
International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Neural Network Optimization for Edge and IoT Systems: Challenges,

Advancements, and a Scalable Deployment Framework

1Dr Anilkumar J Kadam, 2Gaurinandan Joshi

1 2 Dept. Artificial Intelligence And Data Science AISSMS Pune, India

ABSTRACT:

Edge computing and the Internet of Things (IoT) are converging rapidly to enable real-time, intelligent, and distributed decision-making in environments with

limited computational and energy resources. However, integrating neural networks (NNs) into edge and IoT devices introduces significant challenge s, including

hardware constraints, energy efficiency, latency requirements, and model generalization in dynamic environments. This paper explores the architectural and

algorithmic adaptations necessary to deploy deep learning models on edge devices effectively. We discuss compression techniques such as pruning and

quantization, the role of lightweight architectures like MobileNet and TinyML, and federated learning for decentralized training. In addition, we examine real-

world applications—including smart homes, wearable healthcare devices, and industrial IoT—and evaluate their design trade-offs. The paper concludes by

outlining future research directions in privacy-preserving AI, edge-cloud collaboration, and neuromorphic computing. This work aims to serve as a

comprehensive guide for researchers and practitioners seeking to bridge the gap between powerful neural networks and resource-constrained edge environments.

Keywords—neural networks, edge computing, internet of things (IoT), deep learning, model compression, tiny ml, federated learning, latency

optimization, energy efficiency, edge ai

Introduction (Heading 1)

 The integration of neural networks (NNs) with edge computing and Internet of Things (IoT) infrastructure has sparked a technological revolution

across a wide range of domains, including healthcare, smart cities, industrial automation, and environmental monitoring. By enabling intelligent, data-

driven decision-making at the edge of the network, this fusion offers significant benefits—most notably, reduced latency, improved data privacy, and

real-time responsiveness. However, deploying deep learning models on edge and IoT devices introduces unique challenges due to constrained

computational resources, limited memory, and energy restrictions [1]. Their complexity and size make them poorly suited to embedded edge hardware,

where inference must frequently occur in real time and under tight energy and latency constraints. As edge devices become ubiquitous—from

smartphones and drones to microcontrollers in sensors—adaptive and efficient machine learning algorithms that can run under such constraints are

increasingly required [1], [2].

Edge computing is a shift in paradigm in data processing. Instead of transmitting all data to centralized cloud servers, edge computing brings

intelligence closer to data sources. This minimizes the bandwidth load and latency and increases reliability in mission-critical applications such as

autonomous vehicles or remote health monitoring. Surianarayanan and Lawrence introduce a comprehensive survey of optimization techniques for

Edge AI, including model compression, pruning, quantization, and knowledge distillation [1]. These techniques enable the deployment of deep learning

models on microcontrollers and single-board computers without a significant loss of model performance.

Apart from model size, energy efficiency is another important limitation while deploying NNs on edge devices. Edge nodes in most scenarios are

battery-powered or have thermal limitations, which demand power-efficient inference. Mohan et al. address these challenges by proposing energy-

efficient neural network architectures and AI accelerators for edge workloads [2]. Their work also points to increasing interest in privacy-preserving

methods, such as federated learning and on-device retraining, which are most applicable in sensitive domains such as healthcare and finance [2].

In addition to general IoT applications, neural networks are also increasingly being used in the energy field—i.e., within the Internet of Energy (IoE)

context. Zhang et al. explore the prospect of edge AI managing distributed energy systems, whereby local intelligence can optimize energy

consumption, grid balancing, and load forecasting in real-time [3]. Their paper presents a strong case for lightweight, adaptive models that can cope

with dynamic environmental fluctuations and operate within hardware limitations.

The world of research is rushing headlong into what is now being called "Edge Intelligence"—a discipline devoted to the joint optimization of AI

algorithms and edge computing systems. Lin et al. describe this convergence in their pioneering work, setting architectural guidelines and design

approaches for the deployment of deep learning models in real-time, latency-bound settings [4]. They describe how hybrid cloud-edge frameworks can

balance responsiveness against accuracy using partial inference on edge devices and offloading computation-intensive processing to the cloud only

when needed.

The practical deployment of NNs at the edge also requires algorithmic innovation. Dynamic neural networks, low-rank approximations, neural

architecture search (NAS), and event-driven models are among the current research frontiers. Zeng et al. highlight these emerging techniques in a

special issue of Neurocomputing dedicated to the intersection of edge computing and deep learning [5]. Their compilation of works demonstrates the

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399 7395

potential of customized and context-aware neural networks that dynamically adjust computation based on environmental conditions or resource

availability.

Despite these advances, several open problems remain: How can neural networks be made both accurate and lightweight? What are the trade-offs

between centralized training and distributed learning? How do we ensure fairness, robustness, and interpretability in models deployed on heterogeneous

edge devices? These questions form the backbone of this paper’s inquiry.

This paper presents a comprehensive investigation into the deployment of neural networks for edge computing and IoT applications. We begin by

examining the fundamental challenges of executing deep learning models on resource-constrained devices. Next, we explore cutting-edge techniques in

model optimization, hardware acceleration, and system-level co-design. We also review real-world case studies across sectors such as healthcare, smart

agriculture, and energy systems. Finally, the paper outlines future directions in federated learning, neuromorphic computing, and collaborative edge-

cloud AI.

Through this analysis, we aim to provide a foundational reference for researchers and engineers working at the intersection of machine learning and

edge systems. The primary objective is to create intelligent, efficient, and scalable AI applications that can succeed outside of the cloud.

Literature Review

 The combination of edge computing, IoT technologies, and neural networks (NNs) is a paradigm shift in processing and leveraging data in

decentralized systems. While cloud computing has been the standard for training and inference of deep learning models, it is afflicted with problems

such as high latency, privacy attacks, and bandwidth constraints, especially in latency-sensitive IoT applications. The direct deployment of NNs on

edge devices promises to process information in real-time, decrease dependence on distant servers, and offer on-site privacy—making it highly suitable

in mission-critical uses like autonomous driving, health monitoring, and industrial automation [6]. Recent studies have also explored means through

which sparsely weighted neural network architectures like MobileNet, SqueezeNet, and EfficientNet-Lite can be appropriately incorporated in power-

limited devices while attaining an acceptable level of performance [7].

In addition to architectural changes, edge-centric optimizations now include neural architecture search (NAS), where AI is utilized to design the most

optimal NN configurations for a given hardware and application. NAS can tailor models for latency, memory, or accuracy, depending on the

application, and its integration with edge AI is an area of research in progress [8]. For example, latency-aware NAS has led to extremely light-weight

models for embedded vision applications and speech recognition on microcontrollers. These developments are especially useful for real-time edge

applications with tightly constrained computational and energy budgets [9].

The literature also emphasizes the significance of model compression techniques in making NNs viable at the edge. Quantization, where 32 -bit floating

point weights are substituted with 8-bit or even binary representations, is widely employed. This reduces memory usage and computational loads,

making inference on small form-factor processors possible. Pruning, which removes less significant weights and nodes, induces sparsity that further

reduces the load at run time. Dynamic pruning methods—where pruning is input-dependent—have recently gained traction, allowing models to adjust

automatically to workload and input complexity in real time [10]. When combined with hardware accelerators such as AI-specialized DSPs, these

methods allow neural models to execute on sub-watt devices without sacrificing functionality.

Privacy-sensitive learning approaches such as federated learning have proven to be a leading research area for edge-based NNs. Instead of sending raw

sensor readings to central servers, federated learning pushes learning across numerous edge nodes and transmits only model updates. It helps comply

with data privacy laws such as GDPR and HIPAA without compromising the accuracy of distributed learning performance [11]. Improvements in

federated learning—like differential privacy, secure aggregation, and client selection algorithms—improve robustness to malicious attacks and device

dropout, which are widespread in heterogeneous IoT environments [12].

Security concerns become more relevant with edge-based NN deployment. Adversarial attack-induced misclassification gives rise to researching light-

weight defense techniques like adversarial training and resilient architectures which sacrifice none of their efficiency in cases of resource-poor devices

[13]. Zero-trust architectures and runtime integrity verification techniques are also being suggested to verify the integrity of deployed edge models.

Other than technical improvements, certain research dives deeper into application-specific deployments demonstrating the viability of neural networks

on the edge. In medical research, convolutional neural networks (CNNs) are used in early arrhythmia or skin cancer diagnosis with images captured and

processed locally on edge devices like smartphones or wearables [14]. These models not only reduce response time but also remote diagnostics in

remote regions with minimal internet connectivity. In industrial IoT (IIoT), LSTMs at the edge are used to predict equipment failure based on real-time

vibration and temperature readings, allowing for proactive maintenance [15]. In environmental monitoring, edge-AI models are applied to analyze air

quality and noise levels, thereby reducing the need to transmit high-frequency sensor data to centralized cloud systems [16].

There is also a growing trend toward cross-layer optimization, where both software (model architecture) and hardware (device design) are co-optimized

for efficient edge inference. Innovations such as compiler-level optimizations (e.g., TVM and XLA) allow developers to fine-tune neural computations

to specific chipsets. Meanwhile, neuromorphic hardware such as Intel’s Loihi and IBM’s TrueNorth leverage brain-inspired computing models that

enable asynchronous, event-driven processing, which is ideal for low-power edge inference [17]. These chips are particularly well-suited for spiking

neural networks, which consume power only when active, leading to significant energy savings.

Edge AI systems are increasingly being designed with adaptability in mind. Context-aware and dynamic neural networks adjust their complexity and

computation paths based on available resources or data complexity. For example, dynamic computation graphs and early-exit architectures allow edge

NNs to terminate computation once a confidence threshold is reached, thus saving time and power [18]. Reinforcement learning and meta-learning

techniques are also being explored to enable models that can self-tune or learn over time from their deployment environment, enhancing long-term

performance without re-training.

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399 7396

Finally, the literature emphasizes interoperability issues, model deployment, and lifecycle management. Most edge devices have different computation

power, memory, and software support, making it difficult to port models. Containerization and device-independent model packaging through

frameworks like TensorFlow Lite, ONNX, and PyTorch Mobile act to alleviate such difficulties. Edge orchestration platforms—such as Kubernetes

edge or NVIDIA's Triton Inference Server—are being developed to orchestrate distributed AI workloads across a heterogeneous network of edge

devices [19]. They handle everything from workload balancing to failover and firmware updates, ensuring system reliability.

Overall, NN integration within edge computing and IoT is a vibrant and successful area of research. Solutions vary from hardware, software, system-

level orchestration to privacy-preserving technologies. The benefits are notable, such as real-time inference, privacy, scalability, and low operational

costs, but constraints like resource limitations, security, and interoperability need to stay in the spotlight in order to be tackled. Literature suggests that

the intelligent edge computing future will be founded on hybrid AI systems with a balance between decentralized intelligence and centralized learning

and supported by elastic, light, and resilient neural models [20].

Table I provides a comprehensive comparison of top neural network optimisation techniques used to optimize models for resource-constrained edge

devices. It determines the fundamental principles of each technique, such as quantization, pruning, and NAS, and evaluates their effectiveness in model

size reduction, inference speeding up, and energy efficiency. The table also elaborates the hardware compatibility and rightful application fields of

every technique and offers a practical perspective in determining the right solution based on specified edge computing scenarios.

 Comparison of Neural Network Optimization Techniques for Edge Devices

Optimization

Technique

Description Impact on Model

Size

Impact on

Inference

Speed

Energy

Efficiency

Hardware/Platform

Compatibility

Typical Use Case

Quantization

Converts

weights/activations

from 32-bit float

to 8/16-bit integer

format

Converts

weights/activations

from 32-bit float

to 8/16-bit integer

format

2–4× faster High Widely supported (e.g.,

ARM, Edge TPU)

Image classification,

audio recognition

Pruning

Removes less

important

weights/nodes

from the model

Up to 90%

reduction

Up to 3×

faster (with

sparse

matrix

support)

Medium to

high

Requires support for

sparse computation

Industrial

monitoring,

anomaly detection

Knowledge

Distillation

Trains a smaller

"student" network

using the output of

a larger "teacher"

network

2–10× reduction Comparable

to student-

only model

High Platform agnostic Speech processing,

NLP tasks

Neural

Architecture

Search

(NAS)

Uses automated

search to find

optimal NN

structures

Varies (task

dependent)

Optimized

for specific

hardware

Very high (if

hardware-

aware)

Requires large compute

for training phase

Real-time inference

(e.g., drones,

robotics)

Dynamic

Neural

Networks

Allows early-exit

or conditional

layer skipping

based on input

complexity

Depends on usage Highly

dynamic;

up to 5×

speed boost

Very high in

adaptive

environments

Custom implementation

needed

Edge analytics,

adaptive

surveillance

Use Cases of Neural Networks at the Edge Across Industries

Industry Application Edge

Device

Neural

Network

Model

Input Type Processing Done at Edge Benefits

Healthcare

Arrhythmia

detection

Smartwatch

/ ECG

patch

CNN /

LSTM

ECG signals Real-time analysis of

waveform

Immediate alerts, privacy-

preserving diagnosis

Manufacturing

Predictive

maintenance

Industrial

IoT sensor

RNN / GRU Vibration,

temperature

Anomaly detection, failure

prediction

Reduced downtime, energy

efficiency

Agriculture

Crop health

monitoring

Edge

camera

with Jetson

Nano

MobileNet /

EfficientNet

Leaf images Disease classification, yield

estimation

Local decision-making,

reduced data transmission

Smart Cities Traffic Roadside

Raspberry

YOLOv5 / Video Object detection, traffic Real-time control,

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399 7397

monitoring Pi with

camera)

SSD stream density estimation bandwidth reduction

Retail

Shelf

inventory

management

Edge

camera on

robot

ResNet /

YOLO-

Tiny

Image feed Product detection and

recognition

Improved stock accuracy,

low-latency decisions

Security &

Surveillance

Intrusion

detection

IP camera

+ NPU

SNN /

Lightweight

CNN

Live video Motion detection, human

presence

Offline alerts, minimal cloud

use

Table II depicts real-world usages of neural networks executed on edge devices across different sectors. It provides specific use cases, the type of edge

device deployed, the type of neural network architecture utilized (e.g., CNN, LSTM), and the type of input data processed. The table also highlights the

type of on-device computation performed and specifies the resulting benefits, such as reduced latency, enhanced privacy, and resource optimization.

The following table shows the versatility and expanding use of edge AI in solving industry-related problems.

Proposed Methodology

The proposed approach is designed to enable the deployment of efficient, general-purpose neural network models onto highly resource-constrained IoT

edge devices with the assistance of light-weight architectures such as TinyML. The proposed approach addresses real-world deployment constraints by

utilizing a multi-stage pipeline that is low in memory consumption, latency, and high in accuracy while being flexible across various IoT applications.

Data Collection and Preprocessing

Odology begins with the acquisition of domain-independent sensor data, e.g., audio, vision, motion, temperature, and other common IoT signal types.

Real-time data is collected by sensors mounted on IoT boards (e.g., accelerometers, microphones, cameras) under different environmental conditions to

facilitate generalization. The raw inputs usually contain noise and inconsistencies, and preprocessing steps based on the type of signal are needed. For

instance, the image data are converted to grayscale, resized, and histogram equalized while time-series data can employ smoothing filters,

normalization, or Fast Fourier Transform (FFT) for feature transformation.

For the purpose of generalization support, data augmentation strategies such as flipping, rotation, cropping, and time-warping are applied. This supports

the robustness and adaptability of the model in handling varied inputs at inference in real-world scenarios. Finally, the preprocessed dataset is annotated

and partitioned into training, validation, and test sets according to a suitable ratio (e.g., 70-20-10) for neural network training pipelines. Maintaining the

Integrity of the SpecificationsModel Selection and Architecture Design

 The core of the proposed methodology is the selection and customization of lightweight neural network architectures compatible with the limitations of

edge devices. The process begins with benchmarking popular TinyML-compatible models like MobileNetV2, EfficientNet-lite, and custom CNN

architectures. These models areselected due to their efficiency in feature extraction and reduced computational overhead via techniques such as

depthwise separable convolutions and bottleneck layers.

To enhance model efficiency, we incorporate hardware-aware neural architecture search (NAS) techniques like TinyNAS or DNAS. These tools

generate optimal model topologies based on device-specific constraints, including memory, multiply-accumulate operations (MACs), and latency. We

also propose a hybrid approach where a base model (e.g., MobileNetV2) is refined using NAS and knowledge distillation from a larger teacher model.

This improves the final tiny model's representational power without exceeding resource limits.this file and download the Microsoft Word, Letter file.

Model Selection and Architecture Design

 Model The core of the proposed methodology is the selection and lightweight neural network customization architectures that are edge device

limitation compatible. The process starts with benchmarking widely used TinyMLcompatible models such as MobileNetV2, EfficientNet-lite, and

custom CNN architectures These models are selected due to their efficiency in feature extraction and reduced computational overhead via techniques

such as depthwise separable convolutions and bottleneck layers.

To enhance model efficiency, we incorporate hardwareaware neural architecture search (NAS) techniques like TinyNAS or DNAS. These tools

generate optimal model topologies based on device-specific constraints, including memory, multiply-accumulate operations (MACs), and latency. We

also propose a hybrid approach where a base model (e.g., MobileNetV2) is refined using NAS and knowledge distillation from a larger teacher model.

This improves the final tiny model's representational power without exceeding resource limits.this file and download the Microsoft Word, Letter file.

Model Training

 Model training is performed offline on cloud-based GPU environments using standard frameworks like TensorFlow or PyTorch. Transfer learning

techniques are employed when pretrained backbones are used, while custom NAS-generated models are trained from scratch. Training involves loss

optimization (e.g., categorical cross-entropy), learning rate scheduling, and early stopping to avoid overfitting. Where quantization-aware training

(QAT) is desired, simulated 8-bit or 4-bit arithmetic is introduced during training to preserve accuracy in low-precision inference.

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399 7398

Extensive hyperparameter tuning is conducted to find an ideal balance between model size and performance. Crossvalidation, batch normalization, and

dropout are integrated into the training process to ensure stability and generalization..

Model Optimization(Quantization and pruning)

 After training, the model undergoes aggressive optimization for edge deployment. Quantization is applied to reduce weight and activation precision to

8-bit or lower using TensorFlow Lite or similar toolkits. Post-training quantization (PTQ) or quantization-aware training ensures that accuracy

degradation is minimal. Structured pruning techniques eliminate redundant filters or entire layers based on magnitude or contribution analysis. This

further compresses the model size while maintaining inference efficiency.

To explore deeper compression, we consider sub-byte quantization (e.g., 4-bit or ternary weights) and apply iterative pruning-fine-tuning cycles. These

steps are crucial to meet the memory (e.g., 256 KB SRAM) and storage (e.g., 1 MB flash) constraints of target MCUs like STM32, ESP32, and Arduino

Nano 33 BLE.

Deployment on Edge Devices

 The optimized model is converted to a suitable deployment format (e.g., TensorFlow Lite for Microcontrollers flatbuffer) and flashed onto the target

device. Deployment involves compiling the model with a runtime such as TFLite Micro or CMSIS-NN. These inference engines provide fixed-point

arithmetic and efficient buffer scheduling optimized for Cortex-M processors.

Sensor integration is programmed through real-time operating systems (RTOS) or lightweight firmware. Input buffers from sensors (e.g., ADC for

analog, I2C for digital) are fed directly into the inference pipeline. Output actions (e.g., GPIO toggling, wireless alerts, or actuator activation) are

mapped to inference outcomes, completing the edge AI cycle.

Real time inference and age integratin

 The final model runs inference directly on the IoT device, responding to sensor triggers or executing at fixed intervals. The system supports always-

on or event-driven operation modes, significantly conserving power and bandwidth. The proposed methodology introduces a hierarchical inference

strategy: devices perform initial lowlatency analysis, while more powerful edge gateways (e.g., Raspberry Pi, NVIDIA Jetson Nano) aggregate results

across nodes for broader context-aware decision-making. To ensure adaptability, the system supports over-the-air (OTA) updates and federated

learning. Devices periodically send model gradients (not raw data) to a cloud server, which aggregates updates and redistributes new model weights.

This ensures that models remain updated to evolving environments without violating data privacy.

Conclusion Methodology

 This proposed pipeline provides an end-to-end blueprint for deploying robust neural networks on edge IoT devices. It leverages model compression,

NAS, quantization, and federated updates to build general-purpose systems that balance power, performance, and privacy. With support for real-time

inference and modular architecture, the methodology is extensible to various domains such as health monitoring, smart agriculture, surveillance, and

predictive maintenance.

REFERENCES

1. Surianarayanan, M., & Lawrence, R. (2023). "A Survey on Optimization Techniques for Edge Artificial Intelligence." Sensors, 23(3), 1279.

https://doi.org/10.3390/s23031279

2. Mohan, N., et al. (2024). "Revisiting Edge AI: Opportunities and Challenges." IEEE Internet Computing, 28(4), 25–33.

https://doi.org/10.1109/MIC.2024.3383758

3. Zhang, Y., et al. (2023). "Edge AI for Internet of Energy: Challenges and Perspectives." Internet of Things, 23, 100729.

https://doi.org/10.1016/j.iot.2023.100729

4. Lin, S., Zhou, Z., Zhang, Z., Chen, X., & Zhang, J. (2020). Edge Intelligence in the Making: Optimization, Deep Learning, and

Applications. Springer. https://doi.org/10.1007/978-3-031-02380-4

5. Zeng, Z., Chen, C., Veeravalli, B., Li, K., & Zhou, J. T. (2021). "Introduction to the Special Issue on Edge Intelligence: Neurocomputing

Meets Edge Computing." Neurocomputing, 472, 149–151. https://doi.org/10.1016/j.neucom.2021.11.069

6. 6] Chakraborty, Indranil, et al. "Efficient Hybrid Network Architectures for Extremely Quantized Neural Networks Enabling Intelligence at

the Edge." arXiv preprint arXiv:1902.00460 (2019).

7. Wang, Ruoyin. "Edge Computing and Neural Network Accelerators: Optimization and Future Development of Artificial Intelligence

Technology." Highlights in Science, Engineering and Technology 131 (2025): 58-59.

8. Gelenbe, Erol, and Mert Nakip. "Minimizing Delay and Power Consumption at the Edge." Sensors (2025).

9. "Sustainable Edge Computing: Challenges and Future Directions." Software: Practice and Experience (2023).

https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3340

10. Zhou, Zhi, et al. "Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing." arXiv preprint arXiv:1905.10083

(2019).

International Journal of Research Publication and Reviews, Vol (6), Issue (5), May (2025) Page – 7394-7399 7399

11. Bensalem, Mounir, Jasenka Dizdarević, and Admela Jukan. "Modeling of Deep Neural Network (DNN) Placement and Inference in Edge

Computing." arXiv preprint arXiv:2001.06901 (2020).

12. Dong, Guimin, et al. "Graph Neural Networks in IoT: A Survey." arXiv preprint arXiv:2203.15935 (2022).

13. "Edge Computing Applications in Industrial IoT: A Literature Review." ResearchGate (2023).

https://www.researchgate.net/publication/369628636_Edge_Computing_Applications_in_Industrial_IoT_A_Literature_Review

14. "A Systematic Literature Review on Distributed Machine Learning in Edge Computing." MDPI Sensors 22, no. 7 (2022): 2665.

https://www.mdpi.com/1424-8220/22/7/2665

15. "Deep Reinforcement Learning in Edge Networks: A Survey." ScienceDirect (2024).

16. "Edge AI: A Taxonomy, Systematic Review and Future Directions." arXiv preprint arXiv:2407.04053 (2024).

17. "A Survey of Machine Learning in Edge Computing." MDPI Technologies 12, no. 6 (2024): 81. https://www.mdpi.com/2227-7080/12/6/81

18. "Edge Machine Learning for AI-Enabled IoT Devices: A Review." PMC (2020). https://pmc.ncbi.nlm.nih.gov/articles/PMC7273223/

19. "Edge Computing is About to Solve the IoT's Biggest Problems." WIRED (2021). https://www.wired.com/story/edge-computing-iot

20. "Neural Networks for Edge Computing: Bringing AI to the Internet of Things." Hilaris Publisher (2023)

https://www.wired.com/story/edge-computing-iot

