasuchasearningsreports,GDP,inflation rate, and interest rates. 

InclusionofSentimentAnalysis: 

Analyze financial news, tweets, and stock forums using NLP techniques to incorporate public sentiment as a 

feature for prediction. 

HyperparameterOptimization: 

UsetechniqueslikeGridSearch,RandomSearch,orBayesian Optimization to fine-tune model parameters for improved 

accuracy. 

HyperparameterOptimization: 

CombineLinearRegressionfortrendestimationandLSTMforcapturing volatility, creating a hybrid predictive 

framework. 
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DeploymentasaWebApporDashboard: 

mplementthefinalmodelasareal-timepredictionsystemusing platforms like Flask/Django with interactive 

dashboards (using Plotlyor Streamlit). 

Model ScalabilityandEfficiency 

Incorpora:teGPUaccelerationorcloud-basedtrainingtohandlelarge- scale datasets. 

Speed up training time. 

ExplorationofOtherDeepLearningModels: 

CompareLSTMwithotherRNNvariantslikeGRU,BiLSTM,oreven Transformer-based models for better 

time-series forecasting. 
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