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A B S T R A C T : 

SnappAI is a web-based tool that combines Robotic Process Automation (RPA) with Large Language Models (LLMs) to automatically retrieve, summarize, and 

present Google search results. Users enter a free-text query into a Flask-powered frontend, which triggers SerpAPI to fetch the top organic listings. Those results 

are stored in CSV format and then passed through Groq’s Llama-3.3-70B model—configured for hybrid extractive-abstractive summarization. A 

retry-and-validation mechanism ensures that each two-sentence summary is factually consistent and follows a strict JSON schema. The system then renders the 

summaries as clickable cards, reducing user effort and cognitive load. In experimental evaluation on a corpus of 500 diverse queries, SnappAI achieved an 

average ROUGE-1 score of 0.43 and 87 % user satisfaction in a pilot usability study. This integrated approach demonstrates significant time savings in 

information retrieval and highlights the viability of AI-driven summarization in everyday search scenarios. Future work includes Docker-based deployment, 

adaptive summarization lengths, and domain-specific fine-tuning. 
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1. Introduction 

The rapid expansion of online content has exacerbated the problem of information overload: users must sift through lengthy search-result pages, click 

multiple links, and mentally integrate scattered facts before forming insights. Traditional search engines provide keyword-based ranking but lack 

built-in mechanisms for concise synthesis. Automated summarization—especially hybrid extractive-abstractive methods powered by LLMs—offers a 

way to surface key information in two or three sentences, enabling faster relevance judgments. SnappAI leverages this potential by integrating RPA for 

reliable data acquisition, a CSV-backed pipeline for traceability, and Groq’s Llama-3.3-70B for high-quality summary generation. The resulting system 

delivers a unified workflow: from query submission to summary display—streamlining research tasks for students, professionals, and casual users 

alike. 

2. Literature Review 

Extractive summarization techniques (e.g., TextRank, TF–IDF ranking) guarantee factual fidelity but often yield disjointed outputs. Abstractive models 

(e.g., BART, T5) produce fluent paraphrases but risk hallucinations without adequate control. Hybrid pipelines combine both to balance accuracy and 

readability, at the expense of increased complexity and latency. Recent work on LLM-based summarization (e.g., GPT-4, Llama-3.3-70B) demonstrates 

few-shot capabilities and strict format adherence via system prompts. UI studies emphasize the importance of semantic HTML5, CSS3 layouts, and 

interactive feedback elements (loading spinners, hover states) to maintain engagement during asynchronous summarization. However, few systems 

seamlessly integrate RPA-driven retrieval, CSV-based audit trails, and LLM summarization into a single, user-friendly web application—leaving a gap 

that SnappAI addresses. 

3. Research Gaps of Existing Methods 

• Data Acquisition Fragility: Browser extensions and custom scrapers are prone to breakage under changing page structures and CAPTCHA 

challenges. 

• Format Consistency: Abstractive models often deviate from desired output schemas, requiring post-hoc validation or retries. 

• Traceability: Many summarization workflows operate as black boxes, offering no audit trail for the source-to-summary transformation. 

• UI Responsiveness: Asynchronous summarization without clear feedback leads to perceived latency and user frustration. 

• Domain Adaptability: Pretrained models exhibit performance drops on niche topics due to vocabulary and context mismatches. 
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Fig. 1: Research Gap Analysis Diagram 

4. Proposed Methodology 

SnappAI’s pipepline comprises: 

 

 RPA-Driven Retrieval: A headless browser workflow (UiPath) calls SerpAPI to fetch the top 10 organic results, handling potential rate limits and 

failure modes. 

 

 CSV Serialization: Results are written to search_results_<query>_<timestamp>.csv via Python’s csv module, ensuring a human-readable audit log. 

 

 Summary Generation: A Python retry loop sends CSV lines to Groq’s chat_bot() function, with JSON parsing and schema validation; failed 

attempts trigger exponential-backoff (max 3 retries). 

 

 Flask Frontend: The /search route orchestrates retrieval, summarization, and template rendering (res.html), displaying each summary as a card with 

title, snippet, and “Visit Source” link. 

 

 Evaluation Harness: Automated scripts compute ROUGE scores against reference summaries, while a pilot group provides Likert-scale feedback 

on clarity and usefulness. 

5. Objectives 

• Develop an end-to-end web application for AI-driven search summary. 

 

• Ensure robust data pipeline with RPA and CSV-based logging. 

 

• Achieve >0.40 ROUGE-1 on a heterogeneous query set. 

 

• Attain ≥85 % user satisfaction in UI usability testing. 

 

• Design modular code for easy extension (Dockerization, domain fine-tuning). 

 

6. System Design & Implementation 

The backend is implemented in Python 3.11 using Flask 2.x. Key modules: 
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• worker.py: Contains perform_search(), save_to_csv(), and process_with_groq() functions. 

 

• app.py: Defines Flask routes (/, /search), handles form data, and error cases. 

 

• Templates: index.html for input, res.html for results—styled with CSS transitions and flex layouts. 

 

• Static: CSV files and assets served from static/. 

 

Groq’s client library is used for LLM access with system messages enforcing JSON output. The retry mechanism catches JSON decode errors and 

value exceptions, logging each attempt. Frontend JavaScript dynamically builds and submits the form to /search without page reload. 

7. Timeline for Execution of Project 

Table 1 – Project Timeline and Milestones 

 

Month Activity Deliverable 

Month 1 Requirements gathering, tool evaluation Methodology document 

Month 2 RPA workflow development, SerpAPI integration Prototype data retrieval script 

Month 3 Summarization engine integration, retry logic Initial summarization module 

Month 4 Frontend design, Flask routing, template integration Beta web application 

Month 5 Evaluation (ROUGE, user study), refinements Evaluation report, UI revisions 

Month 6 Dockerization, documentation, final testing Docker image, final code release 

8. Results & Discussions 

On a test suite of 500 queries spanning technology, health, and finance domains, SnappAI achieved: 

 

• ROUGE‑1: 0.43 (±0.05) 

 

• ROUGE‑2: 0.21 (±0.04) 

 

• User Satisfaction: 87 % rated summaries “Clear” or “Very Clear” in a 20‑participant pilot 

 

Latency per query averaged 3.2 s (RPA + LLM inference). Error handling successfully recovered from 95 % of initial JSON failures within 2 retries. 

Participants reported a 60 % reduction in time to identify relevant sources compared to manual search. Common feedback included requests for 

adjustable summary lengths and domain‑specific terminology support. 

9. Conclusion 

SnappAI demonstrates a novel integration of RPA and LLM summarization within a cohesive web platform, addressing data retrieval fragility, 

summary consistency, and UI responsiveness. Quantitative and qualitative evaluations validate its efficacy in reducing information overload and 

enhancing user experience. Future enhancements will focus on adaptive summarization, extended domain coverage, and full containerized deployment. 
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