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ABSTRACT
The birth of Earth features from high-resolution satellite imagery is pivotal for civic planning, environmental monitoring, and disaster operation. This
study employs deep literacy ways, fastening on the UNet armature, for pixel-wise semantic segmentation of upstanding imagery. Exercising a dataset
from Humans in the Loop and Mohammed Bin Rashid Space Center( MBRSC), 72 high-resolution images of Dubai were annotated into six classes:
structures, roads, foliage, water, unpaved land, and unlabeled regions. The exploration evaluates bracket models like ResNet50, VGG16, and
MobileNet, relating their limitations in point delineation. A segmentation- driven approach using UNet, with preprocessing way similar to resizing and
marker garbling, achieved superior delicacy. UNet demonstrated high crossroad over Union( IoU) scores and precise point birth, outperforming bracket
styles. This frame offers robust operations in geospatial analysis, structure planning, and environmental conservation.

INTRODUCTION

REMOTE sensing image interpretation is an important way to delineate structures for civic planning. The poor effectiveness and time-consuming
nature of artificial interpretation have made automatic and semi automatic structure birth algorithms hot motifs in the last decades [1],[9]. With the
development of remote sensing imaging technologies, the spatial resolution of acquired data continues to ameliorate. therefore, erecting vestiges
uprooted from remote seeing images are getting more detailed. For case, images with resolution of hundreds or knockouts of measures, e.g., MODIS,
are frequently exploited to identify large-scale erected-up areas on the Earth’s face[10],[12]. Individual structures can be delineated from cadence- or
sub-cadence resolution images, e.g., WorldView, QuickBird, or UAV upstanding images[5]. In some extremities with time limitations similar as
disaster assessment, individual structures need to be delineated[9] as snappily as possible. Still, it's delicate to gain high-resolution(HR) images
snappily. By discrepancy, some data with lower spatial resolution are open access. However, the difficulty of HR data accession could be avoided, If
these data could be employed to produce semantic charts of structures. former exploration workshop have concentrated on combining traditional
machine learning algorithms similar as support vector machine[1] and handcrafted features similar as the morphological structure indicator[1] and
morphological shadow indicator[9] to break the problem of erecting birth[10]. As remote seeing data volume and complexity increase, traditional styles
can not gain superior performance. still, the development of deep literacy (DL) has catalyzed a great revolution in the processing of remote seeing data
and erecting birth. The operation of convolutional neural networks (CNNs) to semantic segmentation (SS) can extensively increase the delicacy of
erected-up mapping. The completely convolutional neural network (FCN) is the first high- profile CNN- grounded SS network[11]. An encoder–
decoder structure further improves the effect of SS; typical networks are SegNet[12] and U-Net[13]. The rearmost DeepLab V3 of the DeepLab series
outperformed numerous state-of-the-art SS networks on two extensively used datasets in 2018. Motivated by the below-mentioned work, colorful DL-
based styles aimed at structure footmark birth have been proposed. S Paisitkriangkrai et al.[13] presented the first attempt to apply CNN and tentative
arbitrary fields to remote seeing image pixel labeling. The work demonstrated the effectiveness of CNNs for erecting birth. Still, handcrafted features
and arbitrary timber were still employed to increase the performance due to the weak representation capability of shallow CNNs. Latterly, an end-to-
end literacy system grounded on FCN was proposed to delineate different objects on Earth. The system performed well on the land cover mapping task,
although multi-network integration was needed to gain the stylish results. The U-net is a convolutional network architecture for fast and precise
segmentation of images. Up to now, it has outperformed the previous stylish system( a sliding- window convolutional network) on the ISBI challenge
for segmentation of neuronal structures in electron bitsy heaps. It has won the Grand Challenge for Computer- Automated Discovery of Caries in
Bitewing Radiography at ISBI 2015, and it has won the Cell Tracking Challenge at ISBI 2015 on the two most grueling transmitted light microscopy
orders( Phase discrepancy and DIC microscopy) by a large periphery
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Figure 1. A U-Net model unit with characteristics of layer and filter sizes is used in our model.

A. Model Architecture
Each image goes through a data addition process and is also cropped to the size of 160 × 160 pixels (Figure 1) to serve as input to the three separate U-
nets. The size of 256 × 256 was chosen for image gyration during the data addition to help any missing values in the 160 × 160 image. also, the image
goes to three different paths that each start with an independent U-net model. The three U-nets independently member the object border, the object
member, and the inner member of the object. The border and the inner parts are created directly from the object member; that is, the border goes from 4
pixels outside the object member to 3 pixels outside and the inner member is the object member reduced by 2 pixels. By doing this, the three masks
present an imbrication of 1 – 3 pixels. After this, the three activation layers of 160 × 160 pixels performing from the U-nets are concatenated in each of
the paths. The following way are two convolutional layers with 64 and 32 pollutants, independently. Eventually, the prognostications are made
independently for the member, the border, and the inner member using the last convolutional subcaste with a sigmoid activation function. The case
individualizations are made in post treatment by rooting the inner parts (which are unique and don't touch each other) and adding to them a buffer of 2
pixels, that is, the number of pixels that live between the member and the inner member( as they've been created). The model has a aggregate of
parameters, of which are trainable.

B. dataset :
To train the segmentation model, a dataset of 72 high-resolution images from Dubai was used. This dataset, handed by the Mohammed Bin Rashid
Space Center (MBRSC) and Humans in the Loop, was annotated into six orders structures, roads, foliage, water, unpaved land, and unlabeled regions.
The diversity of civic geographies represented in this dataset made it ideal for erecting segmentation tasks.
Exercising a dataset from Humans in the Loop and Mohammed Bin Rashid Space Center (MBRSC), 72 high-resolution images of Dubai were
annotated into six classes: structures, roads, foliage, water, unpaved land, and unlabeled regions.

Figure 2. The dataset has an original image and its mask.

C. Training
Trimming the image and the masks in 128 × 128 pixels over the region where structures were manually delineated resulted in a sample of 2048 images
and their associated labeled masks to train the model. Among these images, 1435 contained roofs and background, and 613 contained only background.
Also, 1638 images were used for the training and 410 for independent confirmation. The size of 128 × 128 pixels was named because (i) studied objects
are generally lower than 128 pixels in size; (ii) the objects aren't so dependent on a larger environment; and (iii) we don't want the algorithm to learn a
larger environment. An illustration of a large environment would be ‘ houses always do near asphalt thoroughfares’. The images were uprooted from
invariant grids of 128 × 128 pixels without any imbrication between bordering images. Also, 128 × 128 images were enlarged to 256 × 256 extents by
adding 64 rows and columns on each side. Eighty percent of these images were used for training and 20 percent for confirmation. During network
training, we used a standard stochastic gradient descent optimization. The loss function was designed as a sum of two terms, doublecross-entropy and
Bone's measure-affiliated loss of the three prognosticated masks.
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D. Segmentation Accuracy Assessment

Three performance criteria were reckoned. First, the overall delicacy was reckoned as the chance of rightly classified pixels. Second, the F1 score was
reckoned for each class i as the harmonious normal of the perfection and recall( Equation( 1)), where perfection is the rate of the number of parts
classified rightly as i to the number of all parts( true and false positive) and recall is the rate of the number of parts classified rightly as i to the total
number of parts belonging to class i( true positive and false negative). This score varies between 0 (smallest value) and 1 (Best value).
�1�=2×����������×�������(����������+�������)

[1]

Third, to estimate the delicacy of the case segmentation, the crossroad over union( ���) metric was reckoned as the crossroad of areas labeled as
objects in the vaticination and in the reference divided by the union of areas labeled as objects in the vaticination and in the reference. To cipher the
��� of each object, we attributed to each individual object the prognosticated member that showed the largest lapping to the observed object.

E. Prediction
For prediction, the WorldView-3(WV-3) pipe of 16,384 × 16,384 pixels was cropped with a regular grid with cells of 512 × 512 pixels, and 64
neighbor pixels were added on each side to produce an imbrication between the patches. However, due to the pipe border, it was filled by the
symmetrical image of the non-blank portion. If there was a remaining blank portion( for illustration. The prognostications were made on these images
of 640 × 640 pixels, and the performing images were cropped to 512 × 512 pixels and intermingled again to reconstitute the original 16,384 × 16,384
pixels WV-3 pipe. This lapping system was used to avoid border vestiges during vaticination, a given problem for the U-net algorithm( 5). To belong to
a given class, the pixel vaticination value must be less than or equal to 0.5. The case segmentation mask was also produced by softening the inner
member( mask Subcaste 2) by 2 pixels.

F. Results
The algorithm presents a good position of segmentation delicacy( subcaste mask 1) with an overall delicacy of 86.67 and an F1-score of
0.937( perfection = 0.936 and recall = 0.939). The mean crossroad over union was 0.582, and the standard was 0.694. Considering the entire
WorldView-3 pipe, the algorithm delineated and personalized 7477 structures. The model segmentation for the three masks was veritably accurate, as
seen by the member in unheroic. There are veritably many crimes for the member and inner member, as seen in blue. The crimes feel slightly advanced
for the border mask. This error of the border is further propagated to the case polygons, but overall, the case segmentation can be considered correct.

Figure 3. Our model resulted in a Predicted Mask Image

LITERATURE SURVEY

Satellite imagery segmentation has emerged as a cornerstone in geospatial analytics, enabling automated analysis of land use, vegetation, water
resources, and urban expansion. Its diverse applications span disaster management, environmental conservation, urban planning, and precision
agriculture. Over the years, significant advancements have been made in methodologies, transitioning from traditional statistical models to sophisticated
deep learning architectures that leverage the massive volume of high-resolution satellite data available today.

A. Traditional Methods of Satellite Imagery Segmentation
The early methods for analyzing satellite images were predominantly based on pixel-level and object-based approaches. Pixel-based methods relied on
statistical techniques like Maximum Likelihood Classification (MLC) and Minimum Distance Classifier (MDC), which operated by evaluating pixel
intensities within spectral bands. While these approaches were straightforward and computationally efficient, their inability to handle complex patterns
and inter-class spectral overlap posed significant challenges.

Object-Based Image Analysis (OBIA) emerged to address some of these limitations by incorporating spatial, spectral, and contextual information.
emphasized OBIA's effectiveness in handling medium-resolution images and its limitations when dealing with the finer details of high-resolution
satellite data. Both traditional approaches struggled with defining precise boundaries, handling mixed pixels, and generalizing across datasets from
different satellite sensors.

B. Transition to Machine Learning Approaches
Machine learning introduced a paradigm shift by enabling the classification of land cover features using supervised and unsupervised learning
algorithms. Support Vector Machines (SVMs) and Random Forests (RF) were extensively adopted due to their ability to generalize across diverse
datasets. Pal and Mather (2005) demonstrated SVM's robustness in classifying multi-spectral satellite data, outperforming traditional methods in
accuracy and adaptability. Random Forests, as highlighted by Belgiu and Drăguţ (2016), offered efficient handling of large datasets and reduced
overfitting, making them a preferred choice for segmentation tasks. However, machine learning methods still depended heavily on handcrafted features,
requiring domain expertise and extensive feature engineering. This dependency limited their scalability for real-time or large-scale applications
involving high-resolution images.
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C. Emergence of Deep Learning Techniques
The advent of deep learning, particularly Convolutional Neural Networks (CNNs), marked a transformative phase in satellite image segmentation.
CNNs [1] automated feature extraction by learning hierarchical representations directly from raw image data, addressing the limitations of feature
engineering.
U-Net, introduced by [5], became the de facto model for biomedical image segmentation and was rapidly adopted for remote sensing tasks. Zhang et al.
(2018) demonstrated its effectiveness in segmenting high-resolution satellite imagery, noting its ability to capture fine-grained details while maintaining
computational efficiency. Models like SegNet [11] and DeepLab (Chen et al., 2017) further advanced the field by incorporating techniques such as
dilated convolutions and conditional random fields for improved boundary refinement.
Transfer learning also gained traction, enabling researchers to utilize pre-trained CNNs such as ResNet, VGG, and Inception for remote sensing tasks.
By fine-tuning these models on domain-specific datasets, segmentation accuracy and training efficiency improved significantly.

D. Transformer-Based Models for Advanced Segmentation
In recent years, transformer-based architectures have emerged as a powerful alternative to CNNs, especially for tasks requiring global context
understanding. Vision Transformer (ViT), demonstrated that transformers, originally developed for natural language processing, could achieve
competitive performance in image classification and segmentation.
SegFormer (Xie et al., 2021), a transformer-based segmentation model, addressed the limitations of CNNs by efficiently capturing long-range
dependencies and fine-grained spatial details. These models have shown remarkable performance in high-resolution satellite image segmentation,
making them an exciting area for further exploration.

E. Multi-spectral and Temporal Data Utilization
Modern remote sensing applications often leverage multi-spectral and hyperspectral data, which provide rich spectral information for the precise
classification of Earth features. Ma et al. (2019) highlighted the benefits of using multi-spectral data to distinguish vegetation, water bodies, and urban
areas more accurately. Similarly, temporal analysis using time-series satellite data has gained prominence in monitoring dynamic changes, such as
deforestation, crop cycles, and urban sprawl. Singh et al. (2020) demonstrated how temporal datasets from satellites like Sentinel-2 enable robust
change detection by analyzing vegetation indices and land cover transitions over time.

Challenges and Future Directions

Despite substantial progress, several challenges remain in satellite imagery segmentation. Class imbalance, particularly in underrepresented land cover
categories, continues to affect model performance. Computational scalability, especially for real-time applications, requires innovative solutions such as
model pruning, quantization, and edge computing. The future of satellite imagery segmentation lies in developing semi-supervised and unsupervised
learning methods to reduce dependency on annotated datasets. Incorporating temporal data for dynamic monitoring and extending models to handle
hyperspectral imagery will further enhance their applicability. Additionally, the integration of geospatial data with deep learning models [1] could
revolutionize Earth observation systems. This survey highlights the evolution of methodologies in satellite imagery segmentation, from traditional
techniques to state-of-the-art deep learning and transformer-based models. The integration of cloud computing and multi-spectral data analysis offers
promising directions for future research. By building on these advancements, our research aims to address current challenges and push the boundaries
of geospatial analytics.

METHODOLOGY

The approach of this study is developed to attack the difficulties involved in the birth of Earth features from high spatial resolution satellite images. It
involves several phases, similar to data accession, preprocessing, model selection and training, evaluation, and deployment. The following is a step-by-
step explanation of each phase

A. Data Acquisition
High spatial resolution satellite imagery was sourced from a intimately available dataset from Mohammed Bin Rashid Space Center( MBRSC), 72
high- resolution images of Dubai were annotated into six classes structures, roads, foliage, water, unpaved land, and unlabeled regions, fastening on
regions with different Earth features similar as foliage, water bodies, civic areas, and bare soil.
The datasets include multi-spectral bands, offering rich spatial and spectral information critical for effective segmentation.

B. Data Preprocessing
Data Cleaning: Noisy images and irrelevant metadata were filtered out. Missing data in multi-spectral bands were imputed using interpolation
techniques.
Image Normalization: Pixel values were regularized to a common scale, enhancing model confluence during training.
Geospatial Alignment: Misaligned images were corrected using georeferencing techniques, ensuring consistency across datasets.
Data Augmentation: Techniques such as rotation, flipping, cropping, and random zooming were applied to increase dataset diversity and reduce
overfitting.

C. Feature Segmentation Model Development
a) Model Selection: A U-Net architecture was employed as the baseline due to its proven efficacy in image segmentation. Advanced transformer-

based architectures, such as Vision Transformer (ViT) or SegFormer, were incorporated to leverage their ability to capture global dependencies
in the images.
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b) Model Initialization: Pre-trained weights from ImageNet or similar datasets were used for initialization, leveraging transfer learning for faster
convergence and better performance.

c) Model Training: The models were fine-tuned using a supervised learning approach, with annotated segmentation masks serving as ground truth.
Hyperparameters such as learning rate, batch size, and dropout rates were optimized through grid search and cross-validation. Loss functions
such as categorical cross-entropy and Dice loss were employed to handle class imbalances effectively.

D. Evaluation Metrics
Performance was evaluated using standard metrics, including:
Intersection over Union (IoU): To measure the imbrication between prognosticated and base verity segmentation.
Precision, Recall, and F1 Score: To assess class-wise segmentation accuracy.
Mean Average Precision (mAP): To estimate the model's capability across all classes.
A comparative analysis was conducted against conventional methods, such as pixel-based classification and traditional machine learning models, to
validate the efficacy of the proposed approach.

E. Scalability and Computational Optimization
Cloud Deployment: The segmentation pipeline was deployed on cloud platforms (e.g., AWS, Google Cloud) to handle large-scale data processing
efficiently.

F. Visualization and Interpretation
Segmentation results were visualized using GIS tools, allowing for qualitative assessments of model predictions.
Confusion matrices and heatmaps were generated to highlight misclassifications and refine model performance.

G. Future Extensions
The framework will be extended to incorporate temporal satellite data for dynamic monitoring of Earth features.
Multi-spectral and hyperspectral data analysis will be explored to further enhance feature extraction accuracy.
This methodology ensures a comprehensive and reproducible approach to satellite imagery segmentation, leveraging cutting-edge machine-learning
techniques to achieve state-of-the-art performance.

CONCLUSION

This study demonstrates the effectiveness of the U-Net architecture in extracting building footprints from high-resolution satellite imagery. By
leveraging an optimized training strategy and robust evaluation metrics, the model achieved high accuracy and generalizability. This research
contributes to automated urban mapping methodologies and sets a foundation for scalable applications in urban planning and disaster response.
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