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ABSTRACT : 

Ancient language characters are different from current century’s ancient language characters. Recognition of ancient language handwritten characters from 

inscriptions is difficult. Font Recognition is one of the Challenging tasks in Optical Character Recognition and Document Analysis. Most of the existing methods 

for font recognition make use of local typographical features and connected component analysis. The aim of the project is to develop and identify ancient language 

characters and convert them into current century’s form using Deep Learning. In this project, Ancient language font recognition is done based on global texture 

analysis and a method for recognizing Ancient language characters from stone inscriptions, called the contour-let transform is used. The contour-let transform offers 

a solution to remedy to this insufficiency. Convolutional Neural networks are being employed to train the image and compare the data with the current century’s 

character hence a more accurate recognition of Ancient language characters from stone inscriptions is obtained. Character Mapping algorithm is proposed to convert 

the recognized ancient language characters into their current century's form. The proposed approach of integrating global texture analysis, the contour-let transform, 

deep learning, and character mapping aims to enhance the accuracy of recognizing and transforming ancient language characters. The system's performance is 

evaluated using appropriate metrics, with iterative optimization undertaken to refine the model and algorithms, ensuring a robust and effective solution to the 

intricate task at hand. 

 

CHAPTER 1 

INTRODUCTION 

1.1. OVERVIEW 

The inscriptions are of greater value than the books because changes can be made in the books by the successive writers or they can be destroyed by the 

passage of the time by white-ants and other inimical insects. The inscriptions, however, cannot be tampered with or without being caught and the cruelty 

of the weather can also not affect them. These inscriptions have been found on rocks, pillars, slabs, walls of buildings, bricks, stones, seals, images and 

copper plates. Various rulers got their teachings, instructions and commandments engraved on rocks and pillars for the guidance of the people. There 

were certain other unofficial inscriptions as well either to commemorate the donor or to pass on the information to other people and future generations. 

The installation of different pillars in various parts of the country can indicate the boundaries of a certain ruler. They can also evidence the approach of 

the people towards a particular language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An estimated 100,000 inscriptions have now been found, and many of these have been cataloged and translated. These inscriptions corroborate 

information from other sources, give the dates and locations of significant events, trace detailed royal genealogies, and provide an insight into early Indian 

political structure, legal codes, and religious practices. They also document the development and use of written languages in India. Many of the 
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inscriptions are couched in extravagant language, but when the information gained from inscriptions can be corroborated with information from other 

sources such as oral histories and existing monuments or ruins, inscriptions provide insight into India's dynastic history that otherwise lacks contemporary 

historical records. They also provide a fascinating glimpse into the personal lives of the people they commemorate. 

1.2. PROBLEM STATEMENT 

Ancient Indian inscriptions hold invaluable historical, cultural, and linguistic significance, providing insights into India's rich and diverse heritage. These 

inscriptions, engraved or written on various materials such as stone, metal, pottery, coins, and seals, span different historical periods and regions across 

the Indian subcontinent. However, deciphering and interpreting these inscriptions pose significant challenges due to the diverse scripts, linguistic 

variations, and deteriorating conditions of the artifacts. Traditional methods of analyzing ancient inscriptions, primarily relying on manual transcription 

by epigraphists, pose several inherent challenges. Firstly, such methods are time-consuming and labor-intensive, requiring significant effort from skilled 

epigraphists. Moreover, manual transcription is subjective and prone to human errors, leading to inaccuracies in deciphering inscriptions. Additionally, 

these methods lack scalability, making it difficult to handle large volumes of inscription data efficiently. They also heavily depend on the expertise of 

epigraphists, creating a bottleneck in the availability of qualified professionals. Furthermore, inscriptions engraved on deteriorating materials add to the 

complexity of transcription, risking the loss of valuable historical information. On the other hand, while machine learning algorithms offer promising 

solutions to automate inscription analysis, they encounter challenges related to data availability and quality. Obtaining large datasets of labeled inscription 

images for training can be difficult, and the variability in scripts and languages further complicates the development of accurate models. Character 

recognition becomes complex, especially with intricate script styles, and understanding the historical context and cultural nuances embedded in 

inscriptions requires domain expertise that may be challenging to encode into machine learning models. Despite advancements, interpreting the semantic 

meaning of inscriptions remains a complex task that often requires human intervention and contextual knowledge. The advancement of machine learning, 

deep learning, and image processing techniques presents an opportunity to develop automated systems for inscription recognition and characterization. 

By harnessing the power of these technologies, it becomes feasible to create efficient and accurate tools for reading, understanding, and preserving the 

invaluable knowledge embedded within ancient Indian inscriptions. 

1.3. DEEP LEARNING 

Deep learning is a method in artificial intelligence (AI) that teaches computers to process data in a way that is inspired by the human brain. Deep learning 

models can recognize complex patterns in pictures, text, sounds, and other data to produce accurate insights and predictions. Deep learning models are 

computer files that data scientists have trained to perform tasks using an algorithm or a predefined set of steps. Businesses use deep learning models to 

analyse data and make predictions in various applications. Computer vision is the computer's ability to extract information and insights from images and 

videos. Computers can use deep learning techniques to comprehend images in the same way that humans do. Deep learning networks learn by discovering 

complex structures in the information you feed them. During data processing, artificial neural networks classify the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep learning algorithms are neural networks that are modelled after the human brain. For example, a human brain contains millions of interconnected 

neurons that work together to learn and process information. Similarly, deep learning neural networks, or artificial neural networks, are made of many 

layers of artificial neurons that work together inside the computer. 

Artificial neurons are software modules called nodes, which use mathematical calculations to process data. Artificial neural networks are deep learning 

algorithms that use these nodes to solve complex problems. 

1.3.1. Convolutional Neural Network 

The Convolutional Neural Networks or CNNs are primarily used for tasks related to computer vision or image processing. CNNs are extremely good in 

modelling spatial data such as 2D or 3D images and videos. They can extract features and patterns within an image, enabling tasks such as image 

classification or object detection. A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that can take in an input image, assign 

importance (learnable weights and biases) to various aspects/objects in the image, and be able to differentiate one from the other. The pre-processing 

required in a ConvNet is much lower as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with enough 

training, ConvNets have the ability to learn these filters/characteristics. The architecture of a ConvNet is analogous to that of the connectivity pattern of 

Neurons in the Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons respond to stimuli only in a restricted region 

https://aws.amazon.com/computer-vision/
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of the visual field known as the Receptive Field. A collection of such fields overlap to cover the entire visual area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Convolutional Layer + Relu 

This layer is the first layer that is used to extract the various features from the input images. In this layer, the mathematical operation of convolution is 

performed between the input image and a filter of a particular size MxM. By sliding the filter over the input image, the dot product is taken between the 

filter and the parts of the input image with respect to the size of the filter (MxM). 

The output is termed as the Feature map which gives us information about the image such as the corners and edges. Later, this feature map is fed to other 

layers to learn several other features of the input image. 

Pooling Layer 

In most cases, a Convolutional Layer is followed by a Pooling Layer. The primary aim of this layer is to decrease the size of the convolved feature map 

to reduce computational costs. This is performed by decreasing the connections between layers and independently operating on each feature map. 

Depending upon the method used, there are several types of Pooling operations. In Max Pooling, the largest element is taken from the feature map. 

Average Pooling calculates the average of the elements in a predefined sized Image section. The total sum of the elements in the predefined section is 

computed in Sum Pooling. The Pooling Layer usually serves as a bridge between the Convolutional Layer and the FC Layer 

Fully Connected Layer 

The Fully Connected (FC) layer consists of the weights and biases along with the neurons and is used to connect the neurons between two different layers. 

These layers are usually placed before the output layer and form the last few layers of a CNN Architecture. In this, the input image from the previous 

layers is flattened and fed to the FC layer. The flattened vector then undergoes a few more FC layers where mathematical operations usually take place. 

In this stage, the classification process begins to take place. 

Dropout 

Usually, when all the features are connected to the FC layer, it can cause overfitting in the training dataset. Overfitting occurs when a particular model 

works so well on the training data causing a negative impact on the model’s performance when used on new data. To overcome this problem, a dropout 

layer is utilized wherein a few neurons are dropped from the neural network during the training process resulting in reduced size of the model. On passing 

a dropout of 0.3, 30% of the nodes are dropped out randomly from the neural network. 

Activation Functions 

Finally, one of the most important parameters of the CNN model is the activation function. They are used to learn and approximate any kind of continuous 

and complex relationship between variables of the network. In simple words, it decides which information of the model should fire in the forward direction 

and which ones should not at the end of the networkThere are several commonly used activation functions such as the ReLU, Softmax, tanH, and the 

Sigmoid functions. Each of these functions has a specific usage. For a binary classification CNN model, sigmoid and softmax functions are preferred and 

for multi-class classification, softmax is used. 

1.4. AIM AND OBJECTIVE 

Aim 

The aim of the project is to develop an advanced system capable of accurately recognizing and converting ancient language characters from stone 

inscriptions into their modern counterparts using deep learning techniques. 

Objectives 

● To explore and implement global texture analysis techniques for ancient language font recognition, focusing on the contour-let transform 

methodology. 

● To develop and train Convolutional Neural Networks (CNNs) to accurately identify ancient language characters from stone inscriptions. 

● To investigate and propose a Character Mapping algorithm to convert recognized ancient language characters into their current century's form. 

● To integrate global texture analysis, contour-let transform, deep learning, and character mapping techniques into a cohesive framework for 

enhanced accuracy. 

● To evaluate the performance of the system using appropriate metrics, ensuring robustness and effectiveness in recognizing and transforming 

ancient language characters. 
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● To iteratively optimize the model and algorithms based on evaluation results, refining the system's capabilities and improving overall accuracy. 

● To contribute to the advancement of Optical Character Recognition (OCR) and Document Analysis methodologies, particularly in the context 

of challenging tasks such as ancient language inscription recognition and conversion. 

● To facilitate the preservation and understanding of ancient languages and cultures by providing a reliable and efficient tool for researchers and 

historians. 

1.5. SCOPE OF THE PROJECT 

The scope of the project encompasses several key aspects aimed at developing a comprehensive solution for the analysis and interpretation of ancient 

inscriptions. Here's an overview of the project scope: 

1. Character Recognition and Century Labeling 

● Develop a machine learning model (InsNet) capable of recognizing individual characters within ancient inscriptions. 

● Implement a classification algorithm to assign each inscription to its corresponding era or century based on historical context. 

2. Image Preprocessing and Feature Extraction 

● Preprocess inscription images to enhance their quality and suitability for analysis. 

● Extract meaningful features from preprocessed images using techniques such as the contour-let transform. 

3. Web Application Development 

● Design and develop a user-friendly web application interface for uploading inscription images and viewing analysis results. 

● Implement backend functionality using Python and the Flask framework to handle image processing, model inference, and result 

visualization. 

4. Dataset Management and Model Training 

● Provide functionalities for administrators to upload, manage, and curate datasets containing images of ancient inscriptions. 

● Train the InsNet model using uploaded datasets to improve its accuracy and performance in character recognition and century 

labeling tasks. 

5. User Authentication and Access Control: 

● Implement user authentication mechanisms to ensure secure access to the web application. 

● Define user roles and permissions to regulate access to sensitive functionalities such as dataset management and model training. 

6. Result Visualization and Interpretation 

● Present analysis results in a visually appealing and informative manner to facilitate interpretation by users. 

● Visualize predicted era or century labels and mapped characters extracted from uploaded inscription images. 

7. Deployment and Hosting 

● Deploy the web application on a suitable hosting platform to make it accessible to users over the internet. 

● Ensure scalability, reliability, and performance of the deployed system to accommodate varying user loads and usage patterns. 

8. Documentation and Support 

● Provide comprehensive documentation, including system architecture, API documentation, user guides, and troubleshooting 

instructions. 

● Offer ongoing support and maintenance to address user inquiries, feedback, and issues encountered during system usage. 

The scope of the project is to develop a robust and user-friendly platform that enables researchers, historians, archaeologists, and enthusiasts to analyze 

and interpret ancient inscriptions effectively, leveraging advanced machine learning and image processing techniques. By automating the process of 

character recognition and century labeling, the system aims to accelerate research and exploration in the field of historical linguistics and archaeology. 

 

CHAPTER 2 

LITERATURE SURVEY 

2.1. Rules to Transform Specific Description Language Diagram into Coloured Petri Nets 

Author: Hana Mejdi; Oussama Kallel 

Year:2018 

Doi: 10.1109/WAINA.2018.00058 

Problem 

Specification and description languages are crucial tools used in the design stage to describe the behavior of complex, reactive, distributed, real-time, and 

interactive systems. Ensuring the correctness and reliability of these language specifications is essential for the successful implementation and 

functionality of the designed systems. However, validating these specifications can be challenging due to their complexity and the need for rigorous 

verification methods 

Objective 

The main objective of this paper is to present a method for validating specification and description language diagrams effectively. The proposed method 

aims to translate these diagrams into coloured Petri nets, a mathematical modeling language, to facilitate rigorous analysis and verification of the system's 

behavior and interactions 

Methodology 

The first stage involves defining and explaining the rules for translating the specification and description language diagrams into coloured Petri nets. This 

https://ieeexplore.ieee.org/author/37086037280
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stage sets the groundwork for the translation process, ensuring that it captures all relevant aspects and behaviors of the system. In the second stage, the 

defined rules are applied to translate the specification and description language diagrams into coloured Petri nets. This translation process transforms the 

graphical representations of the system's behavior into a mathematical model that can be analyzed and verified. 

Dataset 

These datasets are essential for training and testing the proposed Bi-LSTM model to ensure its effectiveness in handling the complexities of ancient Tamil 

language structures 

Finding 

The proposed method for validating specification and description language diagrams by translating them into coloured Petri nets offers a systematic and 

rigorous approach to ensuring the correctness and reliability of system specifications. By following the three-stage validation process of explaining the 

rules, applying them, and verifying the results, the method facilitates comprehensive analysis and verification of complex, event-driven, real-time, and 

interactive applications. This approach enhances the confidence in the system's design and functionality, contributing to the successful implementation 

and operation of reactive and distributed systems. 

2.2. Tamil Character Recognition from Ancient Epigraphical Inscription using OCR and NLP 

Author: T Manigandan; V. Vidhya 

Year:2018 

Doi:  10.1109/ICECDS.2017.8389589 

Problem 

Recognizing ancient Tamil characters, especially those from the 9th to 12th centuries, poses significant challenges for Epigraphers due to the language's 

evolution and the complexity introduced by inscriptions on stone walls. Identifying and interpreting these characters accurately is crucial for understanding 

historical texts and preserving cultural heritage. 

Objective 

The main objective of this research is to develop a system capable of accurately recognizing and identifying various Tamil characters from inscriptions 

dated between the 9th and 12th centuries. The focus is on leveraging Optical Character Recognition (OCR) and Natural Language Processing (NLP) 

techniques to preprocess, segment, and classify characters from inscription images collected from the Tamil Nadu Archaeological Department 

Methodology 

Inscription images are pre-processed to enhance their quality and then segmented to isolate individual characters. Color images are converted to grayscale 

and binary images based on a threshold value Features such as lines, curves, loops, and dots are extracted from segmented characters using the Scale 

Invariant Feature Transform (SIFT) algorithm Extracted features are used to construct vectors, which are then classified using a Support Vector Machine 

(SVM) classifier, Each identified character is assigned its corresponding Unicode value and updated in the image corpus to enhance the system's efficiency 

in character recognition. 

Dataset 

The datasets used in this research consist of inscription images collected from the Tamil Nadu Archaeological Department, encompassing various Tamil 

characters from the 9th to 12th centuries. These images serve as the primary data source for training and testing the proposed OCR and NLP-based 

character recognition system. 

Finding 

The proposed system successfully addresses the challenges associated with recognizing and identifying ancient Tamil characters from inscriptions. By 

leveraging OCR and NLP techniques for preprocessing, segmentation, feature extraction, and classification, the system achieves accurate character 

recognition. The integration of SVM classifiers and Trigram techniques further enhances the system's accuracy and efficiency in predicting and identifying 

characters. With each identified character assigned its corresponding Unicode value and updated in the image corpus, the system becomes more robust 

and effective in reading inscription images, thereby solving major problems faced by Epigraphers in interpreting ancient Tamil texts. 

2.3. Depicting a Neural Model for Lemmatization and POS Tagging of Words from Palaeographic Stone Inscriptions 

Author: S. Ezhilarasi; P.Uma Maheswari 

Year: 2021 

Doi: 10.1109/ICICCS51141.2021.9432315 

Problem 

Lemmatization and Part-of-Speech (POS) Tagging are essential steps in natural language processing for analyzing morphology, understanding 

grammatical structures, and extracting meaningful information from text. However, for languages like Tamil, which have complex combinations, 

inflections, and unique characteristics in ancient texts like stone inscriptions, automated tools and statistical methods are lacking. The intricacies of the 

Tamil language, especially in Paleographic texts from stone inscriptions, pose challenges in lemmatization and accurate POS Tagging due to combined, 

stacked, overlapped, and compounded words that don't split into distinct morphemes or lemmas easily. 

Objective 

The primary objective of this research is to design a Neural Model capable of accurately performing POS Tag Classification and predicting tags for words 

in Paleographic 11th-century Tamil stone inscription scripts. The aim is to overcome the complexities associated with ancient Tamil language structures 

and provide a robust tool for syntactic tag assignment and prediction of tags for words efficiently. 

Methodology 

The proposed methodology involves implementing a Bi-directional Long Short-Term Memory (Bi-LSTM) model with an embedding layer of word 

https://ieeexplore.ieee.org/author/37086401645
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vectors for training the POS Tagging model. This model is designed to handle the challenges posed by the complex nature of ancient Tamil words in 

stone inscriptions, including combined and compounded forms. The Bi-LSTM model learns the patterns and structures of the Tamil language from the 

provided datasets to classify words into appropriate POS tags and predict tags for new words efficiently. 

Dataset 

The datasets used in this research consist of Paleographic 11th-century Tamil stone inscription scripts, containing a variety of combined, stacked, 

overlapped, and compounded words. These datasets are essential for training and testing the proposed Bi-LSTM model to ensure its effectiveness in 

handling the complexities of ancient Tamil language structures. 

Finding 

The proposed Neural Model, based on Bi-LSTM architecture, achieves a high accuracy rate of 96.43% in POS Tag Classification and prediction for 

Paleographic 11th-century Tamil stone inscription scripts. This accuracy rate demonstrates a significant improvement compared to existing works in the 

field, highlighting the effectiveness and robustness of the proposed approach in handling the challenges of lemmatization and POS Tagging for complex 

Tamil language structures in ancient texts. The research findings indicate that the designed model can serve as a reliable tool for syntactic analysis and 

prediction of tags for words in ancient Tamil scripts, contributing to advancements in Tamil language processing and preservation of cultural heritage. 

2.4. Research and Analysis of Extraction and Recognition INSCriptions of Bronzebased On Improved K-Means and Convo Lutional Neural 

Network 

Author: Lin Wei; Guo Xue;  

Year:2021 

Doi: 10.1109/ICCWAMTIP53232.2021.9674164 

Problem 

Natural language processing of Bronze inscriptions plays a crucial role in studying the historical use and significance of these ancient artifacts. 

Recognizing and interpreting words from Bronze inscriptions is a challenging task due to their long history, complex fonts, and the inherent difficulties 

associated with deciphering ancient scripts. While Convolutional Neural Networks (CNNs) have been successful in photo recognition tasks, their 

application in Bronze inscription recognition remains limited, leading to potential improvements in accuracy and speed. 

Objective 

The primary objective of this research is to develop a method for extracting and recognizing Bronze inscriptions using an improved k-means algorithm 

in conjunction with Convolutional Neural Networks (CNNs). The aim is to enhance the accuracy and efficiency of Bronze inscription recognition, thereby 

facilitating more effective research and interpretation of these historical artifacts. 

Methodology 

An improved k-means algorithm is utilized to extract characters from Bronze inscriptions, preparing the data for further recognition by organizing and 

clustering the characters effectively. The extracted characters are then processed and recognized using a Convolutional Neural Network (CNN). The CNN 

is trained to identify and classify the characters based on their features and patterns inherent in Bronze inscriptions. 

Dataset 

The datasets used in this research consist of high-resolution images of Bronze inscriptions obtained from archaeological repositories and collections. 

These images serve as the primary data source for both character extraction and recognition processes. The dataset is carefully curated to include a variety 

of Bronze inscriptions spanning different time periods, styles, and complexities to ensure robustness and generalization of the proposed method 

Finding 

Experimental results demonstrate that the proposed method, which combines improved k-means for character extraction with Convolutional Neural 

Networks for recognition, significantly enhances the accuracy and speed of Bronze inscription recognition. The improved method not only improves the 

efficiency of recognizing Bronze inscriptions but also proves to be considerably beneficial for Bronze inscription research. By leveraging advanced 

algorithms and techniques, this research contributes to bridging the gap between modern computational methods and the study of ancient Bronze 

inscriptions, paving the way for more comprehensive and accurate analysis of these valuable historical artifacts. 

2.5. Self-Adaptive Hybridized Lion Optimization Algorithm with Transfer Learning for Ancient Tamil Character Recognition in Stone 

Inscriptions 

Author: Sujitra Tongkhum 

Year:2023 

Doi: 10.1109/ACCESS.2023.3268545 

Problem 

Recognizing Tamil characters in ancient stone inscriptions presents significant challenges due to the script's complexity, erosion over time, and the high 

number of unique characters. Existing methods often struggle with accuracy and efficiency, hindering the preservation and understanding of Tamil 

heritage embedded in these inscriptions. 

Objective 

The primary objective of this research is to develop an efficient and accurate recognition system for Tamil characters in stone inscriptions. This system 

aims to overcome the limitations of existing methods by leveraging advanced algorithms and techniques to enhance character recognition, thereby 

preserving and promoting Tamil traditional knowledge and heritage. 

Methodology 

The proposed methodology employs a hybrid approach combining Self-Adaptive Lion Optimization Algorithm (LOA) and Transfer Learning (TL) using 

https://ieeexplore.ieee.org/author/37089244645
https://ieeexplore.ieee.org/author/37089242727
https://doi.org/10.1109/ICCWAMTIP53232.2021.9674164
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Deep Convolution Neural Networks (CNN). Initially, LOA is utilized for optimizing brightness and contrast of stone inscription images. Pre-processing 

techniques are then applied for noise removal and character segmentation based on identified contours. Finally, TL-based CNN models are employed for 

character recognition, leveraging pre-trained neural network architectures to improve accuracy. 

Dataset 

The research utilizes datasets comprising images of Tamil stone inscriptions sourced from various historical sites and collections. These datasets include 

both complete and partially damaged inscriptions to simulate real-world challenges encountered in character recognition due to erosion and damage over 

time. 

Finding 

The implementation of the proposed Self-Adaptive Lion Optimization Algorithm with Transfer Learning (SLOA-TL) approach demonstrates significant 

improvements in accuracy and efficiency compared to existing methods. The hybrid model successfully enhances image quality, effectively removes 

noise, and accurately recognizes Tamil characters from stone inscriptions. Furthermore, the system achieves faster processing speeds, making it suitable 

for large-scale recognition tasks. Overall, the research findings highlight the potential of the SLOA-TL approach in preserving Tamil heritage by 

facilitating more accurate and efficient recognition of characters in ancient stone inscriptions. 

2.6. A Character-Level Restoration of Sukhothai Inscriptions Using The Masked Language Model 

Author: Sukree Sinthupinyo 

Year:2023 

Doi: 10.1109/iSAI-NLP60301.2023.10355005 

Problem 

Stone inscriptions serve as a crucial form of written literature that captures historical narratives and cultural identities through engraved characters on 

stone. Over time, these inscriptions can suffer from deterioration due to various factors like natural disasters, resulting in damaged or faded text. This 

poses challenges in transcribing and interpreting the inscriptions accurately, affecting the completeness of the recorded sentences, which is vital for 

natural language processing tasks. 

Objective 

The main objective of this research is to enhance the completeness of missing sentences in stone inscriptions by generating predictive models for the 

missing characters. This approach aims to utilize masked language models to predict the missing words, thereby improving the accuracy and reliability 

of transcribing and interpreting ancient stone inscriptions 

Methodology 

The research employs a method of generating predictive models for missing characters using masked language models. Three types of multilingual pre-

trained models are utilized for this purpose: (1) XLM-RoBERTa, (2) Bert-base-multilingual-cased, and (3) DistilBERT-base-multilingual-cased. During 

each training round, random characters in the text are masked using the token ““or “[MASK]”, prompting the model to predict the missing words at the 

masked positions. 

Dataset 

The experimental data consists of text from damaged or deteriorated stone inscriptions, where parts of the text are missing or unclear due to erosion, 

scratches, or fading over time. These datasets simulate real-world challenges encountered in transcribing ancient stone inscriptions. 

Finding 

These findings indicate that while the Bert-base-multilingual-cased model performs relatively better in predicting missing characters from damaged stone 

inscriptions, there is room for improvement across all models. Nonetheless, the approach shows promise in enhancing the completeness and accuracy of 

transcribing ancient stone inscriptions by predicting missing characters effectively. 

2.7. A Review: Text Extraction from Stone Inscriptions and Translating to Modern Language 

Author: Meher Pranav Kurapati; 

Year:2023 

Doi: 10.1109/ICEARS56392.2023.10085645 

Problem 

Translating ancient South Indian languages recorded in stone inscriptions into modern languages poses a significant challenge despite advancements in 

character recognition technology. While OCR (Optical Character Recognition) and STR (Script Translation) methods have been used for recognizing 

ancient characters, their accuracy is limited, especially when transferring characters from ancient languages to modern ones. This gap in technology has 

resulted in a scarcity of digital translations of old characters into modern languages. 

Objective 

The primary objective of this study is to develop an algorithm capable of translating ancient South Indian languages found in stone inscriptions into 

modern languages with high accuracy. The aim is to overcome the limitations of existing OCR and STR methods and provide a reliable tool for digital 

translation of ancient texts for various applications. 

Methodology 

The study utilizes photographs of stone inscriptions from various locations as input data to train and test the proposed algorithm, named AMSER (Ancient 

Manuscript to Modern Script Encoder and Recognizer). AMSER employs a unique approach to character recognition and translation, achieving high 

levels of accuracy in converting ancient characters into modern language characters. 

Dataset 

https://ieeexplore.ieee.org/author/37370412600
https://doi.org/10.1109/iSAI-NLP60301.2023.10355005
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The datasets used in this study consist of photographs of stone inscriptions written in ancient South Indian languages. These images simulate the real-

world challenges encountered in translating and interpreting ancient texts due to the characters' unique shapes, sizes, and degradation over time. 

Finding 

The proposed AMSER algorithm demonstrates a significant improvement in accuracy compared to existing methods like OCR and STR. With an accuracy 

rate exceeding 90%, AMSER successfully translates text from images of ancient stone inscriptions into modern languages. This high level of precision 

makes AMSER a reliable tool for digital translation of ancient texts, paving the way for various applications in cultural preservation, historical research, 

and educational purposes. 

2.8. Temple Inscriptions Recognition and Transliteration in Devanagari Script 

Author: B. Sathish Babu; Sannidhi Shetty 

Year:2023 

Doi: 10.1109/ViTECoN58111.2023.10157277 

Problem 

Ancient inscriptions, palm scripts, and manuscripts hold invaluable information about India's cultural heritage, but their recognition and understanding 

have posed significant challenges for epigraphers and professionals. The Vatteluttu script inscriptions, dating back to the 4th or 5th century AD, are 

particularly difficult to decipher due to their ancient nature and unique script style 

Objective 

The primary objective of this research is to advance Optical Character Recognition (OCR) methods specifically tailored for the archival Vatteluttu script 

inscriptions. The aim is to develop a deep learning model capable of transliterating ancient Tamil inscriptions written in the Vatteluttu script, with the 

potential for extension to other languages and scripts. This work seeks to facilitate easier interpretation and understanding of these ancient texts for 

epigraphists, archaeological researchers, and the general public interested in India's cultural history. 

Methodology 

The proposed methodology involves the development and training of a deep learning model tailored for Vatteluttu script transliteration Archival images 

of Vatteluttu script inscriptions are gathered from archaeological repositories and collections to form the dataset. The images undergo preprocessing steps 

such as noise reduction, resizing, and normalization to prepare them for OCRA deep learning model, possibly a Convolutional Neural Network (CNN) 

or Recurrent Neural Network (RNN), is designed and trained using the prepared dataset to transliterate Vatteluttu script characters into modern Tamil or 

another readable format 

Dataset 

The dataset comprises high-quality images of Vatteluttu script inscriptions along with their transliterated texts or annotations. The dataset is carefully 

curated to include a diverse range of inscriptions, styles, and complexities to ensure the robustness and generalization of the developed model. 

Finding 

The developed deep learning model for transliterating Vatteluttu script inscriptions has achieved an accuracy of 84.12%. This accuracy demonstrates the 

effectiveness and potential of deep learning techniques in addressing the challenges of recognizing and transliterating ancient Tamil inscriptions written 

in the Vatteluttu script. The proposed model not only aids epigraphists and archaeological researchers in deciphering these ancient texts but also 

contributes to preserving and promoting India's rich cultural heritage for future generations. 

 

CHAPTER 3 

SYSTEM ANALYSIS 

3.1. EXISTING SYSTEM 

● Manual Inspection: Historians and archaeologists manually examine inscriptions, relying on their expertise to decipher characters and 

determine the era based on historical context. 

● Reference Books: Researchers consult reference books and scholarly publications to identify characters and interpret inscriptions, relying on 

established knowledge and expertise. 

● Linguistic Analysis: Linguists analyze language and script characteristics to infer the era and context of inscriptions, drawing on linguistic 

principles and historical records. 

● Physical Examination: Inscriptions may be physically examined using magnification tools and techniques to enhance visibility and reveal 

intricate details for analysis. 

● Collaborative Research: Researchers collaborate and share insights through academic networks and conferences to collectively decipher and 

interpret inscriptions from different perspectives. 

● Field Surveys: Archaeologists conduct field surveys to document and catalog inscriptions in their original contexts, gathering data for further 

analysis and research. 

● Epigraphical Studies: Epigraphists specialize in the study of inscriptions, employing specialized methodologies and techniques to decode 

and analyze ancient scripts and languages. 

● Museum Collections: Researchers access museum collections and archives to study inscriptions firsthand, utilizing curated resources and 

artifacts for analysis and interpretation. 

● Historical Records: Historical records and documents provide context and background information on inscriptions, aiding researchers in 

understanding their significance and historical relevance. 

https://ieeexplore.ieee.org/author/37086451697
https://ieeexplore.ieee.org/author/37089888041
https://doi.org/10.1109/ViTECoN58111.2023.10157277
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● Expert Consultation: Researchers seek advice and consultation from experts in epigraphy, archaeology, linguistics, and related fields to gain 

insights and expertise in deciphering inscriptions. 

EXISTING ALGORITHMS 

● Optical Character Recognition (OCR): Traditional OCR algorithms are adapted for inscription analysis to recognize characters within 

images and convert them into machine-readable text, enabling further analysis and interpretation. 

● Template Matching: Template matching algorithms compare image regions with predefined templates of characters or symbols to identify 

matching patterns, facilitating character recognition in inscriptions. 

● Support Vector Machines (SVM): SVM algorithms are utilized for classification tasks in inscription analysis, such as distinguishing between 

different eras or labeling characters based on historical context and linguistic features. 

● Hidden Markov Models (HMMs): HMM-based algorithms are applied to model sequential patterns and dependencies in inscription text, 

aiding in character recognition and language modeling tasks. 

● Feature-based Methods: Feature-based algorithms extract and analyze distinctive features from inscription images, such as contour shapes, 

texture patterns, or stroke directions, to characterize and classify characters. 

3.1.1. DISADVANTAGES 

Traditional System 

● Time-consuming manual inspection and analysis. 

● Reliance on human expertise, leading to subjective interpretations. 

● Limited scalability for processing large volumes of inscription data. 

● Susceptibility to errors and inconsistencies in deciphering characters and determining eras. 

● Lack of standardization in analysis methodologies across researchers and institutions. 

● Difficulty in accessing and sharing inscription data and findings. 

● Inefficiency in handling complex scripts and languages. 

● Dependence on physical access to inscriptions, limiting research opportunities. 

● Challenges in preserving and maintaining the integrity of historical artifacts. 

● Limited collaboration and knowledge-sharing opportunities among researchers. 

Existing Algorithms 

● Limited effectiveness in handling degraded or damaged inscription images. 

● Sensitivity to variations in lighting, background noise, and image quality. 

● Lack of adaptability to diverse inscription styles, languages, and scripts. 

● Over-reliance on labeled training data, leading to issues with generalization. 

● High computational complexity and resource requirements for deep learning models. 

● Difficulty in interpreting and explaining model predictions for character recognition and era classification. 

● Vulnerability to adversarial attacks and data biases in training datasets. 

● Challenges in integrating with existing heritage management systems and databases. 

● Limited support for real-time or near-real-time analysis of inscription data. 

● Difficulty in adapting algorithms to evolving research needs and technological advancements. 

3.2. PROPOSED SYSTEM 

The proposed system for the project is designed to be a comprehensive platform for the analysis and interpretation of ancient inscriptions. The proposed 

system aims to provide a robust and user-friendly platform for researchers, historians, archaeologists, and enthusiasts to explore and interpret ancient 

inscriptions effectively. By leveraging advanced machine learning and image processing techniques, the system facilitates automated analysis and 

classification of inscription images, contributing to advancements in historical linguistics and archaeology. Here’s an outline of the proposed system: 

● Web Application Interface 

The web application interface serves as the primary interaction point for users accessing the system. Designed to be intuitive and user-friendly, it allows 

users to upload ancient inscription images, view analysis results, and navigate through various functionalities seamlessly. The interface incorporates 

modern web design principles and responsive layouts to ensure compatibility across different devices and screen sizes. 

● InsNet Model 

At the core of the system lies the InsNet model, a deep learning algorithm trained to recognize characters within ancient inscriptions and label them with 

their corresponding era or century. Developed using TensorFlow or PyTorch, the model undergoes extensive training using a diverse dataset of inscription 

images. Through iterative optimization and validation, the model learns to accurately classify and interpret inscription content, enabling historical analysis 

and interpretation. 

Contour-Let Transform: The contour-let transform is a versatile technique used for contour extraction and feature analysis in images. It operates by 

decomposing images into multiple scales and directions, capturing details at various levels of granularity. This multiscale and multi-directional approach 

allows it to effectively identify and extract contours and edges present in the image, crucial for character recognition in ancient inscriptions. By analyzing 

contour properties such as curvature, length, and orientation, the contour-let transform provides discriminative descriptors for differentiating characters 
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and facilitating accurate classification. 

Convolutional Neural Networks (CNN): CNNs are deep learning models specifically designed for image processing tasks. Their architecture consists 

of convolutional layers followed by pooling layers, enabling them to extract hierarchical features from input images. In the context of ancient inscription 

analysis, CNNs are employed for character recognition and century labeling. Through training, CNNs learn to detect low-level features such as edges and 

textures, gradually combining them to recognize individual characters and predict the era or century to which the inscription belongs. 

Character Mapping: Character mapping algorithms play a crucial role in converting recognized ancient language characters into their modern 

equivalents. These algorithms utilize various techniques such as lookup tables, linguistic rules, and machine learning to establish mappings between 

ancient characters and contemporary counterparts. By considering linguistic context and historical evolution, character mapping algorithms ensure 

accurate transformation of characters across different centuries. The accuracy of mappings is rigorously evaluated, allowing users to interpret inscription 

content within the context of the current century. 

● Result Visualization 

The result visualization module provides users with interactive tools for visualizing analysis results and predictions. Utilizing visualization libraries such 

as Matplotlib, Seaborn, or Plotly, the module generates informative visualizations such as charts, graphs, and heatmaps. These visualizations help users 

interpret analysis outcomes and gain insights into ancient inscription content and historical context. 

3.2.1. ADVANTAGES 

● Enhanced accuracy in character recognition and era identification. 

● Time-efficient automation of image processing and analysis tasks. 

● Accessibility via a user-friendly web interface. 

● Scalability to handle large volumes of inscription data. 

● Intuitive interface design for ease of use. 

● Comprehensive documentation and user support. 

● Customization options to suit specific research needs. 

● Collaboration features for shared research efforts. 

● Continuous improvement through updates and feedback integration. 

3.3. FEASIBILITY STUDY 

3.3.1. Technical Feasibility 

● Resource Availability: Adequate hardware, software, and expertise are available for implementing image processing, machine learning, and 

web development components of the project. 

● Algorithm Complexity: Algorithms such as the contour-let transform and CNNs are feasible to implement within the system architecture, 

considering available computational resources. 

● Data Accessibility: Sourcing diverse and sufficient ancient inscription datasets for model training may pose a challenge, but efforts can be 

made to acquire and preprocess suitable data. 

3.3.2. Economic Feasibility 

● Cost Estimation: The project involves costs associated with hardware, software licenses, development tools, and human resources. Cost 

estimation and budget allocation should be carefully considered to ensure financial feasibility. 

● Return on Investment: The potential benefits of the system, including improved efficiency in inscription analysis and enhanced research 

capabilities, may outweigh the initial investment, providing a favorable return on investment in the long term. 

3.3.3. Operational Feasibility 

● User Acceptance: Stakeholder buy-in from historians, archaeologists, and researchers is crucial for the success of the project. User feedback 

and involvement in the development process ensure that the system meets their needs and expectations. 

● System Integration: Compatibility with existing tools, databases, and workflows used in archaeological research is essential for seamless 

integration and adoption of the system within the research community. 

● Training and Support: Provision of training and ongoing support to users for system usage, maintenance, and troubleshooting is feasible and 

necessary for successful implementation and adoption. 

 

CHAPTER 4 

SYSTEM CONFIGURATION 

4.1. HARDWARE SPECIFICATIONS 

● Processor: Multi-core CPU for handling concurrent requests and computations. 

● RAM: 16GB RAM to accommodate data processing and model training tasks. 

● Storage: 256 SSD (Solid State Drive) storage with ample space for storing datasets, models, and system files. 
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4.2. SOFTWARE SPECIFICATIONS 

● Operating System: Windows 10 or 11 (for Windows-specific development)  

● Programming Language: Python (version 3.6 or higher)  

● Neural Network Framework: TensorFlow or PyTorch  

● Image Processing Libraries: OpenCV and PIL (Pillow)  

● Web Framework: Flask for implementing a web-based user interface,  

● Database Integration: MySQL for storing and retrieving relevant data.  

● Integrated Development Environment (IDE): IDLE  

● Web Technologies: HTML, CSS, and JavaScript  

CHAPTER 5 

SOFTWARE DESCRIPTION 

5.1. PYTHON 3.8 

Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming language. It was created by Guido van Rossum during 

1985- 1990. Like Perl, Python source code is also available under the GNU General Public License (GPL). This tutorial gives enough understanding on 

Python programming language. 

 

 

 

 

 

 

 

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is designed to be highly readable. It uses English keywords 

frequently where as other languages use punctuation, and it has fewer syntactical constructions than other languages. Python is a MUST for students and 

working professionals to become a great Software Engineer specially when they are working in Web Development Domain. 

Python is currently the most widely used multi-purpose, high-level programming language. Python allows programming in Object-Oriented and 

Procedural paradigms. Python programs generally are smaller than other programming languages like Java. Programmers have to type relatively less and 

indentation requirement of the language, makes them readable all the time. Python language is being used by almost all tech-giant companies like – 

Google, Amazon, Facebook, Instagram, Dropbox, Uber… etc. The biggest strength of Python is huge collection of standard library which can be used 

for the following: 

● Machine Learning 

● GUI Applications (like Kivy, Tkinter, PyQt etc.) 

● Web frameworks like Django (used by YouTube, Instagram, Dropbox) 

● Image processing (like OpenCV, Pillow) 

● Web scraping (like Scrapy, BeautifulSoup, Selenium) 

● Test frameworks 

● Multimedia 

Tensor Flow 

TensorFlow is an end-to-end open-source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community 

resources that lets researchers push the state-of-the-art in ML, and gives developers the ability to easily build and deploy ML-powered applications. 

 

 

 

 

 

 

 

 

 

 

 

 

TensorFlow provides a collection of workflows with intuitive, high-level APIs for both beginners and experts to create machine learning models in 
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numerous languages. Developers have the option to deploy models on a number of platforms such as on servers, in the cloud, on mobile and edge devices, 

in browsers, and on many other JavaScript platforms. This enables developers to go from model building and training to deployment much more easily. 

Keras 

Keras is a deep learning API written in Python, running on top of the machine learning platform TensorFlow. It was developed with a focus on enabling 

fast experimentation. 

 

 

 

 

 

 

● Allows the same code to run on CPU or on GPU, seamlessly. 

● User-friendly API which makes it easy to quickly prototype deep learning models. 

● Built-in support for convolutional networks (for computer vision), recurrent networks (for sequence processing), and any combination of 

both. 

● Supports arbitrary network architectures: multi-input or multi-output models, layer sharing, model sharing, etc. This means that Keras is 

appropriate for building essentially any deep learning model, from a memory network to a neural Turing machine. 

Pandas 

pandas are a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. 

pandas are a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both 

easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. 

 

 

 

 

Pandas is mainly used for data analysis and associated manipulation of tabular data in Data frames. Pandas allows importing data from various file formats 

such as comma-separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel. Pandas allows various data manipulation 

operations such as merging, reshaping, selecting, as well as data cleaning, and data wrangling features.  

NumPy 

NumPy, which stands for Numerical Python, is a library consisting of multidimensional array objects and a collection of routines for processing those 

arrays. Using NumPy, mathematical and logical operations on arrays can be performed. 

 

 

 

 

 

NumPy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these 

arrays. 

Matplotlib 

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python. Matplotlib makes easy things easy and hard 

things possible. 

 

 

 

Matplotlib is a plotting library for the Python programming language and its numerical mathematics extension NumPy. It provides an object-oriented 

API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. 

Scikit Learn 

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. 
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Scikit-learn (formerly scikits. learn and also known as sklearn) is a free software machine learning library for the Python programming language. It 

features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and 

DBSCAN, and is designed to interoperate with the Python numerical and scientific libraries NumPy and SciPy. 

Pillow 

Pillow is the friendly PIL fork by Alex Clark and Contributors. PIL is the Python Imaging Library by Fredrik Lundh and Contributors. 

 

 

 

 

 

 

Python pillow library is used to image class within it to show the image. The image modules that belong to the pillow package have a few inbuilt functions 

such as load images or create new images, etc. 

OpenCV 

OpenCV is an open-source library for the computer vision. It provides the facility to the machine to recognize the faces or objects.  

 

 

 

 

 

 

 

 

 

In OpenCV, the CV is an abbreviation form of a computer vision, which is defined as a field of study that helps computers to understand the content of 

the digital images such as photographs and videos. 

5.2. MYSQL 

MySQL is a relational database management system based on the Structured Query Language, which is the popular language for accessing and managing 

the records in the database. MySQL is open-source and free software under the GNU license. It is supported by Oracle Company. MySQL database that 

provides for how to manage database and to manipulate data with the help of various SQL queries. These queries are: insert records, update records, 

delete records, select records, create tables, drop tables, etc. There are also given MySQL interview questions to help you better understand the MySQL 

database. 

 

 

 

 

 

 

 

MySQL is currently the most popular database management system software used for managing the relational database. It is open-source database 

software, which is supported by Oracle Company. It is fast, scalable, and easy to use database management system in comparison with Microsoft SQL 

Server and Oracle Database. It is commonly used in conjunction with PHP scripts for creating powerful and dynamic server-side or web-based enterprise 

applications. It is developed, marketed, and supported by MySQL AB, a Swedish company, and written in C programming language and C++ 

programming language. The official pronunciation of MySQL is not the My Sequel; it is My Ess Que Ell. However, you can pronounce it in your way. 

Many small and big companies use MySQL. MySQL supports many Operating Systems like Windows, Linux, MacOS, etc. with C, C++, and Java 

languages. 
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5.3. WAMPSERVER 

WAMPServer is a reliable web development software program that lets you create web apps with MYSQL database and PHP Apache2. With an intuitive 

interface, the application features numerous functionalities and makes it the preferred choice of developers from around the world. The software is free 

to use and doesn’t require a payment or subscription. Moreover, the program installs on the system automatically, so you can fine tune the server without 

making any changes to the ‘Setting’ files. 

 

 

 

 

 

 

 

 

 

 

WAMPServer is a reliable web development software program that lets you create web apps with MYSQL database and PHP Apache2. With an intuitive 

interface, the application features numerous functionalities and makes it the preferred choice of developers from around the world. WampServer also has 

a “TrayIcon” allowing you to manage and configure your servers simply, without touching the configuration files. 

WAMP Server Features 

● Apache Webserver 

● MySQL DB Server 

● MariaDB Server 

● PHP Scriting language installed 

● WAMP Server Tools 

● PhpMyAdmin to manage DBs 

● Manage Apache and MySQL services 

● Switch to online / offline mode (accessible to all or limited to localhost) 

● Install and change version of Apache, MySQL and PHP 

● Manage the configuration parameters of your servers 

● Access your logs 

● Access configuration fi 

5.4. BOOTSTRAP 4 

Bootstrap is a powerful front-end framework for faster and easier web development. Bootstrap is a free and open-source web development framework. 

It’s designed to ease the web development process of responsive, mobile-first websites by providing a collection of syntax for template designs. In other 

words, Bootstrap helps web developers build websites faster as they don’t need to worry about basic commands and functions. It consists of HTML, CSS, 

and JS-based scripts for various web design-related functions and components. 

 

 

 

 

 

 

 

 

 

It solves many problems which we had once, one of which is the cross-browser compatibility issue. Nowadays, the websites are perfect for all the browsers 

(IE, Firefox, and Chrome) and for all sizes of screens (Desktop, Tablets, Phablets, and Phones). All thanks to Bootstrap developers -Mark Otto and Jacob 

Thornton of Twitter, though it was later declared to be an open-source project. Bootstrap’s primary objective is to create responsive, mobile-first websites. 

It ensures all interface elements of a website work optimally on all screen sizes. Bootstrap is available in two variants ‒ precompiled and based on a 

source code version. Experienced developers prefer the latter since it lets them customize the styles to suit their projects. 

Easy to use: Anybody with just basic knowledge of HTML and CSS can start using Bootstrap 

Responsive features: Bootstrap's responsive CSS adjusts to phones, tablets, and desktops 

Mobile-first approach: In Bootstrap, mobile-first styles are part of the core framework 

Browser compatibility: Bootstrap 4 is compatible with all modern browsers (Chrome, Firefox, Internet Explorer 10+, Edge, Safari, and Opera) 

 

https://getbootstrap.com/
https://www.hostinger.com/tutorials/what-is-html
https://www.hostinger.com/tutorials/what-is-css
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5.5. FLASK 

Flask is a web framework. This means flask provides you with tools, libraries and technologies that allow you to build a web application. This web 

application can be some web pages, a blog, a wiki or go as big as a web-based calendar application or a commercial website. 

 

 

 

 

 

 

 

 

Flask is often referred to as a micro framework. It aims to keep the core of an application simple yet extensible. Flask does not have built-in abstraction 

layer for database handling, nor does it have formed a validation support. Instead, Flask supports the extensions to add such functionality to the 

application.  Although Flask is rather young compared to most Python frameworks, it holds a great promise and has already gained popularity among 

Python web developers. Let’s take a closer look into Flask, so-called “micro” framework for Python. Flask is part of the categories of the micro-

framework. Micro-framework is normally framework with little to no dependencies to external libraries. This has pros and cons. Pros would be that the 

framework is light, there are little dependency to update and watch for security bugs, cons is that some time you will have to do more work by yourself 

or increase yourself the list of dependencies by adding plugins.  

6.1. SYSTEM ARCHITECTURE 
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http://flask.pocoo.org/
https://quintagroup.com/services/python
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CHAPTER 6 

SYSTEM DESIGN 

6.2. DATAFLOW DIAGRAM 

6.2.1. LEVEL 0 

 

 

 

 

 

 

 

 

 

 

 

6.2.2. LEVEL 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3. LEVEL 2 
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CHAPTER 7 

SYSTEM IMPLEMENTATION 

The implementation of the system involves several components and technologies to achieve its functionality. Here's a detailed overview of the system 

implementation: 

1. Backend Development 

● Python is used for backend development, leveraging the Flask framework to create a RESTful API for handling HTTP requests 

and responses. 

● MySQL database is utilized for storing data related to user accounts, inscription images, training datasets, and model parameters. 

2. Machine Learning and Image Processing 

● TensorFlow is employed for building and training the InsNet model, a convolutional neural network (CNN) architecture, for 

character recognition and century labeling tasks. 

● Pandas is used for data manipulation and preprocessing tasks, such as dataset loading and data transformation. 

● Scikit Learn is utilized for machine learning algorithms and evaluation metrics, including model training, validation, and 

performance evaluation. 

● NumPy is utilized for numerical computations and array operations, essential for handling image data and mathematical 

calculations. 

● OpenCV is used for image processing functionalities, including image loading, resizing, filtering, and segmentation. 

3. Frontend Development 

● Bootstrap framework is employed for frontend development, ensuring responsive and mobile-friendly user interfaces. 

● HTML, CSS, and JavaScript are utilized for building the web application's frontend components, including upload forms, result 

visualization, and user interactions. 

● jQuery may be used for client-side scripting and DOM manipulation to enhance interactivity and user experience. 

4. Image Preprocessing and Feature Extraction 

● Preprocessing tasks, such as RGB to grayscale conversion, resizing, noise filtering using Gabor filters, binarization, and 

segmentation using Region Proposal Networks (RPN), are implemented using OpenCV. 

● Feature extraction techniques, including the contour-let transform, are implemented to capture meaningful features from 

preprocessed inscription images. 

5. Model Training and Deployment 

● The InsNet model is trained using TensorFlow, with datasets containing images of ancient Indian inscriptions. 

● Model training involves specifying the CNN architecture, training parameters, loss functions, and optimization algorithms. 

● The trained model is serialized and deployed within the Flask web application, allowing it to make predictions on uploaded 

inscription images in real-time. 

6. User Authentication and Management 

● User authentication and session management functionalities are implemented using Flask's built-in features or extensions such as 

Flask-Login. 

7. Database Management 

● MySQL database is utilized for storing user account information, inscription images, training datasets, model parameters, and 

prediction results. 

8. Deployment and Hosting 

● The web application may be deployed on a web server such as Apache or Nginx, with WSGI servers like uWSGI or Gunicorn for 

handling HTTP requests. 

9. Testing and Quality Assurance 

● Unit tests, integration tests, and end-to-end tests are conducted to ensure the correctness and reliability of system functionalities. 

● Quality assurance practices, including code reviews, debugging, and performance optimization, are employed to maintain code 

quality and system stability. 

10. Documentation and User Guides 

● Comprehensive documentation, including system architecture diagrams, API documentation, and user guides, is provided to assist 

users in understanding and using the system effectively. 

7.1. SYSTEM DESCRIPTION 

The project is designed to facilitate the analysis and interpretation of ancient inscriptions through advanced machine learning techniques and user-friendly 

interfaces. Leveraging Python's Flask framework for backend development and MySQL database for data storage, the system integrates various libraries 

and tools such as TensorFlow, Pandas, Scikit Learn, NumPy, and OpenCV for image processing and analysis. The frontend is crafted using Bootstrap to 

ensure responsive design, while Pillow is employed for image processing functionalities. Local development and testing are facilitated through 

Wampserver, ensuring seamless integration and deployment of the web application. The system comprises several key modules, each serving specific 

functions to enable users to interact with the platform effectively. The Ancient Inscription Era Finder Web App module serves as the primary interface 

for users, providing a user-friendly platform to upload inscription images and receive predictions regarding their era or century. This module seamlessly 

integrates with the InsNet model, which is responsible for recognizing characters within inscriptions and labeling them with their corresponding era or 

century. The InsNet model is trained using a dataset containing images of ancient Indian inscriptions, covering various historical periods and regions. 
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The system also includes modules for preprocessing, feature extraction, classification, and result visualization, each playing a crucial role in analyzing 

inscription images and presenting the results in a visually appealing manner. Additionally, the Era and Character Finder module enables users to input 

inscription images, predict their era or century, and map recognized characters into their current century's form, facilitating interpretation and analysis. 

User management functionalities are provided for administrators, allowing them to manage user accounts, upload datasets, train the model, and oversee 

system operations. Regular users or archaeologists can register, log in, upload inscription images, and view predicted results through the user interface. 

Thus, the system aims to democratize access to advanced inscription analysis tools, empowering researchers, historians, and enthusiasts to explore and 

interpret ancient civilizations' written records with ease. 

7.2. MODULES DESCRIPTION 

1. Ancient Inscription Era Finder Web App 

The design and development of the Ancient Inscription Era Finder Web App leverage Python's Flask framework for backend development and MySQL 

database for data storage. TensorFlow, Pandas, Scikit Learn, NumPy, and OpenCV are utilized for machine learning and image processing tasks, while 

Matplotlib and Seaborn aid in data visualization. The frontend is crafted using Bootstrap for responsive design, with Pillow employed for image processing 

functionalities. Wampserver is utilized for local development and testing environments, ensuring seamless integration and deployment of the web 

application. This module serves as the primary interface for users to interact with the system. Upon accessing the web application, users are presented 

with a user-friendly interface where they can upload images of ancient inscriptions for analysis. The module seamlessly integrates with the deployed 

InsNet model to process the uploaded images and provide predictions regarding the era or century to which the inscription belongs. Users can conveniently 

visualize the predicted results directly within the web app interface, facilitating quick and efficient analysis of ancient inscriptions. The module ensures 

a smooth user experience by offering intuitive navigation and responsive design, catering to both desktop and mobile users. Additionally, it prioritizes 

security measures to protect user data and ensure confidentiality throughout the inscription analysis process. Overall, the Ancient Inscription Era Finder 

Web App module plays a crucial role in democratizing access to advanced inscription analysis tools, empowering researchers, historians, and enthusiasts 

alike to explore and interpret ancient civilizations' written records with ease. 

 
2. InsNet Model: Build and Train 

2.1. Dataset Description 

The dataset comprises images of inscriptions from various historical periods and regions of ancient India, spanning from the Indus Valley Civilization to 

the medieval period. Inscriptions from different geographical regions of the Indian subcontinent are included, covering North India, South India, Central 

India, and regions influenced by trade routes. Images depict inscriptions engraved or written on diverse materials such as stone, metal, pottery, coins, 

seals, and other artifacts. Inscriptions may include texts in different languages and scripts used in ancient India, including Brahmi, Kharosthi, Tamil, 

Sanskrit, Prakrit, etc. The dataset encompasses inscriptions found in various contexts, including cave inscriptions, temple inscriptions, rock edicts, royal 

decrees, legal documents, trade records, epigraphic poetry, and historical narratives. Images are sourced from archaeological surveys, museum collections, 

historical archives, scholarly publications, and digitized repositories. 

2.2. Import Dataset and Visualization 

The Import Dataset Module allows administrators to upload datasets containing ancient inscription images for training the model and updating its 

knowledge base. This module ensures that the system is equipped with relevant and diverse data to improve the accuracy and performance of the model. 

Functionality: 

● Administrators can upload datasets from local storage or external sources. 

● The module supports image file format. Like Jpeg, png, bmp 

● Upon upload, the dataset is processed and stored in the system's database for further use in model training and analysis. 

● Data validation mechanisms ensure that uploaded datasets meet the required format and quality standards. 

The module provides a user-friendly interface for administrators to select and upload datasets. File upload controls and validation checks are implemented 

to ensure the integrity and security of the uploaded data.  

Visualization Module 

The Visualization Module presents the results of the system's analysis and predictions in a visually appealing and informative manner. It enhances the 

user experience by providing graphical representations of the analysis outcomes and insights derived from the inscription images. 

Functionality 

● Visualizes predicted era or century labels and mapped characters extracted from the uploaded inscription images. 

● Offers customizable visualization options such as color schemes, chart types, and layout configurations. 

● Provides interactive visualization features for users to explore and analyze the results dynamically. 

● Supports different types of visualizations such as bar charts, line graphs, heatmaps, and word clouds based on the nature of the 

analysis. 

The module utilizes visualization libraries such as Matplotlib, Seaborn, or Plotly to generate graphical representations of the analysis results. Visualization 

components are integrated into the web application interface, allowing users to interact with the visualizations seamlessly. By incorporating the Import 

Dataset and Visualization modules into the system, administrators can efficiently manage and utilize datasets for model training, while users can explore 

and interpret the analysis results through interactive and informative visualizations, enhancing their understanding of ancient inscriptions. 
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2.3. Preprocessing 

The Preprocessing Module is an essential component of the InsNet model's pipeline, responsible for preparing the dataset of ancient inscription images 

for subsequent feature extraction and classification tasks. Here's a detailed description of each preprocessing step: 

● RGB to Grey Conversion 

Converts the RGB (Red, Green, Blue) color images to grayscale to simplify processing and reduce computational complexity. Grayscale images contain 

intensity values representing the brightness of each pixel, which is sufficient for character recognition tasks. 

● Resize 

Resizes all images to a standardized size of 640x640 pixels to ensure uniformity across the dataset. Standardizing the image dimensions simplifies the 

training process and ensures that the model learns features consistently from all images, regardless of their original size. 

● Noise Filter using Gabor Filter 

Applies the Gabor filter to the grayscale images to reduce noise and enhance image quality. The Gabor filter is a linear filter used for texture analysis, 

capable of capturing both the spatial and frequency characteristics of an image. By filtering out noise, the clarity of inscription details is improved, 

facilitating more accurate feature extraction. 

● Binarize 

Binarizes the preprocessed images to convert them into binary images, where each pixel is assigned either black or white based on a predefined threshold. 

Binarization simplifies segmentation and feature extraction processes by emphasizing the contrast between characters and background. 

● Segmentation using RPN (Region Proposal Networks): 

Utilizes Region Proposal Networks (RPN) to segment the binary images into distinct regions corresponding to individual characters or components within 

the inscription. RPN generates bounding boxes around potential regions of interest, allowing for precise localization and extraction of characters. This 

step is crucial for isolating characters from the background and preparing them for feature extraction and classification. 

2.4. Feature Extraction 

The Feature Extraction Module, specifically utilizing the contour-let transform technique, plays a crucial role in capturing meaningful features from 

preprocessed images of ancient inscriptions. Here's a detailed description of the contour-let transform: 

Contour-Let Transform: 

The contour-let transform is a multiscale, multi-directional, and efficient representation for contour extraction and feature analysis in images. It aims to 

capture the edges and contours present in the image, which are essential for recognizing and distinguishing characters in ancient inscriptions. 

Description: 

● Multiscale Analysis 

The contour-let transform decomposes the preprocessed image into multiple scales, capturing features at different levels of detail. This multiscale 

representation allows for the extraction of both fine and coarse features, accommodating variations in character size and complexity. 

● Multi-Directional Analysis 

In addition to scale, the contour-let transform analyzes the image across multiple directions. By considering edge orientations at various angles, the 

transform effectively captures the directional information of contours present in the inscription. This multi-directional analysis enhances the robustness 

of feature extraction, enabling the model to recognize characters with varying orientations. 

● Efficient Representation 

The contour-let transform achieves an efficient representation of image features by utilizing a sparse set of basic functions. These basis functions are 

localized in both space and frequency domains, ensuring that only relevant information is retained while discarding redundant or irrelevant features. This 

sparse representation reduces computational complexity and memory requirements, making the transform suitable for real-time applications. 

● Contour Extraction 

At each scale and orientation, the contour-let transform identifies and extracts contours and edges present in the image. These contours represent the 

salient features of the inscription, such as strokes, lines, and shapes, which are crucial for character recognition. By extracting contours, the transform 

highlights the structural characteristics of the inscription, facilitating accurate classification and interpretation. 

● Feature Analysis 

Once the contours are extracted, the contour-let transform performs feature analysis to characterize their properties, such as curvature, length, and 

orientation. These features serve as discriminative descriptors for differentiating between characters and encoding their distinctive attributes. By analyzing 

contour features, the transform captures the intrinsic characteristics of ancient language inscriptions, enabling effective feature representation for 

subsequent classification tasks. 

2.5. Classification 

The Classification Module is responsible for accurately recognizing individual characters within ancient inscriptions and labeling the inscription with its 

corresponding era or century. Here's a detailed description of each aspect of the module: 

● Character Recognition 

Character recognition involves identifying and classifying individual characters present in the inscription images. This submodule utilizes convolutional 

neural networks (CNNs) trained on the extracted features to perform character recognition with high accuracy. The CNN architecture typically consists 

of multiple convolutional layers followed by pooling layers to extract hierarchical features from the input image. Subsequently, fully connected layers 

are employed to map the extracted features to the output classes, representing each character in the ancient language alphabet. The softmax activation 
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function is applied to the output layer to compute the probability distribution over the character classes, enabling the model to predict the most likely 

character for each region of interest in the inscription. 

Implementation: CNN architectures such as LeNet, VGG, or ResNet are commonly employed for character recognition tasks due to their effectiveness 

in capturing spatial hierarchies and local patterns in images. Training data for character recognition typically consists of annotated images containing 

individual characters labeled with their corresponding classes. The model is trained using backpropagation and gradient descent optimization to minimize 

the classification loss, ensuring accurate predictions for unseen characters. 

● Century Labeling using Fully Connected Layer 

Century labeling involves assigning a label indicating the era or century to which the inscription belongs. This submodule utilizes a fully connected layer 

to perform century labeling based on the features extracted from the inscription image. The fully connected layer takes as input the high-level features 

extracted by the convolutional layers and maps them to a set of output classes representing different eras or centuries. Similar to character recognition, 

the softmax activation function is applied to the output layer to compute the probability distribution over the century classes, enabling the model to predict 

the most likely era for the inscription. 

Implementation: The fully connected layer is typically added on top of the convolutional layers in the CNN architecture. Training data for century 

labeling consists of annotated inscription images labeled with their corresponding eras or centuries. The model is trained using the same principles as 

character recognition, with the objective of minimizing the classification loss and accurately predicting the era of each inscription. The choice of output 

classes depends on the specific historical context and range of centuries relevant to the dataset. 

2.6. InsNet Model: Build and Train 

The "InsNet Model: Build and Train" module focuses on constructing and training the InsNet model, which is a convolutional neural network (CNN) 

designed to recognize characters within ancient inscriptions and label them with their corresponding era or century. Below is a detailed description of 

this module: 

● CNN Architecture Design: 

The first step in building the InsNet model involves designing the architecture of the CNN. This includes determining the number of convolutional layers, 

the size of convolutional filters, the number of pooling layers, and the number of fully connected layers. The architecture should be designed to effectively 

capture the hierarchical features present in ancient inscription images, including stroke patterns, shapes, and textures. 

Implementation: Common CNN architectures such as LeNet, VGG, or ResNet can serve as starting points for designing the InsNet model. The 

architecture should be tailored to the specific characteristics of ancient inscription images, considering factors such as image resolution, noise levels, and 

variations in writing styles. 

● Model Training: 

Once the architecture is defined and the dataset is prepared, the InsNet model is trained using backpropagation and gradient descent optimization. During 

training, the model learns to minimize a predefined loss function by adjusting the weights and biases of its layers in response to the training data. 

Implementation: Training parameters such as learning rate, batch size, and number of epochs are selected based on experimentation and validation 

performance. The training process involves iteratively feeding batches of training samples through the network, computing the loss, and updating the 

model parameters using techniques such as stochastic gradient descent (SGD), Adam, or RMSprop. 

● Model Evaluation 

After training, the performance of the InsNet model is evaluated on the validation and testing datasets to assess its accuracy, precision, recall, and other 

performance metrics. This step helps identify potential overfitting or underfitting issues and guides further optimization efforts. 

Implementation: Various evaluation metrics such as accuracy, confusion matrix, and precision-recall curves are computed to quantify the model's 

performance. Adjustments to the model architecture, training parameters, or data preprocessing techniques may be made based on the evaluation results 

to improve overall performance. 

● Model Optimization 

Finally, the InsNet model undergoes optimization to enhance its performance and generalization capabilities. This may involve fine-tuning the model 

architecture, adjusting hyperparameters, optimizing training algorithms, or incorporating regularization techniques to prevent overfitting. 

Implementation: Techniques such as dropout, batch normalization, and early stopping may be employed to improve the model's generalization ability 

and prevent overfitting. Hyperparameter tuning using techniques such as grid search or random search may also be performed to find optimal values for 

parameters such as learning rate, dropout rate, and layer sizes. 

2.7. Model Deployment 

The "Deploy Model Module" focuses on integrating the trained InsNet model into the Ancient Inscription Era Finder Web App, enabling users to upload 

inscription images and receive predictions regarding the era or century to which the inscription belongs. Below is a detailed description of this module: 

● Model Integration with Web Application 

The serialized InsNet model is integrated into the backend of the Ancient Inscription Era Finder Web App, allowing it to make predictions on inscription 

images uploaded by users. The model is loaded into memory and exposed as an API endpoint or service that the web application can interact with. The 

Flask framework, a lightweight web framework for Python, is commonly used to build the backend of the web application. The serialized model is loaded 

into memory when the web application starts up, and Flask routes are defined to handle HTTP requests for making predictions on uploaded images. 
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3. Era and Character Finder 

This module enables users to input inscription images, predict the era or century to which the inscription belongs using a CNN with the trained InsNet 

model, and map recognized ancient language characters into their current century's form using a Character Mapping algorithm. Here's a detailed 

description of each submodule: 

3.1. Input Inscription Image 

This submodule allows users to upload images of ancient inscriptions through the web application interface. Users can either capture images using their 

device's camera or upload images from their local storage. The uploaded images serve as input for the subsequent prediction steps. The web application 

provides a user-friendly interface for uploading images, utilizing HTML form elements or JavaScript-based file input controls. Images uploaded by users 

are sent to the backend of the application for processing and prediction. 

3.2. Century Finder  

The Century Finder submodule utilizes the trained InsNet model, which is a CNN architecture, to predict the era or century to which the uploaded 

inscription image belongs. The model analyzes the features extracted from the inscription image and provides a classification output indicating the likely 

era or century based on historical context. Upon receiving an uploaded inscription image, the web application preprocesses the image and forwards it to 

the deployed InsNet model for prediction. The model computes the probability distribution over different era or century classes and returns the predicted 

class label. This label is then displayed to the user as the estimated era or century of the inscription. 

3.3. Character Mapping  

The Character Mapping submodule employs an algorithm to convert recognized ancient language characters extracted from the inscription image into 

their modern equivalent forms. This process involves mapping each ancient character to its corresponding contemporary counterpart, facilitating the 

interpretation and understanding of the inscription content. After the InsNet model predicts the characters present in the inscription image, the web 

application applies the Character Mapping algorithm to convert these characters into their current century's form. The algorithm may involve lookup 

tables, linguistic rules, or machine learning techniques to perform the character mapping accurately. The mapped characters are then displayed to the 

user, providing a modernized representation of the inscription content. 

By integrating these submodules within the Era and Character Finder Module, the web application enables users to input ancient inscription images, 

predict their era or century, and map recognized characters into their current century's form, facilitating the analysis and interpretation of ancient 

inscriptions in a user-friendly and accessible manner. 

4. Result Visualization 

The Result Visualization Module is responsible for presenting the predictions and analysis results generated by the system in a user-friendly and 

informative manner. Here's a detailed description of this module: 

4.1. Display Predicted Era or Century 

The module displays the predicted era or century of the uploaded inscription image, providing users with insight into the historical context of the 

inscription. This information helps users understand the temporal significance of the inscription and its relevance within the broader historical timeline. 

The predicted era or century label generated by the Century Finder submodule is prominently displayed on the web application interface. This may be 

presented as text, a graphical representation (e.g., timeline visualization), or both, depending on the design preferences of the application. Users can easily 

interpret the predicted era or century and its implications for the inscription content. 

4.2. Visualize Mapped Characters 

The module visualizes the recognized ancient language characters mapped into their current century's form, providing users with a modernized 

representation of the inscription content. This visualization enhances the readability and interpretability of the inscription, facilitating further analysis and 

understanding. The mapped characters generated by the Character Mapping submodule are displayed within the web application interface, either in textual 

format or as graphical representations. The characters may be presented alongside the original inscription image, allowing users to compare the ancient 

and modern forms side by side. Additionally, tooltips or pop-up windows may provide additional information or context for each mapped character. 

5. System User 

The System User Module provides a comprehensive interface for both administrators and regular users (archaeologists) to interact with the Ancient 

Inscription Era Finder system. Here's a detailed description of the functionalities for each user type: 
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5.1. Administrator Functions 

Login 

Administrators can securely log in to the system using unique credentials to access administrative features and functionalities. The login page prompts 

administrators to enter their username and password. Authentication mechanisms verify the credentials against stored user data to grant access to 

administrative privileges. 

Upload Dataset 

Administrators can upload datasets containing ancient inscription images for training and updating the model. The upload dataset feature allows 

administrators to select and upload datasets from their local storage or external sources. Uploaded datasets are processed and stored in the system's 

database for subsequent model training. 

Train the Model 

Administrators can initiate the training process for the InsNet model using uploaded datasets to improve model accuracy and performance. Upon selecting 

the dataset for training, administrators trigger the model training process by specifying training parameters such as batch size, number of epochs, and 

optimization algorithms. The training progress is monitored, and administrators receive notifications upon completion. 

User Management or Archaeologists Management 

Administrators can manage user accounts and permissions within the system, including creating, updating, or deleting user profiles and assigning roles 

and privileges. The user management interface allows administrators to view existing user accounts, add new users, reset passwords, and modify user 

roles. Role-based access control ensures that users have appropriate permissions based on their roles and responsibilities. 

5.2. User or Archaeologists Functions 

Register 

Users or archaeologists can create new accounts to access the system's features and functionalities. The registration page prompts users to provide personal 

information such as name, email address, and password. Captcha verification may be employed to prevent spam registrations. Upon successful 

registration, users receive a confirmation email with account activation instructions. 

Login 

Users or archaeologists can securely log in to the system using their registered credentials to access personalized features and functionalities. The login 

page prompts users to enter their username or email address and password. Authentication mechanisms verify the credentials against stored user data to 

grant access to user-specific resources and actions. 

Input Inscription Image 

Users or archaeologists can upload images of ancient inscriptions to the system for analysis and interpretation. The input inscription image feature allows 

users to select and upload images from their local storage or capture images using their device's camera. Uploaded images are processed by the system 

to extract features and predict inscription details. 

View Predicted Result 

Users or archaeologists can view the predicted era or century of the uploaded inscription image and the mapped characters in their current century's form. 

The predicted results are displayed on the user interface following image analysis. Users can view the predicted era or century label alongside the mapped 

characters, allowing them to interpret and understand the inscription's historical context and linguistic content. 

6. Performance Evaluation 

The Performance Evaluation module assesses the effectiveness and reliability of the breast cancer detection and prediction system through comprehensive 

metrics, including Confusion Matrix, Accuracy, Precision, Recall, and F1-Score. 

Confusion Matrix 

A Confusion Matrix is a square matrix that summarizes the performance of a classification model by comparing predicted and actual class labels. In this 

project, the Confusion Matrix for breast cancer detection consists of four components: True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN). 

Accuracy 

Accuracy measures the overall correctness of the model's predictions and is calculated as the ratio of correctly classified instances to the total number of 

instances: 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 
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Precision 

Precision quantifies the proportion of correctly predicted positive instances among all instances predicted as positive, indicating the model's ability to 

avoid false positives: 

Precision = TP / (TP + FP) 

Recall (Sensitivity) 

Recall, also known as Sensitivity or True Positive Rate (TPR), measures the proportion of correctly predicted positive instances among all actual positive 

instances, assessing the model's ability to capture positive instances: 

Recall = TP / (TP + FN) 

F1-Score 

F1-Score is the harmonic mean of Precision and Recall, providing a balanced measure of a model's performance. It combines Precision and Recall into a 

single metric, considering both false positives and false negatives: 

F1-Score = 2 * (Precision * Recall) / (Precision + Recall) 

 

CHAPTER 8 

SYSTEM TESTING 

System testing ensures that the project functions correctly, meets user requirements, and performs reliably. The testing process involves several stages: 

1. Unit Testing: Each module, including image preprocessing, feature extraction, classification, and result visualization, is tested individually 

to ensure it functions as expected. Unit tests validate input-output behavior, edge cases, and error handling. 

2. Integration Testing: Modules are integrated to verify interactions and data flow between components. Integration tests assess the system's 

overall functionality and detect any inconsistencies or compatibility issues. 

3. Regression Testing: Changes or updates to the system are tested to ensure they do not introduce new bugs or regressions. Regression tests 

validate previously working functionality after modifications have been made. 

4. User Acceptance Testing (UAT): Real users, such as archaeologists or historians, conduct UAT to validate the system's usability, accuracy, 

and performance. Feedback from UAT helps identify areas for improvement and refinement. 

5. Performance Testing: The system's performance is evaluated under various conditions, including different dataset sizes, network loads, and 

user interactions. Performance tests measure response times, throughput, and resource utilization to ensure scalability and reliability. 

6. Usability Testing: Usability testing assesses the system's ease of use, intuitiveness, and user satisfaction. Participants interact with the system 

to perform typical tasks, and feedback is collected to improve user experience and interface design. 

7. Compatibility Testing: The system is tested across different devices, browsers, and operating systems to ensure compatibility and consistent 

performance. Compatibility tests verify that the system functions correctly on a variety of platforms and configurations. 

8. Scalability Testing: The system's ability to handle increasing loads and data volumes is evaluated through scalability testing. Scalability tests 

measure the system's performance under stress and identify bottlenecks or performance limitations. 

8.1. TEST CSAES 

Admin Functionalities: 

1. Test Case ID: TC_Admin_001 

● Input: Admin credentials (username and password) for login. 

● Expected Result: Successful login, granting access to admin functionalities. 

● Actual Result: Admin successfully logged in. 

● Status: Pass 

2. Test Case ID: TC_Admin_002 

● Input: Dataset containing ancient Indian inscription images for upload. 

● Expected Result: Dataset uploaded and stored in the system for model training. 

● Actual Result: Dataset uploaded successfully. 

● Status: Pass 

3. Test Case ID: TC_Admin_003 

● Input: Initiate model training process with the uploaded dataset. 

● Expected Result: Model trained using the dataset, with improved accuracy and performance. 

● Actual Result: Model training initiated and completed successfully. 

● Status: Pass 

4. Test Case ID: TC_Admin_004 

● Input: Manage user accounts (create, update, delete) from the admin dashboard. 

● Expected Result: Ability to create new user accounts, update existing ones, and delete user accounts as needed. 

● Actual Result: User accounts managed successfully. 

● Status: Pass 

User Functionalities: 

1. Test Case ID: TC_User_001 

● Input: User registration details (name, email, password) for account creation. 
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● Expected Result: Successful registration, granting access to user functionalities. 

● Actual Result: User account created successfully. 

● Status: Pass 

2. Test Case ID: TC_User_002 

● Input: User credentials (email and password) for login. 

● Expected Result: Successful login, granting access to user functionalities. 

● Actual Result: User successfully logged in. 

● Status: Pass 

3. Test Case ID: TC_User_003 

● Input: Upload an image of an ancient Indian inscription for analysis. 

● Expected Result: Uploaded image processed, and era/century predicted along with mapped characters. 

● Actual Result: Inscription image processed successfully, era/century predicted, and characters mapped. 

● Status: Pass 

4. Test Case ID: TC_User_004 

● Input: View predicted era/century and mapped characters for the uploaded inscription image. 

● Expected Result: Predicted era/century and mapped characters displayed accurately for user analysis. 

● Actual Result: Predicted era/century and mapped characters displayed correctly. 

● Status: Pass 

5. Test Case ID: TC001 

● Input: Upload an image of an ancient Indian inscription from the Gupta period. 

● Expected Result: The system predicts the inscription's era as the Gupta period (4th to 6th century CE) and maps the characters 

accurately. 

● Actual Result: Era prediction: Gupta period. Character mapping: Successful. 

● Status: Pass 

6. Test Case ID: TC002 

● Input: Upload an image of a Tamil inscription from the Chola dynasty. 

● Expected Result: The system identifies the inscription's era as the Chola dynasty (9th to 13th century CE) and maps the Tamil 

characters correctly. 

● Actual Result: Era prediction: Chola dynasty. Character mapping: Successful. 

● Status: Pass 

8.2. TEST REPORT 

Introduction: The test report provides an overview of the testing activities conducted on the Ancient Inscription Era Finder system. The system aims to 

analyze ancient Indian inscription images, predict their era/century, and map recognized characters into their modern forms. 

Test Objective: The objective of the testing is to verify the functionality, reliability, and accuracy of the system's admin and user features, ensuring that 

it performs as intended and delivers accurate results. 

Test Scope: The testing scope includes functional testing of admin and user functionalities such as login, dataset upload, model training, user 

management, image upload, result viewing, and error handling. 

Test Environment: 

● Operating System: Windows 10 

● Web Browser: Google Chrome 

● Python Framework: Flask 

● Database: MySQL 

● Libraries: TensorFlow, Pandas, Scikit Learn, NumPy, OpenCV 

● Web Server: Wampserver 

Test Results: The test results indicate that the system functionalities have been thoroughly evaluated, and most test cases have passed successfully. 

Bug Report: A bug report is a document that identifies issues or discrepancies encountered during testing. Below are the identified bugs: 

BID TCID Bug Description Bug Status Output 

B001 TC_User_003 Image processing error for certain formats Open Error message 

B002 TC_User_004 Incorrect mapping of characters in rare cases Closed Mismatched characters 

 

Test Conclusion: Overall, the testing process has verified the functionality and reliability of the Ancient Inscription Era Finder system. The identified 

bugs have been documented and will be addressed in future updates to improve system performance and accuracy. 
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CHAPTER 9 

BOTTOM LINE 

9.1. CONCLUSION 

The project's conclusion underscores its significant contribution to archaeological research and historical analysis. Leveraging modern technologies like 

machine learning, image processing, and web development, coupled with innovative algorithms, the system successfully addresses challenges in 

identifying, classifying, and interpreting ancient inscriptions. Technological advancements, including the contour-let transform for feature extraction and 

convolutional neural networks (CNNs) for character recognition and era labeling, have demonstrated exceptional accuracy and efficiency. These 

algorithms overcome challenges posed by noise, variability, and historical context. The user-friendly web interface ensures intuitive navigation, seamless 

interaction, and responsive design, enhancing accessibility across devices and platforms. Features such as image upload, prediction visualization, and 

result interpretation are presented clearly, facilitating efficient analysis. The feasibility analysis confirms the project's technical, economic, operational, 

and schedulable aspects, indicating its potential for success and sustainability. Careful planning, resource allocation, and risk management kept the project 

on track and delivered tangible benefits. The system's impact on archaeological research includes accelerating discovery, fostering collaboration, and 

preserving cultural heritage. By automating and enhancing analysis processes, it empowers scholars to gain deeper insights into ancient civilizations' 

written records, leading to new discoveries and interpretations. In summary, the proposed system represents the potential of technology to revolutionize 

historical research, providing powerful tools for exploring and understanding ancient inscriptions' rich history. 

9.2. FUTURE ENHANCEMENT 

Future enhancements for the Ancient Inscription Era Finder system could focus on several areas to further improve its capabilities and impact: 

● Semantic Analysis: Integrate natural language processing (NLP) techniques to perform semantic analysis of inscription texts, enabling deeper 

understanding of their meaning and context. 

● Multimodal Analysis: Incorporate additional modalities such as audio and video to analyze inscriptions that may include oral traditions or 

visual storytelling. 

● Interactive Visualization: Enhance result visualization with interactive features such as zooming, panning, and filtering to allow users to 

explore inscription details more dynamically. 

● Language Expansion: Extend language support beyond ancient Indian scripts to include other historical languages and scripts from around 

the world, broadening the system's applicability and reach. 

● Mobile Application: Develop a mobile application version of the system to facilitate fieldwork and on-the-go inscription analysis by 

archaeologists and researchers. 

These future enhancements aim to further enrich the capabilities of the Ancient Inscription Era Finder system, making it a more powerful and versatile 

tool for archaeological research, historical analysis, and cultural preservation. 
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