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ABSTRACT

Information Technology plays a pivotal role in optimizing manufacturing processes, particularly in automotive plastic component production lines. This study
implements a monitoring system within the Technomatix Plant Simulation environment, integrated with a custom data management application developed in
NodelS, utilizing SQLite for data storage and SimTalk for machine information handling and updates. The system facilitates real-time monitoring and dynamic
adjustments of production activities to enhance operational efficiency. Additionally, a genetic algorithm is incorporated to optimize operational parameters by
simulating the process of natural evolution, aiming to identify the most effective configurations. As a result, production cycles are shortened, resource waste is
minimized, and overall system performance is significantly improved. The integration of information technology with advanced optimization algorithms enables

the production system to adapt more flexibly to real-world fluctuations.
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1. INTRODUCTION

In modern production management, information technology plays a critical role in monitoring and optimizing the operation of machine clusters.
Centralized control systems enable adjustments to be made from a control room without the need for direct physical access to each machine [1]. Instead
of time-consuming manual configurations, managers can monitor and modify machine parameters swiftly and accurately using real-time data [2-3].
Consequently, enterprises are able to utilize management software integrated with machine-collected data to fine-tune production processes more
effectively [4].

Through integration with automated information systems, operational data, machine status, and technical parameters are automatically collected and
transmitted to the management platform [5—7]. This allows managers to analyze data, detect potential issues early, and implement timely solutions [8].
Furthermore, the management software also supports production planning, inventory control, and automation of various stages within the production

line [9-10], thereby enhancing efficiency, reducing costs, and increasing adaptability to market fluctuations [11-12].

Notably, this study integrates a genetic algorithm—a technique inspired by the principles of natural evolution—into the production simulation
framework developed with Tecnomatix Plant Simulation. By applying evolutionary operations such as selection, crossover, and mutation [13-14], the
algorithm systematically explores and identifies optimal parameter configurations. This results in reduced production time, balanced machine
workloads, and the mitigation of bottlenecks. Experimental outcomes indicate that the system achieves greater stability and performance compared to

conventional manual tuning methods.

In conclusion, the integration of real-time monitoring technologies with advanced optimization techniques such as genetic algorithms [13][14] marks a
significant step forward in the evolution of modern manufacturing systems. It enables greater flexibility, adaptability to dynamic production conditions,

and competitiveness in increasingly complex industrial environments.

In conclusion, integrating real-time monitoring technology with optimization algorithms such as genetic algorithms represents a significant

advancement in the development of modern, flexible, and highly competitive production systems.
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2. RESEARCH METHODOLOGY

2.1 Theoretical Calculation Model:

2.1.1 Applying Lean Six Sigma to Improve Production Line Efficiency

The paper proposes using the Lean methodology to implement changes to the processes, production techniques, and ultimately to evaluate the results.
This should be measured by reductions in cycle time, inventory levels, etc. Furthermore, the team must develop a change plan outlining the necessary
actions to implement the proposed modifications.

The team investigates the current value stream map of the aluminum profile production system. Information collected for each production step was
used to construct the current state map. The current state map describes each step of the process, from receiving customer orders to shipping the final
product. The parameters in the current value stream map are calculated using the following formulas:

AOP =APT -CO (1)

Where:

AOP — Actual Operating Time

APT — Daily Production Time

CO — Daily Changeover TimeUT = AOP/APT x100(%) 2)
Where:

UT - Utilization Rate of Each Station

PT — Takt Time

TT — Production Tempo

TCT=) (i=1)"n 3)
Where:

TCT - Total Value-Adding Time of the Production Process

TCT=Y_(i=1)"n ©)]

Where:

TLT — Total Estimated Lead Time

CT — Machine Cycle Time

Based on the current value stream map, the paper aims to enhance the operational efficiency of the production line by researching and proposing
changes to the production line and the take time.

2.2 Theoretical Framework of Information Technology Management System

2.2.1 SQLite Database Management System

The SQLite Database Management System was selected for the project to ensure lightweight, portable, and easy deployment. SQLite is a lightweight,
serverless relational database, suitable for small to medium-sized applications. Integrating SQLite into the project simplifies the development,

deployment, and maintenance processes of the system.
2.2.2 Programming Language SimTalk

SimTalk is a programming language developed by Siemens PLM Software for simulating and managing manufacturing systems and industrial
processes. It enables the simulation of everything from machining to assembly, helping optimize processes before actual implementation to save time
and costs. SimTalk also allows simulation of scenarios like material management and product flow, helping identify issues and improve performance
and product quality.



International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 10819-10828 May 2025 10821

2.3. Genetic Algorithm:
2.3.1. Theoretical Background::

The Genetic Algorithm (GA) is an optimization technique inspired by the principles of natural selection and genetics. It belongs to the class of heuristic
search methods and is particularly effective in solving complex optimization problems where traditional analytical methods are either infeasible or
inefficient.

GA simulates the process of natural evolution in biological systems, where a population of candidate solutions evolves over successive generations to
approach an optimal or near-optimal solution. The fundamental steps of a genetic algorithm include:

. Initialization: A population of potential solutions (individuals) is randomly generated to form the initial population.

. Fitness Evaluation: Each individual in the population is evaluated using a fitness function that quantifies the quality or suitability of the
solution with respect to the given objective.

. Selection: Individuals with higher fitness scores are more likely to be selected for reproduction, thereby ensuring that better solutions are
propagated.
. Crossover (Recombination): Pairs of selected individuals exchange portions of their genetic information to produce offspring, combining

characteristics of both parents.

. Mutation: Random alterations are introduced to the offspring to preserve genetic diversity within the population and prevent premature
convergence to local optima.

. Termination: The evolutionary process is repeated for a number of generations or until a stopping criterion is met, such as reaching a
predefined number of iterations or observing minimal improvement between generations.

Through these evolutionary mechanisms, GA efficiently explores the solution space and converges toward high-quality solutions, making it well-suited
for integration into simulation-based optimization frameworks.

2.3.2. Application of Genetic Algorithm in the Project:

In the context of this project, the Genetic Algorithm (GA) is employed to optimize operational parameters and resource allocation within a production
system simulated using Technomatix Plant Simulation. Specifically, GA is applied to address the following key optimization challenges:

. Optimization of Operational Parameters:

Modern production systems involve numerous adjustable parameters such as processing time, setup time, and machine utilization rates. GA enables the
identification of optimal parameter configurations, thereby improving overall production efficiency, minimizing machine idle times, and streamlining
the workflow.

. Resource Allocation Optimization:

GA is used to determine the most efficient distribution of critical resources—including machinery, labor, and materials—across various stages of the
production line. This ensures maximum utilization of available resources while maintaining balance throughout the system.

. Load Balancing and Bottleneck Mitigation:

In complex production environments, certain stages may become bottlenecks due to uneven task distribution. GA helps identify optimal work
assignment strategies that reduce congestion, improve throughput, and ensure a smoother product flow across different production stages.

Implementation Procedure of Genetic Algorithm:
The genetic optimization process in the project is structured as follows:
. Initial Population Generation (populationData):

Each individual represents a potential production configuration defined by specific values for efficiency and processing time. A fitness function
calcFitness() evaluates each individual based on the average of valid (non-zero) performance metrics.

. Selection:
Individuals are ranked in descending order of fitness. The top four individuals (elite) are preserved to participate in crossover operations, ensuring that
high-quality solutions are retained.

. Crossover:
Two parent individuals are randomly selected from the elite group. Crossover is performed by combining the first half of one parent’s efficiency and
processing time values with the second half of the other parent’s, producing a child individual with hybrid characteristics.
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. Mutation:
With a mutation rate of 10% (mutationRate = 0.1), each child has a chance to undergo mutation at a random index. The mutation modifies efficiency
and processing time values by assigning them new random values within defined ranges (efficiency: 0—100; processing time: 5-25 units).

. Generational Evolution:

This evolutionary cycle is repeated over 50 generations to incrementally enhance the average fitness of the population. The goal is to converge toward
the individual with the highest fitness score, corresponding to the configuration yielding the highest average production -efficiency.
The best-performing individual obtained through this process is subsequently input into the Technomatix Plant Simulation model. This optimized

configuration supports informed decision-making and enhances operational control within the simulated production environment.
2.3.3. Advantages of This Approach
. Automation of Parameter Optimization:

This method eliminates the need for manual trial-and-error experiments on physical systems by automating the search for optimal operational

parameters through simulation.
. Improved Processing Time and Machine Efficiency:

By optimizing key production parameters, the approach enhances machine utilization and processing speed, leading to increased productivity and

reduced operational costs for enterprises.
. Scalability and Adaptability:

The framework is easily extensible; data structures, fitness functions, and evolutionary steps can be modified or reconfigured to suit various production

models or optimization goals, making it highly adaptable across different manufacturing contexts.

3. RESULTS AND DISCUSSION

Case Study: Parameter Scenarios
Before applying the Genetic Algorithm:

In the initial simulation phase, production parameters such as processing time and machine efficiency were set using fixed, predefined values based on
historical data or expert judgment. These static configurations often resulted in suboptimal performance, with frequent bottlenecks and resource

underutilization observed in the simulated production line.
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Optimization Process:

The Genetic Algorithm (GA) in this project takes as input a set of individuals, each representing a candidate configuration for the production system.

Each individual consists of:

procTime: An array representing the processing time (in seconds) for each machine in the production line. Example:
[60, 90, 75, 30, 15, 100, 30, 15, 110, 30, 15, 60]

[66, 68, 67, 70, 0, 60, 69, 0, 62, 68, 0, 65]

This input data is extracted from a training table, typically stored after each simulation run in Technomatix Plant Simulation. Unlike randomly
generated configurations, these individuals are real experimental results, reflecting previously simulated and evaluated system states. This approach
enhances the convergence speed and reduces the risk of selecting infeasible configurations.

Algorithm Workflow
(a) Population Initialization:

The initial population is constructed using simulation data—each individual corresponds to a previously tested machine configuration. This informed

initialization provides a strong starting point for the optimization process.
(b) Fitness Evaluation:
Each individual is evaluated using a custom fitness function designed to promote both efficiency and system stability. The fitness score is calculated as:
Fitness = X(efficiencyi) — (penalty_coefficient x total defects)
This function not only favors high overall efficiency but also penalizes configurations with instability or production defects.
(c) Selection:
High-fitness individuals are selected as parents for the next generation. Two common selection strategies are applied:
. Roulette Wheel Selection: Individuals are chosen probabilistically based on their relative fitness
. Tournament Selection: A random subset of individuals is sampled, and the best among them is selected.
(d) Crossover:

Pairs of parent individuals are combined to generate offspring by randomly mixing processing time genes. For example:

. Parent A: [60, 90, 75, 30, 15, 100, 30, 15, 110, 30, 15, 60]
. Parent B: [55, 85,70, 28, 12, 90, 28, 12, 100, 28, 12, 55]
. Offspring: [60, 90, 75, 28, 12, 90, 28, 12, 100, 28, 12, 55]

This operation combines characteristics from both parents while preserving structural coherence.
(e) Mutation:

To maintain diversity and avoid local optima, a small mutation rate (e.g., 10%) is applied. A randomly selected gene within the offspring may be

altered—assigning a new value within a valid range (e.g., efficiency: 0—100, procTime: 5-25 seconds).
(f) Evolution Across Generations:

The algorithm iterates over a defined number of generations (e.g., 50). With each cycle, the average fitness of the population improves, and the

solution space is explored more thoroughly.

Example Output: Optimized Configuration

{
"procTime": [55, 85, 70, 28, 12, 90, 28, 12, 100, 28, 12, 55],
"efficiency": [70, 73, 72, 74, 0, 66, 73, 0, 68, 74, 0, 70]

}

This optimized processing time array represents the final result after 50 generations. Compared to the initial configuration, the average processing time
decreased by 8-10%, and the average machine efficiency improved by 4-7%. Key production stages—such as painting, assembly, inspection, and

packaging—saw noticeable gains, resulting in smoother system operation and shorter product cycle times.
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Comparison of Processing Time Before and After GA Optimization
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Processing Time (seconds):

. Heating Machine: Reduced from 60s to 55s (~8.3%). As the initial stage in the production line, this improvement accelerates the entire
manufacturing chain.

. Molding Machine: Reduced from 90s to 85s. Although modest, this optimization is impactful given the high energy consumption associated
with this process.

. Cooling Machine: Reduced from 75s to 70s, effectively alleviating a known bottleneck within the production sequence.

. Inspection Stations 1/2/3: All saw a reduction from 30s to 28s (~6.7%), increasing throughput during quality control stages while
maintaining inspection integrity.

. Surface Treatment and Painting Machines: These showed the most significant reductions—from 100s/110s to 90s/100s—highlighting them
as optimization focal points due to their typically long processing durations.

. Defect Handling Stations (Error Buffers 1/2/3): Slightly reduced from 15s to 12s. While not contributing directly to product value, this cut
minimizes waste from unnecessary waiting.

. Packaging: Decreased from 60s to 55s, improving final product completion speed.

Impact:

The average processing time across the production line was significantly reduced, leading to decreased backlogs, especially at critical stages such as
inspection, painting, and packaging.

Operational Efficiency (%):

Most machines experienced a 4-7% increase in efficiency, reflecting improved resource coordination and system responsiveness after optimization.
. Heating Machine: Increased from 66% to 70%

. Molding Machine: Increased from 68% to 73%

. Cooling Machine: Increased from 67% to 72%
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. Inspection Stations 1/2/3: Increased from 70%/69%/68% to 74%/73%/74%, respectively
. Surface Treatment: Increased from 60% to 66%—notable given the complexity and resource demands of this stage
. Painting Machine: Increased from 62% to 68%, driven by reduced idle time and better upstream coordination
. Packaging: Increased from 65% to 70%
. Defect Handling (Buffers 1/2/3): Maintained at 0% efficiency, as these stations are non-value-added and serve purely as transitional error-
handling buffers

Impact:

Overall machine performance improved, with reduced idle periods and smoother transitions between stages. This leads to lower unit production costs
and increased output, enhancing both economic and operational metrics.

Overall Effectiveness:

The integration of the Genetic Algorithm (GA) into the production simulation framework yielded substantial improvements across multiple

performance metrics:

. Reduced Processing Time: Optimized configurations led to decreased processing times across key machines, thereby increasing
dailyproduction output.

. Bottleneck Mitigation: Notably, stages such as Cooling and Injection Molding, previously identified as bottlenecks, experienced significant
throughput enhancements, resulting in a more balanced production flow.

. Load Balancing: The GA facilitated a more equitable distribution of workloads among machines, preventing overutilization and potential
disruptions in the production line.

. Enhanced Overall System Efficiency: The optimization was achieved without necessitating hardware modifications, underscoring the

efficacy of software-driven improvements.

The application of the Genetic Algorithm significantly enhanced operational speed, system stability, and output quality of the automotive plastic

component production line.
In summary:

Production Capacity: The chart illustrating the number of processed products helps determine the production capacity of the assembly line. If the chart
shows stability or continuous growth, it is a positive sign for production capacity.

Process Bottlenecks: Stages with a decrease in the number of processed products may indicate bottlenecks or areas that need improvement. Focusing on
these areas can increase productivity and efficiency.

Time Management: Long waiting times between stages can lead to an overall slowdown in production speed. The chart can help identify stages that

need optimization to minimize waiting time.

Thus, by using the chart illustrating the number of processed products, you can identify important factors in the production process and pinpoint areas
for improvement to enhance efficiency and productivity.

The chart illustrating the number of processed products before and after machine repairs shows the quantity of defective products at each stage of the
production process. It can help identify bottlenecks in the assembly line or stages with high defect rates. This could be due to material quality issues,

technical issues, or process errors.

Initial Stage (Heating Machine, Plastic Molding Machine): If the chart indicates a high rate of defective products at these stages, it may signal issues
with the materials or machinery. Parameters such as heating temperature, molding pressure, or other machinery-related factors may need to be checked.

Intermediate Stage (Cooling Conveyor, Inspection Station 1, Surface Processing Machine): If the number of defective products increases at this stage, it
could indicate problems with the cooling or quality inspection process. The inspection and cooling processes need to be re-evaluated to ensure there are

no issues with machinery or operations.

Final Stage (Painting Machine, Inspection Station 3, Packaging Machine): If the chart shows a sudden increase in the number of defective products at
the end of the process, it may be related to the painting or packaging process. The painting technique, paint quality, or packaging process should be
examined to identify the root cause.

In summary:
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Areas for Improvement: The chart can clearly highlight areas in the production line that need improvement. Points with high numbers of defective
products indicate areas where focus is needed on quality control, machine maintenance, or employee training.

Overall Efficiency: If the chart shows a gradual increase in the number of defective products at each stage, it may indicate issues in the production
process leading to error accumulation. Understanding the root cause is necessary to improve the process.

Production Costs: High numbers of defective products can increase production costs due to recycling or disposal. This can affect profitability and
overall efficiency of the business. The chart illustrating the number of defective products is an important tool for evaluating and improving the
production process. Through careful analysis, you can identify weaknesses in the process and implement appropriate corrective measures.

4. CONCLUSION

In this study, we presented a method of information management using information technology in manufacturing to optimize processes and enhance the
efficiency of industrial machinery systems. Results from the research cases demonstrate that applying information technology to production

management brings significant improvements in efficiency, cost reduction, and error reduction.

Specifically, integrating sensors and data management software allows real-time monitoring of the production process, thereby facilitating the rapid
detection and resolution of technical issues. Additionally, information technology-based production management systems provide automation
capabilities and efficient planning, leading to reduced waiting times and enhanced flexibility in production management.

Specific research cases have shown a significant decrease in error rates when applying information technology to production management. With the
examination of three test cases, we can observe the productivity and quality of the production line's output. This demonstrates that using information
technology in production management not only increases efficiency but also significantly contributes to improving product quality.

In the future, this research could be expanded by applying information technology to other manufacturing processes to evaluate the effectiveness of the
proposed method in different contexts. Additionally, there is a need for further research on how to use advanced data analysis tools to predict and
prevent technical issues before they occur. Therefore, it can be concluded that managing information with information technology in manufacturing is
not only an effective method for optimizing processes but also a crucial strategy in improving performance and competitiveness in the industrial market.
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