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ABSTRACT—  

This study presents a method for identifying plant species by analyzing leaf images through image processing and machine learning. It concentrates on extracting 

features such as shape, colour, and texture, with Convolutional Neural Networks (CNNs) as the primary classification tool. The approach involves steps like 

preprocessing, segmenting leaf images, extracting key features, and reducing data dimensionality through techniques such as Gaussian filtering, K-means clustering, 

and Principal Component Analysis (PCA). The experimental results suggest that this method enhances both the accuracy and speed of plant species recognition. 

 

Keywords— Plant Identification, Image Processing , Convolutional Neural Networks (CNNs), Feature Extraction, Plant Species Recognition.  

I. INTRODUCTION  

Medicinal plants play a vital role in both traditional and modern healthcare systems, forming the foundation for a wide range of pharmaceutical products. 

Accurate identification of these plants is crucial to ensure their safe and effective use. Traditionally, plant identification relies on human expertise, 

requiring close visual examination of morphological features such as leaf shape, texture, colour, and vein patterns. However, this manual approach is not 

only time-consuming but also highly prone to errors, especially when distinguishing between species with subtle visual differences. Moreover, 

environmental conditions such as lighting, background noise, or physical damage to plant parts can further complicate accurate recognition.  

 

With the increasing focus on herbal medicine and eco-friendly healthcare solutions, the need for faster and more precise methods of identifying plant 

species has become more critical. One effective solution lies in merging image processing with machine learning techniques. Image processing aids in 

refining plant images and extracting key visual traits such as shape, colour, and texture. Meanwhile, machine learning algorithms like Convolutional 

Neural Networks (CNNs) can learn from large image datasets to distinguish between species. This integration reduces dependency on expert analysis and 

improves identification performance, even under different environmental or imaging conditions. 

 

This project aims to develop an automated system for identifying medicinal plants by analyzing their leaf characteristics using image processing and 

machine learning. The goal is to create a precise, efficient, and adaptable solution capable of distinguishing between similar plant species and 

accommodating diverse imaging conditions. By minimizing human errors, reducing the need for extensive expert knowledge, and improving time 

efficiency, this system is intended to benefit professionals in agriculture, healthcare, and research. Furthermore, it seeks to preserve botanical knowledge 

and ensure the accurate application of medicinal plants in various practical scenarios. 

 

With the growing global interest in herbal medicine and natural health alternatives, this project introduces a modern technological solution to complement 

traditional practices. By offering an automated, scalable approach to plant identification, it aims to enhance the global accessibility and precision of 

medicinal plant usage. The integration of advanced plant classification technologies not only streamlines research and commercial processes but also 

promotes sustainable agricultural practices through the responsible use of plant resources. This system is intended to empower communities, researchers, 

and industries to effectively harness the benefits of medicinal plants while ensuring their safe and responsible application. 
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II. LIRERATURE REVIEW  

  

      [1] In the field of pattern recognition and machine learning, numerous advancements have been made to improve classification accuracy and efficiency 

in various domains, including image and speech recognition. Jain et al. (2000) provided a comprehensive review of statistical pattern recognition 

techniques, discussing essential components like classification, feature extraction, and their applications in artificial intelligence (AI) and machine 

learning. This foundational work laid the groundwork for later developments in the field by establishing key principles in statistical methods that continue 

to influence modern approaches in AI.  

[2] LeCun et al. (2017) played a foundational role in popularizing deep learning, emphasizing the capabilities of architectures like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs). Their work laid the groundwork for major developments in machine perception, particularly 

in visual and auditory tasks. These architectures proved adept at learning hierarchical and sequential features, leading to performance gains in areas such 

as object recognition and speech-to-text systems. 

[3] Ren et al. (2017) proposed the Faster R-CNN framework, an advancement in object detection that integrated region proposal networks (RPNs) to 

improve both speed and accuracy. This framework demonstrated a marked improvement over previous object detection methods by eliminating the need 

for external region proposal algorithms, thus speeding up the detection process while maintaining high levels of precision. This work has had a profound 

impact on real-time object detection tasks. 

[4] Further enhancing image understanding, Long et al. (2017 advanced the field of image analysis by proposing Fully Convolutional Networks (FCNs) 

for semantic segmentation. Unlike previous techniques that processed image regions in blocks, FCNs allowed for dense, pixel-level predictions, resulting 

in more precise and detailed segmentation. This innovation opened the door for more refined image understanding, with significant impact in domains 

such as medical diagnostics and autonomous vehicle navigation. 

[5] In the realm of deep learning architectures, Simonyan & Zisserman (2016) presented the VGG network, which showed that deeper convolutional 

networks could significantly improve performance in large-scale image recognition tasks. The VGG model demonstrated how increasing the depth of the 

network could lead to better feature extraction and classification, contributing to the widespread adoption of deep CNNs in image-based tasks. 

[6] Szegedy et al. (2016) introduced the Inception model, a deep learning architecture that optimized the efficiency of deep neural networks. By factorizing 

convolutions, the Inception model reduced computational complexity without sacrificing accuracy, allowing for deeper and more efficient networks. This 

approach paved the way for building more complex models with fewer computational resources, a key factor in real-time and large-scale applications. 

[7] Hinton et al. (2007) contributed to the development of deep belief networks (DBNs), which employ a layer-wise pretraining method to enhance model 

convergence and overall performance. DBNs were among the early successful implementations of deep learning that demonstrated the power of 

unsupervised learning for feature extraction and pre-training, setting the stage for later advancements in deep learning. 

 

[8] Lowe (2004) proposed the Scale-Invariant Feature Transform (SIFT), a robust feature detection algorithm that is invariant to changes in scale, rotation, 

and illumination. SIFT has been widely used in object recognition and image stitching applications, providing a reliable method for detecting and matching 

key points across images despite transformations. This work has been foundational in the development of more complex image matching and object 

recognition systems. 

[9] Finally, Everingham et al. (2010) introduced the Pascal VOC Challenge, which became a benchmark dataset for evaluating various object detection, 

segmentation, and classification models. The VOC Challenge provided a standardized evaluation framework that allowed for consistent comparisons of 

different methods, thus driving forward research in visual object recognition and contributing to the development of more accurate and efficient algorithms 

in the field. 

[10] In conclusion, these seminal works have contributed significantly to the advancement of machine learning and computer vision, each adding new 

techniques and models that have shaped the landscape of AI research. The progression from statistical pattern recognition to deep learning and advanced 

neural network architectures has facilitated breakthroughs in tasks such as image classification, object detection, and semantic segmentation, which are 

now at the core of many AI applications. 

[11] Dosovitskiy et al. (2021) proposed the Vision Transformer (ViT), marking a shift from convolution-based models to transformer-based architectures 

for image classification. By applying self-attention mechanisms to image patches, ViT achieved performance on par with or better than state-of-the-art 

CNNs, indicating a new direction in vision model design. 

[12] Russakovsky et al. (2015) provided a detailed overview of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). This benchmark 

catalyzed the development of deep learning models by providing a large-scale dataset and a competitive platform, where breakthroughs like AlexNet and 

ResNet demonstrated their superiority. 

III. THE PROPOSED APPROACH  

The Medicinal Plant Identification System uses Flask (Python) for the backend and HTML/CSS/JavaScript for the frontend. It processes images with a 

CNN model, retrieves plant data from JSON files, and displays the results through a simple web interface. . The major components of the system include: 

 

A. Data Collection 

The effectiveness of any plant identification system is heavily dependent on the quality and diversity of its dataset. In this study, a comprehensive dataset 

was constructed by collecting images of various parts of medicinal plants, including leaves, roots, flowers, bark, seeds, and raw dried materials. The 
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objective is to ensure that the dataset represents real-world variability in plant characteristics and usage stages. The data were sourced from the following 

key channels: 

 

• Medicinal Plant Repositories: Botanical gardens, academic herbariums, and research institutions that maintain curated collections of 

medicinal plant species provided scientifically verified specimens. These sources offer reliable and high-quality images that are crucial for 

model training and validation. 

• Kaggle Datasets: Open-source datasets from Kaggle were used to supplement data collection. These pre-labeled plant image datasets offer 

class diversity and volume, enhancing training efficiency. 

• Government Botanical Databases: Authoritative databases maintained by government agencies such as the United States Department of 

Agriculture (USDA), the National Bureau of Plant Genetic Resources (NBPGR, India), and other regional agricultural and forestry bodies 

were used. These databases provide taxonomically accurate images and detailed metadata, ensuring scientific rigor in the dataset.  

• Self-Captured Images: images were taken using smartphones and cameras during field visits and at herbal markets. Including fresh and 

dried plant parts under varied conditions, these images add real-world variability to the dataset. 

          

Table  4.1 Data Collection Of Leaf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Image pre-processing  

     Image pre-processing is a crucial step in ensuring the quality and consistency of input data for machine learning models. It enhances the effectiveness 

of the model by preparing the images in a standardized format, which facilitates improved feature extraction and model accuracy. The following pre-

processing steps were applied to the collected plant images: rld variability to the dataset. 

• Resize Images: All images were resized to a standard size (e.g., 224x224 or 128x128) to ensure uniformity and reduce computational load. 

• Background Removal: Backgrounds were removed when necessary to isolate the plant, focusing the model on relevant features. 

• Convert to Grayscale or Normalize RGB: Images were either converted to grayscale for simplicity or normalized to a standard RGB range 

for colour-based models. 

• Apply Filters: Gaussian blur and median filters were applied to reduce noise and enhance image quality. 

• Data Augmentation: Techniques such as rotation, zoom, and flipping were used to increase the diversity of the dataset and prevent overfitting. 

These preprocessing steps ensure that the images are standardized and optimized for model training. 

 

Table  4.2  Image Preprocessing 

Operation Purpose 

Resize Uniformity across dataset 

Normalization Reduce pixel value range 

Augmentation Increase robustness and generalization 

Denoising Reduce camera or environmental noise 

C. Feature extraction 

Feature extraction involves identifying key characteristics of plant images that can be used for classification. The following techniques were employed 

to extract relevant features:  

• Shape: Contours and Hu Moments were used to capture the geometric properties of the plant, such as its overall structure and shape. 

• Texture: Haralick Features and Local Binary Patterns (LBP) were applied to capture the texture patterns present in the plant’s surface. 

• Colour: Colour Histograms in both RGB and HSV colour spaces were computed to capture the colour distribution of the plant. 

Plant Name Raw Material 

Type 

Sample Count Image Size 

Tulsi (Ocimum 

sanctum) 

Leaf 500 224x224 

Neem 

(Azadirachta 

indica) 

Leaf/Bark 500 224x224 

Ashwagandha Root 300 224x224 

Amla 

(Phyllanthus 

emblica) 

Fruit 300 224x224 
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Traditional Feature Extraction:  

In traditional machine learning, features are distinct, measurable attributes that represent patterns or structures in data. Prior to the dominance of deep 

learning, feature extraction was typically used alongside classifiers such as: 

• K-Nearest Neighbors (KNN): An algorithm that classifies data points based on their proximity to others. 

• Decision Trees: A model that uses a branching structure to make decisions by evaluating feature values. 

Deep Learning-Based Feature Extraction: 

With the advancement of deep learning, convolutional neural networks (CNNs) have become a powerful tool for automated feature extraction. In this 

approach, pre-trained CNN architectures such as VGG16 and ResNet50 are utilized to generate high-level feature maps from input images. These 
networks, trained on large-scale datasets, can effectively capture spatial hierarchies and abstract patterns. 

The output feature maps are then either flattened or passed through global pooling layers to create fixed-size feature vectors, which can be used as 
input to conventional classifiers for further processing or classification. 

 

. Table 4.4  Comparison of Feature Extraction  

Approaches 

 

 

 

 

 

 

 

 

 

D. System Overview 

The System comprises the following interconnected components: 

 

• User Interface (UI): 

HTML/CSS- based responsive frontend for users to upload images and results. 

Includes structured navigation (index.html, about.html), image upload (leaf.html), display result (leaf-result.html) and feedback/error 

handling (try_again.html, test_components.html).  

• Prediction Engine:  

Python backend using PyTorch. 

Loads a trained ResNet9 model to process input images and return disease predictions. 

 

• Integration Layer: 

Connects the frontend and backend using Flask or FastAPI. 

Receives image, uploads via POST request and responds with predictions for rendering. 

 

E. Backend Modules 

• Data Ingestion: Uses Image Folder for structured dataset input (training, validation, test). 

• Image Transformation: Applies resizing (256x256), normalization, and augmentation for generalization. 

• Model Training: Employs ResNet9 architecture with residual connections for stable training. 

• Optimization: Uses Adam optimizer, OneCycleLR scheduler, and gradient clipping. 

• Model Export: Saves model in .pth format after training. 

  

F. Frontend Modules 

• Page Layouts: 

o layout.html defines shared headers and footers for consistency. 
o index.html introduces the app; about.html provides background. 

• Image Upload and Display: 
o leaf.html: Allows users to upload a leaf image via a form. 

o leaf-result.html: Displays disease name and optionally a confidence score. 

• Styling (CSS): 

Method Advantages 

Manual (Shape, 

Colour, Texture) 

Transparent & interpretable 

CNN-based Higher accuracy, automated 

Method Advantages 

Manual (Shape, 

Colour, Texture) 

Transparent & interpretable 
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o Ensures cross-device responsiveness. 

o Applies colour schemes to reflect disease severity. 

o Includes input validation styles, button animations, and layout consistency. 

• Client-Side Validation: 

o Uses JavaScript to verify file types, size constraints, and form fields. 

G. Implementation 

Phase 1: Environment Setup 

1. Python 3.8+ : As the programming language. 

2. PyTorch: As deep learning framework. 

3. Supporting Libraries  

4. Hardware: A GPU enable system for training(using CUDA) and a CPU for interface. 

Phase 2: Data Preparation 

1. Structured using ImageFolder folder: With 14 classes. 

2. Transformed:  Resized to 256x256, converted to tensors and normalized. 

3. Split: 70% for training, 15% for validation and 15% for testing  

Phase 3: Model Architecture 

1. Custom ResNet9 architecture: With residual connections. 

2. Layers: Convolutional layers, batch normalization, residual blocks, max pooling and fully connected layers. 

3. Output: 14-class softmax output. 

4. Training: Cross- entropy loss, Adam optimizer, OneCycleR scheduler and gradient clipping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: Architecture diagram 

IV. EVALUATION AND RESULTS  

 The project's success highlights the potential of deep learning in agriculture and paves the way for further innovation and adoption in the field. 

 

A. Model Performance 

• Validation Accuracy: 

1. The model achieved a validation accuracy of 99.2%, indicating that it can correctly classify plant diseases with high precision.  
2. This level of accuracy suggests that the model has learned to recognize patterns and features in the images that are indicative of specific 

diseases. 

 

• Rapid and Stable Training Convergence: 

1. The use of the OneCycleLR scheduler and gradient clipping contributed to rapid and stable training convergence.  
2. The OneCycleLR scheduler allows the learning rate to increase and then decrease, which helps the model to converge quickly and avoid 

getting stuck in local minima. 

3. Gradient clipping prevents exploding gradients, which can cause the model's weights to be updated excessively, leading to instability. 

 

• Key Factors Contributing to Success  
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• OneCycleLR Scheduler: 

1. The OneCycleLR scheduler is a learning rate schedule that has been shown to be effective in deep learning models.  

2. It works by increasing the learning rate from a low value to a high value and then decreasing it back to the low value.  

3. This schedule helps the model to converge quickly and avoid overfitting. 
 

• Gradient Clipping: 

1. Gradient clipping is a technique used to prevent exploding gradients in deep learning models.  
2. When the gradients are clipped, the model's weights are updated in a more stable manner, which helps to prevent overshooting and promotes 

convergence. 

 

• Model Architecture: 

1. The custom ResNet9 architecture with residual connections enabled effective feature extraction from the images.  

2. The residual connections allow the model to learn more complex features by preserving the information from earlier layers. 
 

• Accuracy, Loss, and Learning Rate Monitoring: 

1. Monitoring accuracy, loss, and learning rate during training provides valuable insights into the model's performance.  
2. Accuracy and loss metrics indicate how well the model is performing on the training and validation datasets, while the learning rate 

determines how quickly the model learns from the data. 

Deployment Suitability 

• Lightweight Model: 

1. The model's lightweight architecture makes it suitable for deployment on mobile devices or edge computing platforms.  
2. This is critical for real-time agricultural field applications where timely disease diagnosis is essential. 

• Real-Time Agricultural Field Applications: 

1. The model's ability to provide accurate and timely disease diagnosis makes it suitable for real-time agricultural field applications.  

2. This could lead to improved crop yields, reduced losses, and enhanced food security. 

• Implications for Agriculture 

• Feasibility of Deep Learning: 

1. The success of the model demonstrates the feasibility of deep learning in agriculture.  

2. Deep learning models can be trained to recognize patterns in images and provide accurate diagnoses, which could revolutionize the way 
plant diseases are diagnosed and treated. 

• Replacement of Traditional Methods: 

1. The model's accuracy and efficiency offer a more accurate and efficient alternative to traditional disease diagnosis methods.  
2. This could lead to widespread adoption in the agricultural industry, resulting in improved crop yields and reduced losses. 

 

• Potential for Widespread Adoption: 

1. The model's potential for widespread adoption could lead to significant benefits for the agricultural industry.  

2. By providing accurate and timely disease diagnosis, farmers could take prompt action to prevent the spread of disease, reduce losses, and 
improve crop yields. 

Future Directions 

• Expansion to More Plant Species: 

1. Investigating the model's performance on a broader range of plant species could further demonstrate its potential.  

2. This could involve collecting and annotating images of different plant species and training the model to recognize patterns and features 

indicative of specific diseases. 

• Integration with Other Agricultural Technologies: 

1. Combining deep learning with other technologies, such as drones or IoT sensors, could provide more comprehensive agricultural solutions.  
2. For example, drones equipped with cameras could capture images of crops, which could then be analyzed using deep learning models to 

detect diseases. 

• Continuous Model Improvement: 

1. Refining the model through ongoing data collection, annotation, and training could further improve its performance.  

2. This could involve collecting more images of plant diseases, annotating them, and retraining the model to recognize new patterns and 

features. 
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Fig: Dataset Overview- Image Count per Disease Class 

This bar graph shows the number of images per plant disease class in the dataset. Each bar corresponds to a disease (e.g., Tomato___Early_blight, 

Apple___scab). The counts are nearly balanced across all 38 classes (around ~1800–2000 images per class), indicating: 

1. A well-distributed dataset. 

2. Better generalization capability for the model. 

This distribution helps prevent bias toward any single class during training. 
 

Fig: Model Training Progress – Accuracy Over Epoch 

The graph shows the fluctuation of validation accuracy with the training epoch count during the ResNet9 model training. The x-axis is used to represent 

the number of epochs (0 to 2), and the y-axis refers to the respective accuracy values. The chart illustrates a distinct upward trend in model performance, 

with accuracy climbing substantially from virtually 0% at epoch 0 up to around 83% at epoch 1, and almost to 99% by epoch 2. This behavior evinces 

rapid model convergence and illustrates its high learning capability within a small number of training cycles. The near-saturation of the third epoch's 

accuracy indicates that the ResNet9 architecture is appropriate for the classification problem at hand, with the architecture recording near-optimal 

performance effectively.An upward trend in accuracy over 3 epochs. 

1. Near 99% accuracy by the 3rd epoch. 

2. This reflects excellent model performance and rapid convergence of the ResNet9 model used for classification. 
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Fig: Training vs. Validation Loss Over Epochs 

The plot is a comparison of the training and validation loss over three epochs of training for the ResNet9 model. The x-axis is the number of epochs (0 

to 2), and the y-axis is the loss values. The training loss is in blue, and the validation loss in red. Both curves have a sharp drop across training, with losses 

reducing by a great deal between the initial and third epochs. The tight overlap of the two curves confirms good generalization of the model to novel data. 

Further, the fact that there is no divergence of training and validation losses suggests that the model is not overfitting during this training period. This 

steady reduction of both the metrics reflects the efficiency in learning by the model and the suitability of the architecture and training method adopted. 

1. Both losses drop significantly, indicating the model is learning well. 

2. The convergence between training and validation loss suggests a well-generalized model. 

3. There’s no visible overfitting, as validation loss follows the same downward trend as training loss 
 

 
 

Fig :Dynamic Learning Rate Scheduling – OneCycleLR Strategy 

 

The graph illustrates the variation of the learning rate as a function of the batch number throughout training with the OneCycleLR scheduling policy. The 

x-axis is the batch number, and the y-axis is the respective learning rate values. The curve has a distinctive triangular shape, indicating the fundamental 

concept of the OneCycle learning rate policy. First, the initial learning rate is set to a low value in order to avoid instability caused by large gradients. It 

is later ramped up to a maximum value (in this case around 0.01) in order to boost the learning speed. After that, the learning rate is ramped down towards 

zero slowly to allow the model parameters to be fine-tuned and achieve stable convergence. This dynamic rate adaptation of the learning rate enables 

effective training, rapid convergence, and enhanced generalization performance. 

1. Starts small to avoid sharp gradients at the beginning. 

2. Increases to a peak (here ~0.01) to encourage fast learning. 

3. Gradually decreases back to near-zero to fine-tune the model and stabilize convergence. 

RESULT 

The training of the ResNet9 model resulted in rapid convergence with minimal loss and high accuracy over a small number of epochs. The use of advanced 

training techniques such as OneCycleLR learning rate scheduler, gradient clipping, and weight decay contributed significantly to stable training dynamics. 

Below are some observations. 
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➢ Rapid Convergence and High Accuracy 

● The ResNet9 model demonstrated: 

 

1. Rapid convergence: The model converged quickly, indicating effective learning and optimization. 

2. Minimal loss: The training loss reduced significantly, showing that the model was able to learn from the data. 

3. High accuracy: The model achieved over 99% validation accuracy, demonstrating excellent generalization. 

➢ Advanced Training Techniques 

● The use of: 

 

1. OneCycleLR learning rate scheduler: Helped in rapid convergence and improved model performance. 

2. Gradient clipping: Prevented exploding gradients and ensured stable training dynamics. 

3. Weight decay: Regularized the model and prevented overfitting. 

 

➢ Observations 

● Training Loss 

1. Reduced significantly: The training loss decreased rapidly, indicating effective learning. 

2. Indicative of effective learning: The reduction in training loss shows that the model was able to learn from the data. 

 

● Validation Accuracy 

1. Achieved over 99% accuracy: The model demonstrated excellent generalization and was able to accurately classify plant diseases. 

2. Excellent generalization: The high validation accuracy indicates that the model was able to generalize well to unseen data. 

 

● Test Performance 

1. Maintained high accuracy: The model performed well on unseen data, confirming its robustness. 

2. Robustness confirmed: The high accuracy on unseen data demonstrates that the model is robust and can handle new, unseen data. 

 

● Error Analysis 

1. Few misclassifications: The model made few mistakes, mostly between visually similar plant diseases. 

2. Further improvement possible: The misclassifications suggest that further improvement could be achieved with more training data or additional 

preprocessing. 

 

● Visualization 

1. Accuracy and loss plots: The plots showed steady improvement without major fluctuations. 

2. Validating hyperparameter choice: The visualization validates the choice of hyperparameters and training techniques. 

 

Table: Results Summary Table 

Metric  Value / Description 

Training Accuracy ~99.6% after 10 epochs with stable convergence. 

Validation 

Accuracy 

99.2% — achieved high accuracy with no signs of overfitting. 

Test Accuracy 98.9% — tested on an unseen dataset; indicates strong generalization ability. 

Confusion Matrix Most classes predicted correctly; minor confusion between similar species 

(e.g., Apple vs. Cherry). Diagonal dominance observed. 

Precision & Recall Average precision ≈ 98.7%, recall ≈ 98.8%; high F1 score 

indicating balanced performance. 

Inference Speed <100 ms per image on CPU; ~12 ms on GPU (NVIDIA RTX 3060). 

Model Size ~25 MB (plant-model.pth) — lightweight enough for mobile and edge 

devices. 

Number of 

Parameters 

6.5 million (as per torch summary of ResNet9). 

Input Size 3 × 256 × 256 (C×H×W RGB image). 
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V. CONCLUSION  

This project is well able to showcase the practical usability of deep learning methods in solving key problems in the agricultural industry, specifically in 

the automatic detection of plant diseases. Utilizing the ResNet9 architecture as used in PyTorch, the project introduces a light, precise, and scalable 

solution to plant leaf classification. The model was tested and validated with a heterogeneous data set and saw a validation accuracy of 99.2% and 

consistent strong performance on unknown test data, highlighting its superior generalization. One of the fundamental strengths of this system is its 

compromise between computational efficiency and predictive performance. Although numerous available models see good accuracy, many are built 

based on deep models that are so heavy to execute on low-resource devices. In contrast, this project emphasizes deployability so that the trained model, 

which takes up only ~25 MB and has 6.5 million parameters, can be executed effectively on edge devices like Raspberry Pi, mobile phones, or Jetson 

Nano. This renders the system accessible and feasible for smallholder farmers and agricultural field workers who might not have access to powerful 

computing infrastructure. 

The suggested methodology fills a number of significant research gaps: 

●It enhances model generalization by employing data augmentation, residual connections, and judicious hyperparameter optimization. 

 

●It makes deployment practical through a lightweight architecture, quick inference time (<100 ms on CPU), and support for light backend servers such 

as Flask or FastAPI. 

 

●It emphasizes real-time usability by providing predictions through an easy HTML/CSS-based frontend coupled with the backend inference engine. 

Future Scope 

In order to take this work forward, some of the following enhancements can be undertaken: 

1. Dataset Expansion: Include more diverse datasets across seasons, geographic locations, and image scenes (e.g., varying lighting and background 

clutter) to enhance the model's generalizability. 

 

2.Model Interpretability: Incorporate visualization functionalities such as Grad-CAM to indicate the areas of the leaf that are accountable for every 

prediction, enhancing user trust and transparency. 

 

3.Multilingual and Mobile App Interface: Create a smartphone app with multilingual capabilities, allowing local farmers to utilize the system with 

ease. 

 

4. IoT Integration: Integrate the model with IoT-based sensors in smart farms to automate disease detection and send real-time alerts or 

recommendations. 

 

5.Federated Learning: Investigate privacy-preserving methods such as federated learning for distributed model training on decentralized agricultural 

data sources. 
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