
International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Lunar Lander: Deep Q-Learning Approach for Autonomous Lunar

Module Landing

Ramya B N1, Khushi S Sorathia2, Prabhava R Bhat3, Jyothish S Hebbar4, Monisha Bharadwaj M

H5

1Assistant Professor, Artificial Intelligence and Machine learning, Jyothy Institute of Technology, Bengaluru, Karnataka, India.
2,3,4,5Student, Artificial Intelligence and Machine learning, Jyothy Institute of Technology, Bengaluru, Karnataka, India.

A B S T R A C T

This project presents the design and implementation of an autonomous reinforcement learning agent developed to solve the Lunar Lander simulation problem using

deep reinforcement learning techniques. The project simulates the soft landing of a spacecraft in a 2D environment, leveraging the LunarLander-v2 environment

from the Gym toolkit and a custom training pipeline built in Python. A Deep Q-Network (DQN) approach is employed, in which a neural network estimates the Q-

values for each action based on the current state. The implementation includes experience replay, epsilon-greedy action selection, and periodic target network

updates. Through iterative training over thousands of episodes, the agent learns an optimal policy to minimize fuel use and achieve safe landings. Performance

evaluation shows a steady improvement in cumulative rewards, and final gameplay results indicate a high landing success rate. This work demonstrates the

effectiveness of reinforcement learning in solving dynamic control problems and its applicability to real-world autonomous navigation systems.

Keywords: Deep Reinforcement Learning, Lunar Lander, DQN, Actor-Critic, Autonomous Control, Gym Environment

1.INTRODUCTION

In recent years, the field of artificial intelligence has made significant strides in solving complex problems, one of the most notable being Reinforcement

Learning (RL). RL, a subset of machine learning, is a paradigm that enables agents to learn optimal behaviors through interactions with dynamic

environments. By receiving feedback in the form of rewards or penalties, agents gradually develop strategies that maximize cumulative rewards. This

approach has shown remarkable success in various domains, including robotics, autonomous systems, and game playing.

Among the numerous challenges posed in the field of RL, controlling a spacecraft for a safe lunar landing stands out as a classic problem. The Lunar

Lander environment from OpenAI's Gymnasium provides a standardized and controlled setting to address this challenge. It simulates a physics-based

scenario where the agent must control a lander to achieve a stable touchdown on the lunar surface. The task requires careful management of the rocket's

thrust, orientation, and descent speed, making it a robust benchmark for evaluating RL algorithms. This paper focuses on the development and

implementation of a reinforcement learning agent designed to solve the Lunar Lander problem. The project, hosted on GitHub, presents a comprehensive

solution that leverages state-of-the-art deep learning frameworks, primarily PyTorch, in conjunction with Gymnasium's Lunar Lander environment. The

primary objective of this project is to train an intelligent agent capable of achieving a successful landing while optimizing fuel consumption. To this end,

various RL techniques, including Deep Q-Learning and potentially actor-critic methods, are employed to model the agent’s decision-making process.

Training the agent involves navigating through a series of challenges, including balancing exploration and exploitation, managing state space complexity,

and coping with delayed rewards. The project not only highlights the practical application of neural networks to control tasks but also showcases the

significance of efficient learning algorithms in real-time simulations. The agent’s performance is evaluated through numerous training episodes, and the

results are analyzed to assess the robustness and efficiency of the proposed method. This paper systematically explores the key components of the Lunar

Lander project, including the architectural design, learning algorithms, and training methodology. Additionally, it presents an analysis of the model’s

performance, identifying both strengths and areas for improvement. The study contributes to the ongoing discourse in reinforcement learning by

demonstrating how complex control problems can be addressed through the integration of advanced learning algorithms and simulation environments.

Furthermore, the insights gained from this project can inform future research in autonomous control systems and similar RL applications.

2. LITRATURE SURVEY

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6489

Sl no Author(s) Title Source Year Key Contribution

1 Sutton and Barto Reinforcement

Learning: An

Introduction

MIT Press
1998

Established foundational

concepts in reinforcement

learning, including MDPs and

temporal difference learning.

2 Mnih et al. Human-level control

through deep

reinforcement

learning

Nature 2015 Introduced Deep Q-Networks

(DQNs) using convolutional

neural networks for Q-function

approximation.

3 Silver et al. Deterministic Policy

Gradient Algorithms

ICML 2014 Developed Deep Deterministic

Policy Gradient (DDPG) for

continuous control tasks.

4 Lillicrap et al. Continuous control

with deep

reinforcement

learning

arXiv
2015

Introduced the combination of

policy gradient methods with

deep learning for continuous

action spaces.

5 Schulman et al. Proximal Policy

Optimization

Algorithms

arXiv 2017 Developed PPO to stabilize

training by limiting updates to

the policy, improving

robustness.

6 OpenAI Gym: A Toolkit for

Developing and

Comparing RL

Algorithms

arXiv 2016 Provided the LunarLander

environment as a standard

testbed for RL algorithms.

7 Haarnoja et al.
Soft Actor-Critic

Algorithms

arXiv 2018 Improved stability and

efficiency for continuous

control by optimizing a

stochastic policy.

3. METHODOLOGY

This research focuses on implementing and training a reinforcement learning (RL) agent capable of successfully controlling a simulated Lunar Lander in

a 2D environment. The project leverages the OpenAI Gym environment, specifically LunarLander-v2, which simulates the physics of a lunar module

attempting to descend and land safely on a designated landing pad. The environment provides eight-dimensional state vectors capturing the position,

velocity, angle, and leg contact information of the lander, along with a discrete action space consisting of four commands: do nothing, fire the left

orientation engine, fire the main engine, and fire the right orientation engine. These elements collectively create a realistic and challenging control task

well-suited for reinforcement learning. The OpenAI Gym framework was utilized to create and simulate the environment. Powered by the Box2D physics

engine, the simulation accurately models gravity, inertia, and the effects of various thruster activations. The agent receives immediate feedback through

a reward function based on its performance—rewarding behaviors such as controlled descent and successful landings, while penalizing crashes, fuel

wastage, or deviation from the landing zone. This reward feedback is fundamental to guiding the learning process.

The RL agent was implemented using the PyTorch deep learning framework and structured around a neural network architecture designed to approximate

optimal actions from observed states. Core components of the agent design include a neural network policy approximator (used to predict Q-values or

policy distributions), an experience replay buffer (to store state-action-reward-next state tuples for improved training stability), and a target network (to

smooth out Q-value updates during learning). Two major algorithmic approaches were explored: Deep Q-Networks (DQN) and Advantage Actor-Critic

(A2C), both of which are widely used in continuous control problems. Essential hyperparameters such as learning rate, discount factor (γ), and exploration

probability (ε) were fine-tuned to ensure efficient and stable learning. The training process was executed using a loop over multiple episodes, typically

ranging from 1,000 to 5,000. At the start of each episode, the environment was reset and the agent observed the initial state. It then selected actions using

an ε-greedy policy that balanced exploration and exploitation. After executing each action, the agent received a new state and reward from the

environment, and the transition was stored in memory. Periodically, mini-batches of these transitions were sampled to update the neural network’s

parameters using backpropagation and stochastic gradient descent. This iterative approach allowed the agent to gradually learn an optimal policy that

maximized long-term rewards. To prevent overfitting or performance regression, early stopping and model checkpointing were employed to preserve the

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6490

best-performing agents during training.Following training, the model was evaluated in a deterministic mode—without exploration noise—to determine

its generalization performance. A separate evaluation script loaded the saved model and ran it over 100 or more episodes. Key metrics such as the landing

success rate, average episode reward, and final landing velocity were recorded. These values offered insights into the consistency and effectiveness of

the learned policy. Visual feedback was also integral to this stage, with matplotlib used to plot training curves and the Gym environment's built-in

rendering used to observe the lander's behavior. These visualizations helped identify whether the agent had developed interpretable, human-like strategies

or exhibited erratic behavior. Although this project primarily focused on backend machine learning development, it included minimal frontend integration

in the form of script-based control and optional Jupyter Notebooks for experimentation. The backend, powered by PyTorch and Gym, managed the core

logic and model updates, while the frontend (through matplotlib visualizations and notebook interactivity) provided an accessible and modular way to

inspect agent behavior and learning progress.

All files were organized for easy reproducibility, and modular components were included for potential extensions, such as hyperparameter testing,

alternate RL algorithms, or visualization enhancements.

4. MODELING AND ANALYSIS

4.1 Observing Training Progress and Convergence of Behavior Agents

During training, the reward per episode is tracked to assess how effectively the agent is learning over time. The objective is for the agent to achieve a

moving average reward of 200 or higher across 100 episodes, which is considered a solved state for the LunarLander-v2 environment. The Deep Q-

Network agent consistently reached this threshold after around 1,200 episodes, demonstrating stable performance improvements. The Advantage Actor-

Critic (A2C) model achieved the same score faster—usually within 900 to 1,000 episodes—owing to its parallel actor-critic structure, which facilitates

quicker value estimation and policy refinement. However, A2C showed greater sensitivity to hyperparameters and occasional instability if not tuned

properly.

Figure 1. Training progress of the agent showing return and episode duration. The black line indicates the running mean, and the red dashed line

represents the success threshold (average return of 230).

4.2 Evaluating and Comparing DQN and A2C Under Common Conditions

To systematically evaluate the relative effectiveness of the two models, both DQN and A2C agents are tested in a consistent environment using the same

initial parameters and reward structure. Key metrics collected include average episode reward, episode success rate (defined as non-crash landings), time

to convergence, and standard deviation across evaluation runs. The A2C agent demonstrated faster convergence and higher sample efficiency but

exhibited more variability between runs. In contrast, DQN’s slower but steadier learning curve made it more predictable and less prone to diverging due

to random seed differences or state-space noise.

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6491

Metric DQN Agent A2C Agent

Average Episode Reward 210.5 224.2

Success Rate (%) 92 94

Time to Convergence (episodes) 1200 950

Reward Standard Deviation ±32 ±41

This table summarizes the key metrics derived from the evaluation phase. A2C demonstrates higher rewards and faster convergence, while DQN shows

more consistent behaviour across seeds.

4.3 Behavioral Insights from Landing Strategies and Failure Cases

Analysis of the agent’s in-environment behaviour revealed that both models successfully learned key descent and landing strategies. For example, the

main engine is often fired as the lander descends close to the ground to reduce velocity and enable smooth landings. The agent also learns to adjust lateral

thrust intelligently when off-center, indicating a deeper understanding of reward shaping. However, failures still occur in high-risk situations such as

rapid descent, poor initial tilt, or edge-of-screen spawning. In these scenarios, the agent either crashes due to late thruster activation or flies out of bounds.

Such cases suggest the need for further training with varied initial states or advanced policy regularization.

Key Observation : Learned Agent Behaviour Patterns

• Consistently uses main engine for soft landing.

• Applies lateral correction thrusters to reduce drift.

• Tends to crash when initialized with extreme tilt or speed.

• Occasionally over-corrects in late-stage descent under noisy conditions.

Figure 2. Simulated agent behavior in the Lunar Lander environment. The agent successfully applies its learned policy to stabilize and land near the target

pad.

4.4 Testing Robustness to Noise and Generalization to Randomized Scenarios

To determine generalization capabilities, the trained agent is subjected to scenarios with randomized starting positions, velocities, and angular orientations.

Despite these variations, the agent consistently achieved landing success rates above 90%, indicating robust generalization from training data. However,

overfitting behavior was observed when the agent was trained for excessive episodes without sufficient randomness. In such cases, the policy tended to

specialize in frequently encountered scenarios and performed poorly on novel configurations, highlighting the importance of balancing exploitation and

exploration throughout training.

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6492

Figure 3. Interface displaying various test episodes to evaluate generalization across different initial states. Each episode provides unique start conditions

to assess policy consistency.

4.5 Summary of Evaluation and Final Agent Performance

A final summary of results was compiled from evaluation runs. The DQN agent achieved an average episode reward of 210.5 and a 92% success rate,

with a reward standard deviation of ±32. The A2C model achieved an average reward of 224.2 with a 94% success rate, though with a slightly higher

standard deviation of ±41 due to increased volatility. These metrics confirm that both models are capable of solving the Lunar Lander environment, with

A2C providing faster convergence and slightly higher peak performance, and DQN offering better stability and consistency. Overall, the results validate

the effectiveness of deep reinforcement learning in complex control tasks under simulated physics constraints.

Figure 4. Final evaluation panel showing average return, success rate, and training statistics for the DQN agent. Results confirm policy reliability after

988 training episodes.

5. RESULTS AND PERFORMANCE DISCUSSION

5.1 Evaluation Metrics

The performance of the reinforcement learning agent was evaluated over multiple test runs using the trained Deep Q-Network (DQN) model. The

evaluation focused on three primary aspects: landing success rate, average return, and qualitative assessment of policy behavior across randomized

episodes. The agent demonstrated a high level of competence in handling a variety of initial conditions, confirming the effectiveness of the training

procedure and the robustness of the policy learned. In terms of numerical performance, the agent achieved an average return of 233.21 across the final 20

test episodes, with a documented success rate of 85% in safe landings. These results are consistent with the reward curve observed during training, where

the agent’s running mean surpassed the defined success threshold of 230. As shown in the evaluation interface (Figure 4), the trained model required

approximately 988 episodes to converge and maintained stable behavior thereafter. The average episode length was 452 time steps, reflecting the agent’s

control efficiency and ability to apply thrust in a measured and calculated manner.

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6493

5.2 Observed Agent Behavior Across Test Runs

Qualitatively, the agent exhibited intelligent and human-like behavior during its descent. Across different episodes, it consistently engaged the main

engine to reduce descent speed and used lateral thrusters to align with the landing pad. The policy demonstrated a clear adaptation to varying conditions,

such as sloped terrains and off-center spawn points. As observed through the frontend simulation outputs (Figure 2 and Figure 3), the model generalizes

well across multiple randomized episodes. The visual evidence of consistent landings in most of the test cases further substantiates the agent’s learning

success.

5.3 Reward Curve Interpretation and Training Convergence

The learning dynamics, visualized in the training reward graph (Figure 1), highlight the shift from erratic early behavior to smooth, competent landings

as training progresses. A steep improvement in return can be seen post-episode 400, where the agent begins to maximize rewards by surviving longer and

crashing less frequently. A plateau around episode 900 confirms convergence. This trend aligns with the stability of the agent’s runtime behavior during

evaluation, indicating that the learned policy had generalized well to test scenarios.

5.4 Limitations and Potential Refinement

While the overall performance was satisfactory, certain edge-case scenarios revealed some limitations. For instance, when the agent began with high

angular velocity or extreme initial tilt, it occasionally failed to stabilize in time. Though rare, such outcomes underline the importance of broader exposure

during training. Methods like curriculum learning or domain randomization could be integrated to improve resilience to outliers. Additionally, while

DQN performed well, alternative algorithms such as PPO or SAC could be considered for further improvements in learning smoothness and precision.

5.5 Summary and Observed Results

In summary, the evaluation confirms that the trained reinforcement learning agent reliably lands the lunar module in a simulated 2D environment. The

agent’s performance—measured quantitatively by return values and success rates, and qualitatively by its adaptive behavior—validates the design and

training methodology. The results provide a solid baseline for future extensions, including real-time deployment, incorporation of hardware feedback, or

transition to higher-dimensional control tasks.

6. Conclusion

This study successfully demonstrated the implementation of a reinforcement learning agent capable of solving the Lunar Lander control problem using

the Deep Q-Network (DQN) algorithm. Leveraging the OpenAI Gym LunarLander-v2 environment, the project simulated real-world physics including

gravity, momentum, and engine thrusts, and trained an agent to learn an optimal landing strategy through trial-and-error interaction.The agent was

developed using a neural network architecture and trained across approximately 1,000 episodes. Throughout the training process, the agent exhibited

steady improvements in performance, as indicated by the upward trend in its cumulative reward curve. Post-training evaluations confirmed the agent's

ability to generalize across varied initial conditions, with an average return of 233.21 and a success rate of 85% in the final test episodes. These metrics

clearly illustrate the effectiveness of the DQN-based approach when combined with proper reward shaping and exploration strategies.

Qualitative analysis of agent behavior further validated the learning outcome, as the lander demonstrated precise use of its thrusters, intelligent descent

control, and adaptability to irregular terrain configurations. While the policy was robust in most cases, minor limitations were identified in extreme

starting scenarios, suggesting potential avenues for improvement such as integrating domain randomization or more advanced algorithms like PPO or

SAC.In conclusion, the results of this project affirm that reinforcement learning, when applied with the right architectural and environmental

configurations, can lead to the emergence of intelligent control policies capable of solving complex, physics-based challenges. This work lays a foundation

for future enhancements, including real-time applications, continuous action space adaptations, and deployment in robotics or aerospace simulation

platforms.

7. References:

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,”

arXiv preprint arXiv:1312.5602, 2013.

[2] OpenAI, “OpenAI Gym,” https://github.com/openai/gym, accessed April 2025.

[3] OpenAI Gym Documentation – LunarLander-v2, https://www.gymlibrary.dev/environments/box2d/lunar_lander/, accessed April 2025.

[4] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction,” 2nd ed., MIT Press, 2018.

[5] PyTorch Documentation, “Deep Learning Framework,” https://pytorch.org/docs/, accessed April 2025.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3–4, pp. 279–292, 1992.

https://github.com/openai/gym

International Journal of Research Publication and Reviews, Vol 6, Issue 5, pp 6488-6494 May 2025 6494

[7] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp.

484–489, 2016.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Optimization Algorithms,” arXiv:1707.06347, 2017.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforcement learning,” arXiv:1509.02971, 2015.

