
International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025), Page – 13360-13365 

 

International Journal of Research Publication and 
Reviews 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

Comparative Analysis of Neural Network-Based and Rule-Based 

Techniques for Transformer Fault Severity Classification 

Dheeraj Ahirwar
1
, Dr. A. K. Sharma

2
  

1PG Scholar, JEC Jabalpur 
2Electrical Department, JEC Jabalpur 

 

Abstract 

Accurate fault diagnosis in power transformers is vital for maintaining the reliability and efficiency of electric power systems. Traditional fault 

diagnostic methods are based on expert-defined threshold rules, which often fail to capture the complex nonlinear behavior exhibited by deteriorating 

transformer conditions. This paper proposes and compares two approaches for classifying transformer fault severity levels using operating parameters 

such as oil temperature, winding temperature, and gas content. The first approach employs a conventional rule-based system, whereas the second uses a 

feedforward neural network (FNN). Experimental results on a synthetically generated dataset reveal that the neural network model achieves a 

significantly higher classification accuracy, demonstrating its potential as a more robust and adaptive diagnostic tool for intelligent condition 

monitoring systems. 

Introduction 

Transformers are critical assets in high-voltage transmission and distribution networks. Continuous health monitoring and timely fault detection are 

essential to prevent unexpected failures, reduce downtime, and minimize maintenance costs. Diagnostic techniques for transformer fault analysis have 

traditionally relied on rule-based systems developed by experts. These techniques use pre-set thresholds for various physical parameters such as oil 

temperature, winding temperature, and gas content to assess the severity of internal faults. 

Although such methods offer transparency and ease of interpretation, they are often limited in adaptability and may not effectively capture nonlinear 

interactions among multiple fault-indicative parameters. Artificial Intelligence (AI), particularly machine learning (ML) and neural networks, has 

shown promising results in fault detection and classification in recent years. This paper presents a comparative study between a feedforward neural 

network-based classifier and a conventional threshold-based diagnosis system, analyzing their accuracy and performance in transformer fault severity 

classification. 

Dataset and Problem Definition 

Feature Selection 

Three critical indicators of transformer faults were selected as input features: 

- Oil Temperature (°C): High oil temperature indicates internal overheating. 

- Winding Temperature (°C): Abnormal winding temperature suggests excessive electrical loading or insulation failure. 

- Gas Content (ppm): Elevated dissolved gas levels often signal arcing or partial discharges. 

Label Definition 
Each data instance is labeled with a fault severity level categorized as: 

- 1 – Low Severity 

- 2 – Medium Severity 

- 3 – High Severity 

 Methodology 

Data Preprocessing 

The raw input matrix was transposed to match the expected input format of MATLAB’s Neural Network Toolbox. The target output (fault severity) 

was one-hot encoded using the ind2vec() function to accommodate multiclass classification via a softmax-like neural output. The block diagram of 

methodology is shown below  
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Figure 1 Block diagram of methodology 

 Neural Network Architecture 

 

A feedforward neural network (FNN) with the following characteristics was implemented: 

- Input Layer: 3 neurons (for oil temperature, winding temperature, and gas content) 

- Hidden Layer: 5 neurons with sigmoid activation functions 

- Output Layer: 3 neurons with softmax activation (one per class). The neural network architecture is shown below 

 

Figure 2 Neural network architecture 

Conventional Rule-Based Diagnosis 

A rule-based diagnosis system was implemented using a simple logical construct. The diagnosis logic uses thresholds: 

- Oil Temperature > 90°C 

- Winding Temperature > 110°C 

- Gas Content > 600 ppm 

 

The classification decision is made based on how many of the thresholds are exceeded: 

- ≤1: Low Severity 

- =2: Medium Severity 

- =3: High Severity 
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Results and Performance Evaluation 

4.1 Prediction Analysis 

Both models were tested on the same synthetic dataset of 10 instances. The neural network model predicted the class with the highest output activation 

for each input instance, while the conventional method evaluated logical rules to determine severity. 

Accuracy Metric 

Classification accuracy was calculated using: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑁_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 / 𝑁_𝑡𝑜𝑡𝑎𝑙)  ×  100% 

 

Where: 

− N_correct =  number of correctly classified samples 

− N_total =  total number of samples 

 

The results obtained are: 
− Neural Network Accuracy: 90.00% 

- Rule-Based Accuracy: 70.00% 

Visual Representation 

A bar graph was plotted to visually compare the performance of both methods, highlighting the significant improvement provided by the neural 

network approach. 

 

Figure 3 Comparison bar graph 

Neural network training result  

The training of the neural network in MATLAB provides several crucial parameters and performance metrics that help assess the quality of the learning 

process. These include mu (learning rate coefficient), epoch, best validation performance, and regression (R-value). Each plays a distinct role in 

evaluating and understanding the model's training dynamics. 

 

 Mu (μ – Levenberg-Marquardt Adjustment Parameter) 

 Definition: 
In the context of MATLAB's train function (using the default Levenberg-Marquardt algorithm), mu is the damping factor that controls the 

step size during weight updates. It is adaptively modified during training. In our training, mu of 1e-09 is obtained as shown in the table 

below 

 Behavior: 

o If the performance improves, mu is decreased, allowing for faster convergence. 

o If performance worsens, mu is increased, making the search more conservative to avoid divergence. 

 Interpretation: 

o A very small mu (e.g., 10−510^{-5}10−5) at the end of training suggests that the network is converging efficiently and is close to 
an optimal solution. 

o A persistently large mu may indicate instability or that the model is stuck in a local minimum. 
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Figure 4 Neural network training results 

 Epoch 

 Definition: 

An epoch represents one complete pass through the entire training dataset during the learning process. Total 6 epochs were needed by 
our neural network to reach the best validation performance 

 Training Behavior: 
o Training typically stops when the maximum number of epochs is reached or when performance stops improving for a 

specified number of validation checks (early stopping). 

 Interpretation: 
o If the network stops after only a few epochs, it might have overfitted quickly. 

o If it takes many epochs, it may indicate that the learning process is gradual or the dataset is complex. 

 Best Validation Performance 

 Definition: 
This refers to the lowest mean squared error (MSE) achieved on the validation dataset during training. 

 Purpose: 
o Helps detect overfitting. If validation performance stops improving while training performance continues to improve, the model 

may start to memorize rather than generalize. 

 Interpretation: 
o A low best validation performance indicates good generalization to unseen data. 

o MATLAB highlights the best performance in training plots with a marker (usually a green circle). 

The error histogram is shown in the figure below 

 

Figure 5 Error histogram 
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 Regression (R-Value) 

 Definition: 
The regression plot shows the relationship between predicted outputs and target values. The R-value (correlation coefficient) measures the 

strength and direction of a linear relationship between them. 

 Interpretation: 

o R = 1: Perfect prediction — model outputs match the targets exactly. 
o R > 0.9: Strong correlation — indicates excellent learning. 

o R < 0.8: Weak correlation — model may require more training or better architecture. 

 Regression Plots in MATLAB: 
MATLAB provides separate plots for: 

o Training Data 
o Validation Data 

o Test Data 

o Overall (All Data Combined) 

The regression plot is shown in the figure below 

 

Figure 6 Regression plot 

Discussion 

The neural network demonstrated superior performance due to its ability to model nonlinear relationships and consider interactions between parameters. 

For instance, while oil and winding temperatures may be individually within limits, their combined rise may indicate an evolving fault pattern—

something the NN model is better equipped to detect. Conversely, the conventional rule-based approach, while interpretable, suffers from rigidity and 

lacks generalization ability. It cannot adapt to conditions that fall outside predefined thresholds or involve complex interdependencies. The success of 

the neural network also indicates the feasibility of deploying intelligent diagnostic systems in embedded environments for real-time monitoring. 

owever, the model was trained on a limited dataset, which may lead to overfitting. Future work should consider larger, real-world datasets for training 

and validation. 

Conclusion 

This research presents a comparative analysis of a neural network-based diagnostic model versus a conventional rule-based system for transformer fault 

severity classification. The results clearly demonstrate that the neural network model yields better accuracy and can be trained to detect subtle and 

complex fault patterns that traditional methods may overlook. The implementation of such AI-based diagnostic tools has the potential to significantly 

enhance the reliability of transformer health monitoring systems. 
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To improve this framework, the following enhancements are proposed: 

- Incorporate additional features such as moisture content, ambient temperature, and load conditions. 

- Use a larger dataset from SCADA systems or condition monitoring databases. 

- Implement deep learning architectures such as Convolutional Neural Networks (CNN) or Long Short-Term Memory (LSTM) networks for sequential 

data. 

- Conduct real-time deployment on edge devices with embedded inference capabilities. 
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