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ABSTRACT.  

This paper focuses on the performance of longitudinal models under the unbalanced panel data for N (20, 25, and 30) when beta 𝛽 = 3. An unbalanced model are 

time invariant models, where there are missing values in the panels of the data. [1] in their study, evaluated Between Median estimator (BMD) which was developed 

for modeling a panel data under the unbalanced panel data by assessing their behaviors using Mean Square Error (MSE) and Mean Absolute Error (MAE). Among 

the six estimators studied Between Median estimator (BMD) has the lowest values of MSE and MAE for N (20 and 25) with β = 1 and T = 4 and 6. This work 

builds on [2] with different data structures; an additional N across various T and a constant 𝛽 = 3. 5% additions at regular interval of missingness (5%- 20%), 

sample sizes of N =20, 25, and 30; and T= 4, 5, and 6 𝑤𝑖𝑡ℎ 𝛽 = 3 were considered. A Monte Carlo study of a normal distribution of a panel data model of exogenous 

 𝑥 𝑖𝑡, and endogenous variable  𝑌𝑖𝑡, and the error 𝜀1𝑡   show that the Between Median estimator (BMD) performed best of the six estimators tested using MSE, MAE, 

and RMSE. Application of the real-world panel dataset show that, the Between Median estimator outperformed other five panel data estimators employed using the 

same measurement criteria.  
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1. Introduction  

Longitudinal data is an individual cross-sectional data with time invariant T. Investigation of panel data analysis especially small sample panel data set 

is important. The slope, Beta (𝛽) is a parameter of interest [3]. This paper is a contribution to the effect of 𝛽 on panel data models; heuristically, a change 

in X (predictor) of one unit leads to a prediction of an increase or decrease in 𝛽 𝑢𝑛𝑖𝑡.  The effect of 𝛽 control the individual and time heterogeneity. [4]; 

[5]. Therefore, it implies that, an increase in 𝛽 will increase or decrease y and have a disturbance on the error 𝜀1𝑡  .  

Slope and intercept are parameters of interest in regression; heuristically, slope is needed for statistical derivation. This cannot be defined independent of 

the covariate of the individual across the period. For unbiasedness of Beta (𝛽), the estimator of 𝛽̂ is the population slope in addition to the error term. For 

a simple linear regression, the expected values of beta given the regressor is the slope. 𝐸(𝛽̂ 𝑋⁄ ) = 𝛽̂.  [6]. 

In their study, [1] observed that the Between Median Estimator (BMD) outperformed the best-performing Between estimator in [7]. The Between Median 

estimator (BMD) is a variant of the Between estimator. Between estimator employs Generalized Least Squares (GLS) in the two-way error component 

panel data models, with the final estimation being the mean of the dependent variable Y's regressing on the mean of the independent variable(s) X(s). 

This work focuses on the heuristic search technique, building on [1].  In simulation, adjusting parameter variable settings is important for effective runs 

to attain an optimal output. The adjusted constant   𝛽 = 3  is examined for an addition of N=30. The sizes of N across T studied are N (20, 25, and 30).and 

T varied at T= 4, 5 and 6 respectively.  [8-10]. [11]; [12-13]; and [14] all investigated small data. The work was validated using the real -world data of 

the top five African Countries data ranked by Gross Domestic Product (GDP) at Purchasing Power Parity (PPP), current price.  

The Between Median Estimator (BMD) outperformed the other five estimators tested for balance panel models under unbalanced panel by regressing the 

median of Y dependent variable on the median of the X independent variable. The method of estimation was generalized least square (GLS), this was 

consistent and efficient estimator [15-16]. 
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2. MATERIALS AND METHODS  

2.1. The Panel Data Estimator  

 panel data model is given as;  

yit = αi +  𝛽𝑋𝑖𝑡
′   + 𝜇𝑖𝑡      ,     (1) 

where,  

yit is the response for unit i at time t,  αi denotes the individual- specific intercept,  

vector 𝑋𝑖𝑡
′  contains k regressors for unit i at time t, vector 𝛽 contain regression coefficients to be estimated and  𝑢𝑖𝑡 is the error component for unit i at 

time t, 𝑖 =  1,2 … , 𝑛 and t = 1,2 …., T 

2.2. Six Panel Data Estimators Employed 

The five common estimators of panel data and the Between Median estimator developed by [1] to be fitted with different conditions and criteria and 
efficiency were discussed in this section. These estimators are: 

 

2.2.1. Pooled Estimator: This is also known as the OLS. It regresses the dependent variable y on the independent variable X. This Estimator stacks the 

data over i and t into one long regression with nT observations and estimates of the parameters are obtained by OLS using the model [17]; [18].  

𝑦𝑖𝑡 =  𝛽0 + 𝛽𝑇𝑥𝑖𝑡 + 𝜀𝑖𝑡 ,            𝑡 =  1,2, … 𝑇 ; 𝑖 = 1, 2, … , 𝑁  , (2) 

𝑦 =  𝑋′𝛽 + 𝑤 ,       (3) 

where, y is an 𝑛𝑇 × 1 column vector of response variable, X is an 𝑛𝑇 × 𝑘 matrix of regressors,  

β is a (k+1) × 1 column vector of regression coefficient, and w is an 𝑛𝑇 × 1 column vector of the combined error terms (i.e. 𝜀𝑖+μit). The pooled estimator 

is given as  

𝜷̂𝑝𝑜𝑜𝑙𝑒𝑑  = (𝑿′𝑿)−𝟏𝑿′𝒚   ,      (4) 

 

2.2.2. Within Estimator: This regress on the deviations from the individual or/and time mean. [19]; [20].  

𝑦𝑖𝑡 =  𝑋𝑖𝑡
∗ 𝛽∗ + 𝑍𝑗𝛼 + 𝜀𝑗𝑡                              ,     (5) 

where,  

𝜀𝑗𝑡 =    𝑎𝑖 + 𝑢𝑖𝑡    ,     (6) 

The 𝑋𝑖𝑡
∗  matrix does not contain a unit vector. The heterogeneity or individual effect is captured by Z, which contains a constant term and possibly several 

other individual-specific factors. Likewise, 𝛽∗contains 𝛽2 , … , 𝛽𝑘, constrained to be equal over i and t. If Z contains only a unit vector, then pooled OLS 

is a consistent and efficient estimator of [𝛽∗ 𝛼].  

 

2.2.3.  Between Estimator (BTW): This regresses the group means of Y on the group means of X(s) in a regression of n observations. It uses cross-

sectional variation by averaging the observations over period [18]. Averaging model (1) over t gives  

𝑌̅𝑖. = α + 𝛽1 𝑋̅ 1𝑖.  + 𝛽2 𝑋̅ 2𝑖. + wit     ,               (7) 

where,  

y is an 𝑌̅𝑖. =  𝑇−1 ∑ 𝑌𝑖𝑡𝑡 , 𝑋̅𝑗𝑖. =  𝑇−1 ∑ 𝑋𝑗𝑡𝑡 , and 𝑤̅𝑖.  =  𝑇−1 ∑ 𝑤𝑡 it  , for i = 1,2…n and j = 1,2. 

 

2.2.4.  First- Difference Estimator (FD):  This is the ordinary least squares estimation of the difference between the original model and its one-period-

lagged model. This estimator is useful in addressing omitted variables problems with panel data. It controls for fixed effects and remove the problem of 
unobserved heterogeneity.  [21]; [22].  

∆Yit =  𝛽1 ∆𝑋 1𝑖𝑡  + 𝛽2 ∆𝑋 2𝑖𝑡β + ∆wit   ,       (8) 

where, ∆Yit = Yit −Yi, t-1,  ∆𝑋 1𝑖𝑡 = 𝑋 1𝑖𝑡 − 𝑋 1𝑖,𝑡−1 , ∆𝑋 2𝑖𝑡 =  𝑋 2𝑖𝑡 − 𝑋 2𝑖,𝑡−1  and  

∆wit = wit −wi,t-1  ,   for i = 1,2…n and t = 1,2… T 

 

2.2.5.  Random Estimator: This is the individual specific effect that is unrelated to the explanatory variable [23-24]; [25]; and [26],  

𝑦𝑖𝑡 =  𝛽0+ 𝑋𝑖𝑡
′ 𝛽 + 𝛼𝑖 + 𝑢𝑖𝑡             ,              𝑢𝑖𝑡 ~ 𝑖𝑖𝑑 (0, 𝛿𝑢

2) ,   (9) 

where,  

𝛽0 is the individual- specific intercept, β is a (k+1) × 1 column vector of regression coefficient,  𝑡 =  𝜆, … , 𝑇 and 𝑖 =  1, … , 𝑁 

𝐶𝑜𝑣 (𝛼𝑖, 𝑋𝑖𝑡) ≠ 0  ∼ 𝐹𝐸 − 𝑚𝑜𝑑𝑒𝑙  ,     (10) 

𝐶𝑜𝑣 (𝛼𝑖, 𝑋𝑖𝑡)= 0  ∼ 𝑂𝐿𝑆 −  𝑚𝑜𝑑𝑒𝑙  ,     (11) 

Also, if   

 𝜆 = 1 − (
𝛿𝜇

2

𝛿𝜇
2 +𝑇.  𝛿𝛼

2)                                               ,                                                         (12) 

  𝜆 = 1  ∼ 𝐹𝐸 𝑚𝑜𝑑𝑒𝑙     ,      (13) 

 𝜆 = 0  ∼ 𝑂𝐿𝑆 model.            ,      (14) 

 

2.2.6. Between Median Estimator (BMD): This regresses the group medians of Y on the group medians of X(s) in a regression of n observations. It uses 

cross-sectional variation by using the median of the observations over period [1]. Let 𝜌𝑖 represent the group median of the response variable and 𝜅𝑖   the 

group median of the explanatory variables of the cross-sectional observations n. it follows therefore that for a model with two explanatory variables we 
have; 

𝜌𝑖 =  α + 𝛽1 𝜅1𝑖.   +  𝛽2 𝜅 2𝑖.  + 𝑤𝑖𝑡      ,               (15) 

where,  𝜌𝑖  = (
𝑛+1

2
 ) 𝑓𝑜𝑟 𝑎𝑛 𝑜𝑑𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝑎𝑛𝑑 

(𝑛/2)+  (𝑛/2+1) 

2
𝑓𝑜𝑟 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛,  

𝜅𝑖  = 𝑓𝑜𝑟 𝑎𝑛 𝑜𝑑𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝑎𝑛𝑑 
(𝑛/2)+  (𝑛/2+1) 

2
𝑓𝑜𝑟 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛   

and,  

𝑤𝑖𝑡 =  (
𝑛+1

2
 ) 𝑓𝑜𝑟 𝑎𝑛 𝑜𝑑𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  𝑎𝑛𝑑 

(𝑛/2)+  (𝑛/2+1) 

2
𝑓𝑜𝑟 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛   

for i = 1,2…n and j = 1,2. 
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2.3. Monte-Carlos Procedure 

Monte-Carlos is a mathematical technique based on experiment for evaluation and estimation of problems which are intractable by probabilistic or 

deterministic approach 
 Considering the panel data in equation (1) 

It follows that  𝜇𝑖𝑡   ~𝑁 (0, 1),      𝜇𝑖𝑡  =  𝜀𝑖𝑡    
𝑌𝑖𝑡 =  𝛽0𝑖𝑡 + 𝛽1𝑖𝑡𝑥1𝑖𝑡 + 𝜀𝑖𝑡 ,                             𝜀𝑖𝑡  ~𝑁 (0, 1)                                                            (16) 
                 𝑡 =  1, … , 𝑇 ;  𝑖 =  1, … , 𝑛𝑘  𝑎𝑛𝑑   𝑘 =  1, … , 5.  
Adopting the simulation framework used by [1]. This paper focuses on a Monte Carlo study for a panel dataset of a total of k = 5 subjects over T = 5 and 
6 periods and for different sample sizes n (20, 25, and 30). In the balance panel case, GLS is obtained by running the ordinary least square (OLS). This 

takes care of the autocorrelation or heteroscedasticity in the error term, and the efficiency is obtained by transforming the heteroscedasticity variance-

covariance matrix into a homoscedastic. 
 

2.3.1. Assessment Criteria 

The following model assessment criteria were employed to determine the relative absolute efficiencies of the various estimation considered. 
(i) Mean Absolute Error  (MAE): 

         𝑀𝐴𝐸 =  
1

𝑛𝑇
∑ ∑ |𝛽𝑖𝑡 − 𝛽|𝑇

𝑡=1
𝑛
𝑖=1   ,     (17) 

where,  

            n is the number of errors, 

            Σ is the summation symbol, that is, adding individual 𝑖 over 𝑛 and time 𝑡 over 𝑇 , 

           |𝛽𝑖𝑡 − 𝛽 | are the absolute errors. 

[26];  

(ii) Mean Square Error (MSE): 

                 𝑀𝑆𝐸 =  
1

𝑛𝑇
∑ ∑ (𝛽̂𝑖𝑡 −  𝛽)2𝑇

𝑡=1
𝑛
𝑖=1    ,    (18) 

 where 

            n is the number of errors, 

            Σ is the summation symbol, that is, adding individual 𝑖 over 𝑛 and time 𝑡 over 𝑇 , 

           (𝛽̂𝑖𝑡 −  𝛽 )2 are the square errors. 

(iii) Root Mean Square Error (RMSE): 

[
1

𝑛𝑇
∑ ∑(𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)2

𝑇

𝑡=1

𝑛

𝑖=1

]

1
2⁄

                                                                                (19) 

where, [ ]
1

2⁄   is the root of the mean square error. [27]; [26].  

 

2.4. Theoretical background  

2.4.1 Estimation Method for the Balance Panel Data Using Generalized Least Square (GLS) 

If the diagonal matrix 𝜎2Σ =  𝑉 is a known n × n matrix, then the parameter estimation for the balanced panel data can be calculated using equation (2). 

If 𝑉 has unequal diagonal elements, the observations in y are uncorrelated but have unequal variance, while if 𝑉 has non-zero off-diagonal elements, the 

observations are correlated. Estimating 𝛽  by OLS gives  𝛽̂ =  (𝑋′𝑋)−1𝑦, however, the estimator is not optimal. The solution is to transform the model 

to a new set of observations that satisfy the constant variance assumption and use least squares to estimate the parameters. 

Since 𝛿2𝑉 is a covariance matrix, 𝑉 is a symmetric non-singular matrix, therefore  

𝑉 =  𝐾′𝐾 = 𝐾𝐾, and K is called the square root of 𝑉. [28]. 

Defining 𝑧 =  𝐾−1𝑦   , 𝐵 = 𝐾−1𝑋  𝑎𝑛𝑑 𝑔 =  𝐾−1𝜀  ⇒ 𝑧 = 𝐵𝛽 + 𝑔 , then, using Matrix Algebra, 

𝐸[𝑔] =  𝐾−1[𝜀 ] = 0    ,     (20) 

𝑉𝑎𝑟[𝑔] =  𝐾−1𝜀 =  𝐾−1𝑉𝑎𝑟[𝜀]𝐾−1 =  𝛿2𝐾−1𝑉𝐾−1 =  𝛿2𝐾−1𝐾𝐾𝐾−1 = 𝛿2𝕀  (21) 

Under the assumption of ordinary least square, the least square function is:  

𝑆(𝛽) = (𝑧 − 𝐵𝛽)′(𝑧 −  𝐵𝛽) =  (𝐾−1𝑦 − 𝐾−1𝑋𝛽 )′(𝐾−1𝑦 − 𝐾−1𝑋𝛽 ) = (𝑦 −  𝑋𝛽)′ ( 𝐾−1)′ 𝐾−1(𝑦 −  𝑋𝛽 ) 

Since 𝑉 =  𝐾′𝐾 = 𝐾𝐾, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, ( 𝐾−1)′ 𝐾−1  = 𝑉−1  

𝑆(𝛽)      = (𝑦 −  𝑋𝛽)′ 𝑉−1(𝑦 −  𝑋𝛽 )   ,                         (22) 

                =    𝑦′𝑦 −  𝑦′𝑋𝛽 −  (𝑋𝛽)′𝑦 +  (𝑋𝛽)′𝑋𝛽) 𝑉−1              ,     

                =    𝑦′ 𝑦 −  𝑦′𝑋𝛽 − 𝑋′𝛽′𝑦 +  (𝑋𝛽)′𝑋𝛽)𝑉−1   ,  (23) 

Here,  (𝑋′𝛽′𝑦)′ =   𝑦′𝑋𝛽   is a scalar and equal to its own transpose. Equation (23) becomes, 

                =    𝑦′ 𝑦𝑉−1 −  𝑦′𝑋𝛽𝑉−1 − 𝑋′𝛽′𝑦𝑉−1 +  (𝑋𝛽)′𝑋𝛽𝑉−1 

                =  𝑦′ 𝑦𝑉−1 − 2𝑋′𝛽′𝑦𝑉−1 +   𝑋′𝛽′𝑉−1𝑋𝛽   ,  (24) 

Taking the partial derivative via matrix calculus with respect to 𝛽  and setting it to 0 to satisfy the first order condition. Let (𝑋′𝑉−1𝑋) = 𝐴, 𝑎𝑛𝑑 𝛽 = 𝑥, 
 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒:   
𝜕𝑆(𝛽)

𝜕𝛽
= −2𝑋′𝑦𝑉−1 + 2(𝑋′𝑉−1𝑋)𝛽    ,    (25) 

this gives: 

−2𝑋′𝑦𝑉−1 + 2(𝑋′𝑉−1𝑋)𝛽 = 0    ,    (26) 
(𝑋′𝑉−1𝑋)𝛽 = 𝑋′𝑉−1𝑦     ,     (27) 

The generalized least squares estimator of 𝛽 now becomes: 

𝛽̂ =  (𝑋′𝑉−1 𝑋)−1 𝑋′𝑉−1𝑦 =  (𝐵′𝐵)−1 𝐵′    ,    (28) 

The quantity 𝑉−1 is known as the precision matrix or dispersion matrix, a generalization of the diagonal weight matrix.  

and 

https://www.statisticshowto.com/what-is-sigma-summation-notation/
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𝐸[𝛽̂] = (𝑋′𝑉−1 𝑋)−1 𝑋𝑉−1 𝐸[𝑦] =  (𝑋′𝑉−1 𝑋)−1 𝑋𝑉−1𝑋𝛽 =  𝛽   ,   (29) 

and  

Var[𝛽̂] =  𝛿2(𝐵′𝐵)−1 =  𝛿2(𝑋′𝐾−1𝐾−1𝑋)−1 =  𝛿2(𝑋′𝑉−1 𝑋)−1 ,   (30) 

Which leads to the unbiased and consistent estimator of 𝛿2. [29]. 

Similarly, under normal theory, the generalized least squares estimators are the maximum 
likelihood estimators since the log-likelihood function is: 

𝐿𝛼 = ln(𝛿2) − 
1

2
ln|𝑉| − 

1

2𝛿2
ln(𝑦 −  𝑋𝛽)′𝑉−1(𝑦 −  𝑋𝛽 )  ,   (31) 

 

2.4.2. Estimation Method for the Unbalanced Panel Data Using Generalized Least Square (GLS) 

The modified general case of the generalized least square estimator for unbalanced panel datasets assumed to be a case where the 𝑉 is unknown. The 

parameter estimates for the unknown 𝑉 are obtained using the feasible generalized least square (FGLS) estimator by replacing 𝑉 by 𝑉̂. The GLS estimator 

for the unbalanced case can be interpreted as a matrix-weighted mean, with weight depending on X. In practice, the Vs have to be estimated, which 

requires estimation of 𝜎2 𝑎𝑛𝑑 𝜎𝛼
2. 

Analyzing unbalanced panel data becomes more challenging, especially when the values are missing at a higher percentage level. The rule of thumb for 

missing values in data is 50%; any missing values higher than this are not to be tolerated or accepted for analysis [30]. In this study, missing values were 

infused into the panel dataset at different degrees, say 5%–20%. The unbalanced data output used Biorn's [31] estimation procedure of the error component 

of the Between estimator, the generalized least squares (GLS), and the feasible generalized least squares (FGLS) to estimate the parameters of interest.  

The one-way error components regression model for unbalanced panel data in which individual 𝑖 (𝑖 =  1, . . . , 𝑁)  is observed in 𝑇𝑖 periods, and t denotes 

the observation of numbers that differ from the calendar period if the starting period of the individuals differs or if gaps occur in the time series of some 

of them. The GLS therefore depends on the T-dimensional relationship in the panel. [32].  

3. Results and Discussion 

3.1. Results of the Mean Square Error and the Mean Absolute Error 

Tables 1, 2, and 3 show the rank of the estimates of the Mean Square Error (MSE), and Tables 4, 5, and 6 the corresponding Mean Absolute Error (MAE) 

ranks for N across T. The Between Median estimator (BMD) with the lowest values ranked first for different levels of missingness (0%-20%), the Between 

estimator ranked second, while Pooling estimator with the highest values of MSE ranked last.  

Also, for all the levels of missingness employed, it was observed that other estimators have no consistent pattern of ranking as observed in Figures 1and  

 

3.1.1. The behavior of the six estimators using the Mean Square Error when N =20, 25, and 30 

Table 1: Mean Square Error Result in Order of Ranking, N=20, β=3, T=5 

MSE n N N N N N 
%   0 5 10 15 20 

 4 20 17 13 10 6 

Pooling  4th 5th 4th 5th 5th 
Within  3rd 3rd 3rd 3rd 3rd 

Random  4th 4th 4th 4th 4th 

First Difference  5th 6th 5th 6th 6th 
Between  2nd 2nd 2nd 2nd 2nd 

Between Median   1st 1st 1st 1st 1st 

 

Figure 1: Mean Square Error (MSE) for panel data size, N =20, n=4, beta=3, and at percentages (0,5,10,15,20) 
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Pol-Pooling estimator, With_in –Within estimator, RAN –Random estimator, FD –First Difference, estimator, BTW-Between estimator, Bme –Between 

Median estimator. 

 
Table 2: Mean Square Error Result in Order of Ranking, N=25, β=3, T=5 

MSE n N N N N N 

%   0 5 10 15 20 

 5 25 20 16 11 11 

Pooling  5th 5th 5th 4th 4th 

Within  3rd 3rd 3rd 3rd 3rd 

Random  4th 4th 4th 4th 4th 

First Difference  6th 6th 6th 5th 5th 

Between  2nd 2nd 2nd 2nd 2nd 

Between Median   1st 1st 1st 1st 1st 

 

Figure 2: Mean Square Error (MSE) for panel data size, N =25, n=5, beta=3, and at percentages (0,5,10,15,20) 

Table 3: Mean Square Error Result in Order of Ranking, N=30, β=3, T=6 

MSE n N N N N N 

%   0 5 10 15 20 

 N=30, β=3, T=6 5 30 24 18 17 13 

Pooling  4th 4th 4th 5th 4th 

Within  3rd 3rd 3rd 3rd 3rd 

Random  4th 4th 4th 4th 4th 

First Difference  5th 5th 5th 6th 5th 

Between  2nd 2nd 2nd 2nd 2nd 

Between Median   1st 1st 1st 1st 1st 
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Figure 3: Mean Square Error (MSE) for panel data size, N =30, n=5, beta=3, at percentages (0,5,10,15,20) 

Similarly, the pattern of ranking shown for MSE in Tables 1, 2, and 3, and the corresponding MAE order of ranking in Tables 4, 5, and 6 for N across T 

were plotted in the graphs shown in Figures 1, 2, and 3 for MSE and Figures 4, 5, and 6 for MAE. The Between Median estimator (BMd) ranked first for 

different levels of missingness (0%-20%) with the lowest MSE and MAE values. The Between estimator ranked second, while the Pooling estimator 

ranks last with the highest MSE and MAE values. Furthermore, other estimators did not show a consistent pattern of ranking when N is (20, 25, and 30). 

3.1.2. The behavior of the six estimators using the Mean Absolute Error N =20, 25, and 30 

Table 4: Mean Absolute Error Result in Order of Ranking, N=20, β=3, T=5 

MAE n N N N N N 

%   0 5 10 15 20 
 

4 20 17 13 10 6 

Pooling 
 

4th 5th 3rd 5th   5th 

Within 
 

3rd 4th 4th 2nd 4th 

Random 
 

4th 3rd 3rd 4th 3rd 

First Difference 
 

5th 6th 5th 6th 6th 

Between 
 

2nd  2nd 2nd 3rd 2nd 

Between Median   1st 1st 1st 1st 1st 

 

Figure 4: Absolute Mean Square Error (MAE) for panel data size, N =20, n=4, beta=3, and at percentages (0,5,10,15,20) 
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Table 5: Mean Absolute Error Result in Order of Ranking, N=25, β=3, T=5 

MAE n N N N N N 

%   0 5 10 15 20 
 

5 25 20 16 11 11 

Pooling 
 

5th 5th 5th 4th 5th 

Within 
 

3rd 3rd 3rd 3rd 3rd 

Random 
 

4th 4th 4th 4th 4th 

First Difference 
 

6th 6th 6th 5th 6th 

Between 
 

2nd  2nd  2nd  1st 2nd  

Between Median   1st 1st 1st 2nd  1st 

 

Figure 5: Absolute Mean Square Error (MAE) for panel data size, N =25, n=5 beta=3, and at percentages (0,5,10,15,20) 

Table 6: Mean Absolute Error Result in Order of Ranking, N=30, β=3, T=6 

MAE n N N N N N 

%   0 5 10 15 20 
 

5 30 24 18 17 13 

Pooling 
 

4th 4th 4th 5th 5th 

Within 
 

3rd 3rd 3rd 3rd 4th 

Random 
 

4th 4th 4th 4th 3rd 

First Difference 
 

5th 5th 5th 6th 6th 

Between 
 

2nd  2nd  2nd  2nd  2nd  

Between Median   1st 1st 1st 1st 1st 
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Figure 6: Mean Absolute Error (MAE) for panel data size, N =30, n=5, beta=3, at percentages (0,5,10,15,20) 

Over all, the graphs plotted show that the Between Median estimator is consistent and efficient with low values of N sizes, N (20, 25, and 30) across T 

(4,5and 6).  

 

3.1.2. Model Selection 

This section demonstrates how effectively the models predicted the variations in responses. Root Mean Square Error (RMSE) was employed to compare 

the accuracy of the panel data models assessed. The boxplots in figures 7, 8, and 9 clearly illustrate that the Between Median estimator appears to be 

consistent for different N (20, 25, and 30) over T (4, 5, and 6), with varying degrees of missing values. The metric assessed how well the predicted values 

matched the actual values. Thus, the Between Median estimator with the lowest value shows how well the model fits the data. 

The box-plot legend is described as: Poo -Pooling estimator, Wit –Within estimator, Rand –Random estimator, Bwn –Between estimator, BMd –Between 

Median estimator. 
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Figure 7: The Boxplot for Root Mean Square Error (RMSE) of all the six estimators including the proposed BME estimator when the sample 

size when 𝐍 = 𝐧* T = 20 at 0%- 20%. 
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Figure 8: The Boxplot for Root Mean Square Error (RMSE) of all the six estimators including the proposed BME estimator when the sample 

size when 𝐍 = 𝐧* T = 25 at 0%- 20% 
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Figure 9: The Boxplot for Root Mean Square Error (RMSE) of all the six estimators including the proposed BME estimator when the sample 

size when N = n* T = 30 at 0%- 20% 

3.2. Application  

The data used for this paper is the top five African Countries data ranked by Gross Domestic Product (GDP) at Purchasing Power Parity (PPP), current 

price. According to International Monetary Fund (IMF) these countries which were sorted in ascending order are: Egypt, Nigeria, South Africa, and 

Ethiopia.[33]. 

The data represents Penn World Table data of the Expenditure-side real GDP at current PPPs (in mil. 2017US$) (RGDP(e)) and the Real GDP at constant 

2017 national prices (in mil. 2017US$) RGDP (na)) for these countries between year (1995 - 1999).  [34]. The data described in [35] which was adopted 

by [36] was considered for this study. 

 Table 7: Description of Datasets Used to Generate Population Parameters 

Dataset Source Dependent Variable Independent Variables N T 

  Groningen Growth and Development Centre   

Penn World Table for Algeria, 
Nigeria, Egypt, South Africa 

and Ethiopia 

Log of Real GDP at 

constant 2017 

national prices (in 
mil. 2017US$)  

Ratio of Expenditure-side real GDP at 

chained PPPs (in mil. 2017US$) to Real 

GDP at constant 2017 national prices (in 
mil. 2017US$) Nigeria (X) 

5, 10, 20, 50, 

77 

5, 10, 15, 20, 

25 

 

Tables 8 and 9 represent the MSE and the MAE estimates derived from the log of Real GDP at constant 2017 national prices in US dollars, which is the 

dependent variable (y); and the ratio of the Expenditure-side real GDP at chained PPPs at constant 2017 national prices in US dollars, that is the 

independent variable (x) between the year (1995- 1999) 

 

https://www.rug.nl/ggdc/
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 Table 8: Mean Square Error for the Real-Life Data N= 25 

 

 

Table 9: Mean Absolute Error for the Real-Life Data N= 25 

3.2.1 Box-plot for the Real-Life Dataset 

Figures 47-61 show the box-plots plotted for the MSE, RMSE and the MAE for the real-life dataset. The plot displays the efficiency of the estimators at 

different degrees of missingness. The new estimator, Between Median Estimator, with the lowest estimate was found to outperformed the other existing 
panel data estimators considered for this study. It is therefore concluded that the real-life dataset fit the new estimator (BME). 

 

MSE N N N N N 

% 0 5 10 15 20 

N=25 20 17 13 10 6 

Pooling 
4.164053 

e-03 
4.131529e-03 

3.871167 
e-03 

2.602326 
e-03 

2.382442 
e-03 

Within 
6.990777 

e-04 
7.091882 

e-04 

 

1.190229 

e-03 

3.663067 
e-04 

3.664713 
e-04 

Random 
8.043466 

e-04 

8.398876 

e-04 

8.673234 

e-04 

5.886533 

e-04 

6.673329 

e-04 

First Difference 
1.363227 

e-03 

2.004461 

e-03 

1.957130 

e-03 

7.973587 

e-04 

7.971794 

e-04 

Between 
3.119414 

e-03 

2.874384 

e-03 

3.630064 

e-03 

5.236522 

e-03 

2.377882 

e-03 

        Between Median 
3.944305 

e-31 

3.944305 

e-31 

3.944305 

e-31 

3.944305 

e-31 

3.944305 

e-31 

MAE N N N N N 

% 0 5 10 15 20 

N=25 20 17 13 10 6 

Pooling 
4.903188 

e-02 

4.949588 

e-02 

4.800512 

e-02 

3.280266 

e-02 

4.903188 

e-02 

Within 
2.088891 

e-02 
2.035116 

e-02 
2.451817 

e-02 
1.310500 

e-02 
1.619621 

e-02 

Random 
2.224726 

e-02 

2.116436 

e-02 

2.748063 

e-02 

1.938224 

e-02 

1.687865 

e-02 

First Difference 
2.594057 

e-02 

3.119219 

e-02 

3.325788 

e-02 

1.842664 

e-02 

2.269920 

e-02 

Between 
4.043781 

e-02 
3.804940 

e-02 
4.434387 

e-02 
5.626120 

e-02 
3.266876 

e-02 

Between Median 
3.972055 

e-16 
3.944305 

e-31 
3.972055 

e-16 
3.972055 

e-16 
3.972055 

e-16 
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Figure 10: Box-plot for MSE, RMSE and MAE for the Real-life data at 0% level of missingness 

 

 

Figure 11: Box-plot for MSE, RMSE and MAE for the Real-life data at 5% level of missingness 
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Figure 12: Box-plot for MSE, RMSE and MAE for the Real-life data at 10% level of missingness 
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Figure 13: Box-plot for MSE, RMSE and MAE for the Real-life data at 15% level of missingness 

 

 

Figure 14: Box-plot for MSE, RMSE and MAE for the Real-life data at 20% level of missingness 
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3.2.2. Plot of Mean Square Error (MSE) and Absolute Mean Square (MAE) for Real data at percentages (0,5,10,15,20) 

Figures 15 represents the plot of the MSE and the MAE for the real-life data, the plots show that, the new estimator developed, that is the BMD is 

consistent at different levels of missingness. The new BMD estimator is conclusively fit for the real-life data.  

 

    (a) 

 

    (b) 

Figure 15: The MSE (a) and the MAE (b) for data Real-Life data at percentages (0,5,10,15,20) 

4. Conclusions  

This study focused on the panel data to use for an unbalanced panel dataset for small sample sizes. The findings based on the results obtained from a 

Monte Carlo simulation show that among the six estimators examined, Between Median (BMD) estimator consistently outperforms its counterparts in 

managing unbalanced panel data under varying degrees of missingness when the panel data structure was adjusted for N, T and 𝛽. The parameters for 

Generalized Least Square (GLS) are consistent and efficient estimator.  

Using the real-world panel data of the top five African Countries data ranked by Gross Domestic Product (GDP) at Purchasing Power Parity (PPP), 

current price; the Between Median Estimator (BMD) outperformed the other five estimators tested for balance panel models under unbalanced panel by 

regressing the median of Y dependent variable on the median of the X independent variable.  

The findings offer valuable guidance for the application of this estimator in empirical research, reinforcing the significance of model selection and its 

impact on the validity of conclusions drawn from panel data. 

 It is therefore concluded that the Between Median estimator was best for the balanced and the unbalanced dataset and its best fitted for the panel data 

structures considered.  
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